1
|
Panda NR, Sahoo AK. A Detailed Systematic Review on Retinal Image Segmentation Methods. J Digit Imaging 2022; 35:1250-1270. [PMID: 35508746 PMCID: PMC9582172 DOI: 10.1007/s10278-022-00640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022] Open
Abstract
The separation of blood vessels in the retina is a major aspect in detecting ailment and is carried out by segregating the retinal blood vessels from the fundus images. Moreover, it helps to provide earlier therapy for deadly diseases and prevent further impacts due to diabetes and hypertension. Many reviews already exist for this problem, but those reviews have presented the analysis of a single framework. Hence, this article on retinal segmentation review has revealed distinct methodologies with diverse frameworks that are utilized for blood vessel separation. The novelty of this review research lies in finding the best neural network model by comparing its efficiency. For that, machine learning (ML) and deep learning (DL) were compared and have been reported as the best model. Moreover, different datasets were used to segment the retinal blood vessels. The execution of each approach is compared based on the performance metrics such as sensitivity, specificity, and accuracy using publically accessible datasets like STARE, DRIVE, ROSE, REFUGE, and CHASE. This article discloses the implementation capacity of distinct techniques implemented for each segmentation method. Finally, the finest accuracy of 98% and sensitivity of 96% were achieved for the technique of Convolution Neural Network with Ranking Support Vector Machine (CNN-rSVM). Moreover, this technique has utilized public datasets to verify efficiency. Hence, the overall review of this article has revealed a method for earlier diagnosis of diseases to deliver earlier therapy.
Collapse
Affiliation(s)
- Nihar Ranjan Panda
- Department of Electronics and Communication Engineering, Silicon Institute of Technology, Bhubaneswar, Orissa, 751024, India.
| | - Ajit Kumar Sahoo
- Department of Electronics and Communication Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| |
Collapse
|
2
|
Garg M, Gupta S, Nayak SR, Nayak J, Pelusi D. Modified pixel level snake using bottom hat transformation for evolution of retinal vasculature map. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:5737-5757. [PMID: 34517510 DOI: 10.3934/mbe.2021290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Small changes in retinal blood vessels may produce different pathological disorders which may further cause blindness. Therefore, accurate extraction of vasculature map of retinal fundus image has become a challenging task for analysis of different pathologies. The present study offers an unsupervised method for extraction of vasculature map from retinal fundus images. This paper presents the methodology for evolution of vessels using Modified Pixel Level Snake (MPLS) algorithm based on Black Top-Hat (BTH) transformation. In the proposed method, initially bimodal masking is used for extraction of the mask of the retinal fundus image. Then adaptive segmentation and global thresholding is applied on masked image to find the initial contour image. Finally, MPLS is used for evolution of contour in all four cardinal directions using external, internal and balloon potential. This proposed work is implemented using MATLAB software. DRIVE and STARE databases are used for checking the performance of the system. In the proposed work, various performance metrics such as sensitivity, specificity and accuracy are evaluated. The average sensitivity of 76.96%, average specificity of 98.34% and average accuracy of 96.30% is achieved for DRIVE database. This technique can also segment vessels of pathological images accurately; reaching the average sensitivity of 70.80%, average specificity of 96.40% and average accuracy of 94.41%. The present study provides a simple and accurate method for the detection of vasculature map for normal fundus images as well as pathological images. It can be helpful for the assessment of various retinal vascular attributes like length, diameter, width, tortuosity and branching angle.
Collapse
Affiliation(s)
- Meenu Garg
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Sheifali Gupta
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Soumya Ranjan Nayak
- Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India
| | - Janmenjoy Nayak
- Aditya Institute of Technology and Management, Tekkali, K. Kotturu, Andhra Pradesh, India
| | - Danilo Pelusi
- Faculty of Communication Sciences, University of Teramo, Italy
| |
Collapse
|
3
|
Palanivel DA, Natarajan S, Gopalakrishnan S. Retinal vessel segmentation using multifractal characterization. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Ji L, Chang M, Shen Y, Zhang Q. Recurrent convolutions of binary-constraint Cellular Neural Network for texture recognition. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.12.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Wang J, Hormel TT, Gao L, Zang P, Guo Y, Wang X, Bailey ST, Jia Y. Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning. BIOMEDICAL OPTICS EXPRESS 2020; 11:927-944. [PMID: 32133230 PMCID: PMC7041469 DOI: 10.1364/boe.379977] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 05/06/2023]
Abstract
Accurate identification and segmentation of choroidal neovascularization (CNV) is essential for the diagnosis and management of exudative age-related macular degeneration (AMD). Projection-resolved optical coherence tomographic angiography (PR-OCTA) enables both cross-sectional and en face visualization of CNV. However, CNV identification and segmentation remains difficult even with PR-OCTA due to the presence of residual artifacts. In this paper, a fully automated CNV diagnosis and segmentation algorithm using convolutional neural networks (CNNs) is described. This study used a clinical dataset, including both scans with and without CNV, and scans of eyes with different pathologies. Furthermore, no scans were excluded due to image quality. In testing, all CNV cases were diagnosed from non-CNV controls with 100% sensitivity and 95% specificity. The mean intersection over union of CNV membrane segmentation was as high as 0.88. By enabling fully automated categorization and segmentation, the proposed algorithm should offer benefits for CNV diagnosis, visualization monitoring.
Collapse
Affiliation(s)
- Jie Wang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tristan T. Hormel
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Liqin Gao
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Beijing Tongren Eye Center, Beijing Key Laboratory of Ophthalmology and Visual Science, Beijing Tongren Hospital, Capital Medical University. Beijing, China
| | - Pengxiao Zang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yukun Guo
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Steven T. Bailey
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
6
|
Statistical Edge Detection and Circular Hough Transform for Optic Disk Localization. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9020350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Accurate and efficient localization of the optic disk (OD) in retinal images is an essential process for the diagnosis of retinal diseases, such as diabetic retinopathy, papilledema, and glaucoma, in automatic retinal analysis systems. This paper presents an effective and robust framework for automatic detection of the OD. The framework begins with the process of elimination of the pixels below the average brightness level of the retinal images. Next, a method based on the modified robust rank order was used for edge detection. Finally, the circular Hough transform (CHT) was performed on the obtained retinal images for OD localization. Three public datasets were used to evaluate the performance of the proposed method. The optic disks were successfully located with the success rates of 100%, 96.92%, and 98.88% for the DRIVE, DIARETDB0, and DIARETDB1 datasets, respectively.
Collapse
|
7
|
Khan KB, Khaliq AA, Jalil A, Iftikhar MA, Ullah N, Aziz MW, Ullah K, Shahid M. A review of retinal blood vessels extraction techniques: challenges, taxonomy, and future trends. Pattern Anal Appl 2018. [DOI: 10.1007/s10044-018-0754-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
A Globally Generalized Emotion Recognition System Involving Different Physiological Signals. SENSORS 2018; 18:s18061905. [PMID: 29891829 PMCID: PMC6021954 DOI: 10.3390/s18061905] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 11/17/2022]
Abstract
Machine learning approaches for human emotion recognition have recently demonstrated high performance. However, only/mostly for subject-dependent approaches, in a variety of applications like advanced driver assisted systems, smart homes and medical environments. Therefore, now the focus is shifted more towards subject-independent approaches, which are more universal and where the emotion recognition system is trained using a specific group of subjects and then tested on totally new persons and thereby possibly while using other sensors of same physiological signals in order to recognize their emotions. In this paper, we explore a novel robust subject-independent human emotion recognition system, which consists of two major models. The first one is an automatic feature calibration model and the second one is a classification model based on Cellular Neural Networks (CNN). The proposed system produces state-of-the-art results with an accuracy rate between 80% and 89% when using the same elicitation materials and physiological sensors brands for both training and testing and an accuracy rate of 71.05% when the elicitation materials and physiological sensors brands used in training are different from those used in training. Here, the following physiological signals are involved: ECG (Electrocardiogram), EDA (Electrodermal activity) and ST (Skin-Temperature).
Collapse
|
9
|
Singh NP, Srivastava R. Extraction of Retinal Blood Vessels by Using an Extended Matched Filter Based on Second Derivative of Gaussian. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2018. [DOI: 10.1007/s40010-017-0465-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Hassan G, Hassanien AE. A Review of Vessel Segmentation Methodologies and Algorithms. Ophthalmology 2018. [DOI: 10.4018/978-1-5225-5195-9.ch001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
“Prevention is better than cure”, true statement which all of us neglect. One of the most reasons which cause speedy recovery from any diseases is to discover it in advanced stages. From here come the importance of computer systems which preserve time and achieve accurate results in knowing the diseases and its first symptoms .One of these systems is retinal image analysis system which considered as a key role and the first step of Computer Aided Diagnosis Systems (CAD). In addition to monitor the patient health status under different treatment methods to ensure How it effects on the disease.. In this chapter the authors examine most of approaches that are used for vessel segmentation for retinal images, and a review of techniques is presented comparing between their quality and accessibility, analyzing and catgrizing them. This chapter gives a description and highlights the key points and the performance measures of each one.
Collapse
Affiliation(s)
- Gehad Hassan
- Fayoum University, Egypt & Scientific Research Group in Egypt (SRGE), Egypt
| | | |
Collapse
|
11
|
Retinal Image Denoising via Bilateral Filter with a Spatial Kernel of Optimally Oriented Line Spread Function. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:1769834. [PMID: 28261320 PMCID: PMC5316463 DOI: 10.1155/2017/1769834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/30/2016] [Accepted: 12/13/2016] [Indexed: 11/18/2022]
Abstract
Filtering belongs to the most fundamental operations of retinal image processing and for which the value of the filtered image at a given location is a function of the values in a local window centered at this location. However, preserving thin retinal vessels during the filtering process is challenging due to vessels' small area and weak contrast compared to background, caused by the limited resolution of imaging and less blood flow in the vessel. In this paper, we present a novel retinal image denoising approach which is able to preserve the details of retinal vessels while effectively eliminating image noise. Specifically, our approach is carried out by determining an optimal spatial kernel for the bilateral filter, which is represented by a line spread function with an orientation and scale adjusted adaptively to the local vessel structure. Moreover, this approach can also be served as a preprocessing tool for improving the accuracy of the vessel detection technique. Experimental results show the superiority of our approach over state-of-the-art image denoising techniques such as the bilateral filter.
Collapse
|
12
|
Robust Retinal Blood Vessel Segmentation Based on Reinforcement Local Descriptions. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2028946. [PMID: 28194407 PMCID: PMC5286479 DOI: 10.1155/2017/2028946] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/16/2016] [Accepted: 12/25/2016] [Indexed: 11/27/2022]
Abstract
Retinal blood vessels segmentation plays an important role for retinal image analysis. In this paper, we propose robust retinal blood vessel segmentation method based on reinforcement local descriptions. A novel line set based feature is firstly developed to capture local shape information of vessels by employing the length prior of vessels, which is robust to intensity variety. After that, local intensity feature is calculated for each pixel, and then morphological gradient feature is extracted for enhancing the local edge of smaller vessel. At last, line set based feature, local intensity feature, and morphological gradient feature are combined to obtain the reinforcement local descriptions. Compared with existing local descriptions, proposed reinforcement local description contains more local information of local shape, intensity, and edge of vessels, which is more robust. After feature extraction, SVM is trained for blood vessel segmentation. In addition, we also develop a postprocessing method based on morphological reconstruction to connect some discontinuous vessels and further obtain more accurate segmentation result. Experimental results on two public databases (DRIVE and STARE) demonstrate that proposed reinforcement local descriptions outperform the state-of-the-art method.
Collapse
|
13
|
Yilmaz B, Durdu A, Emlik GD. A new method for skull stripping in brain MRI using multistable cellular neural networks. Neural Comput Appl 2016. [DOI: 10.1007/s00521-016-2834-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Roychowdhury S, Koozekanani DD, Parhi KK. Blood Vessel Segmentation of Fundus Images by Major Vessel Extraction and Subimage Classification. IEEE J Biomed Health Inform 2015; 19:1118-28. [PMID: 25014980 DOI: 10.1109/jbhi.2014.2335617] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper presents a novel three-stage blood vessel segmentation algorithm using fundus photographs. In the first stage, the green plane of a fundus image is preprocessed to extract a binary image after high-pass filtering, and another binary image from the morphologically reconstructed enhanced image for the vessel regions. Next, the regions common to both the binary images are extracted as the major vessels. In the second stage, all remaining pixels in the two binary images are classified using a Gaussian mixture model (GMM) classifier using a set of eight features that are extracted based on pixel neighborhood and first and second-order gradient images. In the third postprocessing stage, the major portions of the blood vessels are combined with the classified vessel pixels. The proposed algorithm is less dependent on training data, requires less segmentation time and achieves consistent vessel segmentation accuracy on normal images as well as images with pathology when compared to existing supervised segmentation methods. The proposed algorithm achieves a vessel segmentation accuracy of 95.2%, 95.15%, and 95.3% in an average of 3.1, 6.7, and 11.7 s on three public datasets DRIVE, STARE, and CHASE_DB1, respectively.
Collapse
|
15
|
Roychowdhury S, Koozekanani DD, Parhi KK. Iterative Vessel Segmentation of Fundus Images. IEEE Trans Biomed Eng 2015; 62:1738-49. [DOI: 10.1109/tbme.2015.2403295] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Patankar SS, Kulkarni JV. Orthogonal moments for determining correspondence between vessel bifurcations for retinal image registration. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2015; 119:121-141. [PMID: 25837489 DOI: 10.1016/j.cmpb.2015.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 02/16/2015] [Accepted: 02/25/2015] [Indexed: 06/04/2023]
Abstract
Retinal image registration is a necessary step in diagnosis and monitoring of Diabetes Retinopathy (DR), which is one of the leading causes of blindness. Long term diabetes affects the retinal blood vessels and capillaries eventually causing blindness. This progressive damage to retina and subsequent blindness can be prevented by periodic retinal screening. The extent of damage caused by DR can be assessed by comparing retinal images captured during periodic retinal screenings. During image acquisition at the time of periodic screenings translation, rotation and scale (TRS) are introduced in the retinal images. Therefore retinal image registration is an essential step in automated system for screening, diagnosis, treatment and evaluation of DR. This paper presents an algorithm for registration of retinal images using orthogonal moment invariants as features for determining the correspondence between the dominant points (vessel bifurcations) in the reference and test retinal images. As orthogonal moments are invariant to TRS; moment invariants features around a vessel bifurcation are unaltered due to TRS and can be used to determine the correspondence between reference and test retinal images. The vessel bifurcation points are located in segmented, thinned (mono pixel vessel width) retinal images and labeled in corresponding grayscale retinal images. The correspondence between vessel bifurcations in reference and test retinal image is established based on moment invariants features. Further the TRS in test retinal image with respect to reference retinal image is estimated using similarity transformation. The test retinal image is aligned with reference retinal image using the estimated registration parameters. The accuracy of registration is evaluated in terms of mean error and standard deviation of the labeled vessel bifurcation points in the aligned images. The experimentation is carried out on DRIVE database, STARE database, VARIA database and database provided by local government hospital in Pune, India. The experimental results exhibit effectiveness of the proposed algorithm for registration of retinal images.
Collapse
|
17
|
Salazar-Gonzalez A, Kaba D, Yongmin Li, Xiaohui Liu. Segmentation of the Blood Vessels and Optic Disk in Retinal Images. IEEE J Biomed Health Inform 2014; 18:1874-86. [DOI: 10.1109/jbhi.2014.2302749] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Kaba D, Wang C, Li Y, Salazar-Gonzalez A, Liu X, Serag A. Retinal blood vessels extraction using probabilistic modelling. Health Inf Sci Syst 2014; 2:2. [PMID: 25825666 PMCID: PMC4376494 DOI: 10.1186/2047-2501-2-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/22/2013] [Indexed: 12/01/2022] Open
Abstract
The analysis of retinal blood vessels plays an important role in detecting and treating retinal diseases. In this review, we present an automated method to segment blood vessels of fundus retinal image. The proposed method could be used to support a non-intrusive diagnosis in modern ophthalmology for early detection of retinal diseases, treatment evaluation or clinical study. This study combines the bias correction and an adaptive histogram equalisation to enhance the appearance of the blood vessels. Then the blood vessels are extracted using probabilistic modelling that is optimised by the expectation maximisation algorithm. The method is evaluated on fundus retinal images of STARE and DRIVE datasets. The experimental results are compared with some recently published methods of retinal blood vessels segmentation. The experimental results show that our method achieved the best overall performance and it is comparable to the performance of human experts.
Collapse
Affiliation(s)
- Djibril Kaba
- Department of Information Systems, Computing and Mathematics Brunel University, London, UK
| | - Chuang Wang
- Department of Information Systems, Computing and Mathematics Brunel University, London, UK
| | - Yongmin Li
- Department of Information Systems, Computing and Mathematics Brunel University, London, UK
| | - Ana Salazar-Gonzalez
- Department of Information Systems, Computing and Mathematics Brunel University, London, UK
| | - Xiaohui Liu
- Department of Information Systems, Computing and Mathematics Brunel University, London, UK
| | - Ahmed Serag
- Diagnostic Imaging and Radiology, Children's National Medical Center, 24105 Washington, DC USA
| |
Collapse
|
19
|
Becker BC, Riviere CN. Real-Time Retinal Vessel Mapping and Localization for Intraocular Surgery. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION : ICRA : [PROCEEDINGS]. IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION 2013:5360-5365. [PMID: 24488000 PMCID: PMC3905955 DOI: 10.1109/icra.2013.6631345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Computer-aided intraocular surgery requires precise, real-time knowledge of the vasculature during retinal procedures such as laser photocoagulation or vessel cannulation. Because vitreoretinal surgeons manipulate retinal structures on the back of the eye through ports in the sclera, voluntary and involuntary tool motion rotates the eye in the socket and causes movement to the microscope view of the retina. The dynamic nature of the surgical workspace during intraocular surgery makes mapping, tracking, and localizing vasculature in real time a challenge. We present an approach that both maps and localizes retinal vessels by temporally fusing and registering individual-frame vessel detections. On video of porcine and human retina, we demonstrate real-time performance, rapid convergence, and robustness to variable illumination and tool occlusion.
Collapse
Affiliation(s)
- Brian C Becker
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Cameron N Riviere
- Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| |
Collapse
|
20
|
Fathi A, Naghsh-Nilchi AR. Automatic wavelet-based retinal blood vessels segmentation and vessel diameter estimation. Biomed Signal Process Control 2013. [DOI: 10.1016/j.bspc.2012.05.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA. Blood vessel segmentation methodologies in retinal images--a survey. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2012; 108:407-33. [PMID: 22525589 DOI: 10.1016/j.cmpb.2012.03.009] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 03/05/2012] [Accepted: 03/24/2012] [Indexed: 05/20/2023]
Abstract
Retinal vessel segmentation algorithms are a fundamental component of automatic retinal disease screening systems. This work examines the blood vessel segmentation methodologies in two dimensional retinal images acquired from a fundus camera and a survey of techniques is presented. The aim of this paper is to review, analyze and categorize the retinal vessel extraction algorithms, techniques and methodologies, giving a brief description, highlighting the key points and the performance measures. We intend to give the reader a framework for the existing research; to introduce the range of retinal vessel segmentation algorithms; to discuss the current trends and future directions and summarize the open problems. The performance of algorithms is compared and analyzed on two publicly available databases (DRIVE and STARE) of retinal images using a number of measures which include accuracy, true positive rate, false positive rate, sensitivity, specificity and area under receiver operating characteristic (ROC) curve.
Collapse
Affiliation(s)
- M M Fraz
- Digital Imaging Research Centre, Faculty of Science, Engineering and Computing, Kingston University London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
22
|
Fathi A, Naghsh-Nilchi AR. Integrating adaptive neuro-fuzzy inference system and local binary pattern operator for robust retinal blood vessels segmentation. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-1118-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Fast retinal vessel detection and measurement using wavelets and edge location refinement. PLoS One 2012; 7:e32435. [PMID: 22427837 PMCID: PMC3299657 DOI: 10.1371/journal.pone.0032435] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/31/2012] [Indexed: 11/19/2022] Open
Abstract
The relationship between changes in retinal vessel morphology and the onset and progression of diseases such as diabetes, hypertension and retinopathy of prematurity (ROP) has been the subject of several large scale clinical studies. However, the difficulty of quantifying changes in retinal vessels in a sufficiently fast, accurate and repeatable manner has restricted the application of the insights gleaned from these studies to clinical practice. This paper presents a novel algorithm for the efficient detection and measurement of retinal vessels, which is general enough that it can be applied to both low and high resolution fundus photographs and fluorescein angiograms upon the adjustment of only a few intuitive parameters. Firstly, we describe the simple vessel segmentation strategy, formulated in the language of wavelets, that is used for fast vessel detection. When validated using a publicly available database of retinal images, this segmentation achieves a true positive rate of 70.27%, false positive rate of 2.83%, and accuracy score of 0.9371. Vessel edges are then more precisely localised using image profiles computed perpendicularly across a spline fit of each detected vessel centreline, so that both local and global changes in vessel diameter can be readily quantified. Using a second image database, we show that the diameters output by our algorithm display good agreement with the manual measurements made by three independent observers. We conclude that the improved speed and generality offered by our algorithm are achieved without sacrificing accuracy. The algorithm is implemented in MATLAB along with a graphical user interface, and we have made the source code freely available.
Collapse
|
24
|
Fathi A, Naghsh-Nilchi AR. General rotation-invariant local binary patterns operator with application to blood vessel detection in retinal images. Pattern Anal Appl 2011. [DOI: 10.1007/s10044-011-0257-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
25
|
Lam BSY, Gao Y, Liew AWC. General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE TRANSACTIONS ON MEDICAL IMAGING 2010; 29:1369-1381. [PMID: 20304729 DOI: 10.1109/tmi.2010.2043259] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Detecting blood vessels in retinal images with the presence of bright and dark lesions is a challenging unsolved problem. In this paper, a novel multiconcavity modeling approach is proposed to handle both healthy and unhealthy retinas simultaneously. The differentiable concavity measure is proposed to handle bright lesions in a perceptive space. The line-shape concavity measure is proposed to remove dark lesions which have an intensity structure different from the line-shaped vessels in a retina. The locally normalized concavity measure is designed to deal with unevenly distributed noise due to the spherical intensity variation in a retinal image. These concavity measures are combined together according to their statistical distributions to detect vessels in general retinal images. Very encouraging experimental results demonstrate that the proposed method consistently yields the best performance over existing state-of-the-art methods on the abnormal retinas and its accuracy outperforms the human observer, which has not been achieved by any of the state-of-the-art benchmark methods. Most importantly, unlike existing methods, the proposed method shows very attractive performances not only on healthy retinas but also on a mixture of healthy and pathological retinas.
Collapse
Affiliation(s)
- Benson S Y Lam
- Griffith School of Engineering, Griffith University, Brisbane, QLD 4111, Australia.
| | | | | |
Collapse
|
26
|
Zhang B, Zhang L, Zhang L, Karray F. Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Comput Biol Med 2010; 40:438-45. [DOI: 10.1016/j.compbiomed.2010.02.008] [Citation(s) in RCA: 365] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 02/16/2010] [Accepted: 02/16/2010] [Indexed: 11/28/2022]
|
27
|
Cinsdikici MG, Aydin D. Detection of blood vessels in ophthalmoscope images using MF/ant (matched filter/ant colony) algorithm. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2009; 96:85-95. [PMID: 19419790 DOI: 10.1016/j.cmpb.2009.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 02/19/2009] [Accepted: 04/06/2009] [Indexed: 05/27/2023]
Abstract
Blood vessels in ophthalmoscope images play an important role in diagnosis of some serious pathologies on retinal images. Hence, accurate extraction of vessels is becoming a main topic of this research area. Matched filter (MF) implementation for blood vessel detection is one of the methods giving more accurate results. Using this filter alone might not recover all the vessels (especially the capillaries). In this paper, a novel approach (MF/ant algorithm) is proposed to overcome the deficiency of the MF. The proposed method is a hybrid model of matched filter and ant colony algorithm. In this work, the accuracy and parameters of the hybrid algorithm are also discussed. The proposed method shows its success using the well known reference ophthalmoscope images of DRIVE database.
Collapse
|
28
|
Fornarelli G, Giaquinto A. Adaptive particle swarm optimization for CNN associative memories design. Neurocomputing 2009. [DOI: 10.1016/j.neucom.2009.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|