1
|
Kavitha V, Siva R. HCBiLSTM-WOA: hybrid convolutional bidirectional long short-term memory with water optimization algorithm for autism spectrum disorder. Comput Methods Biomech Biomed Engin 2025; 28:818-840. [PMID: 39290085 DOI: 10.1080/10255842.2024.2399016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/30/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
Autism Spectrum Disorder (ASD) is a type of brain developmental disability that cannot be completely treated, but its impact can be reduced through early interventions. Early identification of neurological disorders will better assist in preserving the subjects' physical and mental health. Although numerous research works exist for detecting autism spectrum disorder, they are cumbersome and insufficient for dealing with real-time datasets. Therefore, to address these issues, this paper proposes an ASD detection mechanism using a novel Hybrid Convolutional Bidirectional Long Short-Term Memory based Water Optimization Algorithm (HCBiLSTM-WOA). The prediction efficiency of the proposed HCBiLSTM-WOA method is investigated using real-time ASD datasets containing both ASD and non-ASD data from toddlers, children, adolescents, and adults. The inconsistent and incomplete representations of the raw ASD dataset are modified using preprocessing procedures such as handling missing values, predicting outliers, data discretization, and data reduction. The preprocessed data obtained is then fed into the proposed HCBiLSTM-WOA classification model to effectively predict the non-ASD and ASD classes. The initially randomly initialized hyperparameters of the HCBiLSTM model are adjusted and tuned using the water optimization algorithm (WOA) to increase the prediction accuracy of ASD. After detecting non-ASD and ASD classes, the HCBiLSTM-WOA method further classifies the ASD cases into respective stages based on the autistic traits observed in toddlers, children, adolescents, and adults. Also, the ethical considerations that should be taken into account when campaign ASD risk communication are complex due to the data privacy and unpredictability surrounding ASD risk factors. The fusion of sophisticated deep learning techniques with an optimization algorithm presents a promising framework for ASD diagnosis. This innovative approach shows potential in effectively managing intricate ASD data, enhancing diagnostic precision, and improving result interpretation. Consequently, it offers clinicians a tool for early and precise detection, allowing for timely intervention in ASD cases. Moreover, the performance of the proposed HCBiLSTM-WOA method is evaluated using various performance indicators such as accuracy, kappa statistics, sensitivity, specificity, log loss, and Area Under the Receiver Operating Characteristics (AUROC). The simulation results reveal the superiority of the proposed HCBiLSTM-WOA method in detecting ASD compared to other existing methods. The proposed method achieves a higher ASD prediction accuracy of about 98.53% than the other methods being compared.
Collapse
Affiliation(s)
- V Kavitha
- Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| | - R Siva
- Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Liu R, Hu Y, Wu J, Wong KC, Huang ZA, Huang YA, Chen Tan K. Dynamic Graph Representation Learning for Spatio-Temporal Neuroimaging Analysis. IEEE TRANSACTIONS ON CYBERNETICS 2025; 55:1121-1134. [PMID: 40031724 DOI: 10.1109/tcyb.2025.3531657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Neuroimaging analysis aims to reveal the information-processing mechanisms of the human brain in a noninvasive manner. In the past, graph neural networks (GNNs) have shown promise in capturing the non-Euclidean structure of brain networks. However, existing neuroimaging studies focused primarily on spatial functional connectivity, despite temporal dynamics in complex brain networks. To address this gap, we propose a spatio-temporal interactive graph representation framework (STIGR) for dynamic neuroimaging analysis that encompasses different aspects from classification and regression tasks to interpretation tasks. STIGR leverages a dynamic adaptive-neighbor graph convolution network to capture the interrelationships between spatial and temporal dynamics. To address the limited global scope in graph convolutions, a self-attention module based on Transformers is introduced to extract long-term dependencies. Contrastive learning is used to adaptively contrast similarities between adjacent scanning windows, modeling cross-temporal correlations in dynamic graphs. Extensive experiments on six public neuroimaging datasets demonstrate the competitive performance of STIGR across different platforms, achieving state-of-the-art results in classification and regression tasks. The proposed framework enables the detection of remarkable temporal association patterns between regions of interest based on sequential neuroimaging signals, offering medical professionals a versatile and interpretable tool for exploring task-specific neurological patterns. Our codes and models are available at https://github.com/77YQ77/STIGR/.
Collapse
|
3
|
Zhang C, Ma Y, Qiao L, Zhang L, Liu M. Learning functional brain networks with heterogeneous connectivities for brain disease identification. Neural Netw 2024; 180:106660. [PMID: 39208458 DOI: 10.1016/j.neunet.2024.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Functional brain networks (FBNs), which are used to portray interactions between different brain regions, have been widely used to identify potential biomarkers of neurological and mental disorders. The FBNs estimated using current methods tend to be homogeneous, indicating that different brain regions exhibit the same type of correlation. This homogeneity limits our ability to accurately encode complex interactions within the brain. Therefore, to the best of our knowledge, in the present study, for the first time, we propose the existence of heterogeneous FBNs and introduce a novel FBN estimation model that adaptively assigns heterogeneous connections to different pairs of brain regions, thereby effectively encoding the complex interaction patterns in the brain. Specifically, we first construct multiple types of candidate correlations from different views or based on different methods and then develop an improved orthogonal matching pursuit algorithm to select at most one correlation for each brain region pair under the guidance of label information. These adaptively estimated heterogeneous FBNs were then used to distinguish subjects with neurological/mental disorders from healthy controls and identify potential biomarkers related to these disorders. Experimental results on real datasets show that the proposed scheme improves classification performance by 7.07% and 7.58% at the two sites, respectively, compared with the baseline approaches. This emphasizes the plausibility of the heterogeneity hypothesis and effectiveness of the heterogeneous connection assignment algorithm.
Collapse
Affiliation(s)
- Chaojun Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China; School of Computer Science and Technology, Hainan University, Haikou, Hainan, 570228, China
| | - Yunling Ma
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China
| | - Lishan Qiao
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China
| | - Limei Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Fang J, Zhang DF, Xie K, Xu L, Bi XA. Bilinear Perceptual Fusion Algorithm Based on Brain Functional and Structural Data for ASD Diagnosis and Regions of Interest Identification. Interdiscip Sci 2024; 16:936-950. [PMID: 39254805 DOI: 10.1007/s12539-024-00651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
Autism spectrum disorder (ASD) is a serious mental disorder with a complex pathogenesis mechanism and variable presentation among individuals. Although many deep learning algorithms have been used to diagnose ASD, most of them focus on a single modality of data, resulting in limited information extraction and poor stability. In this paper, we propose a bilinear perceptual fusion (BPF) algorithm that leverages data from multiple modalities. In our algorithm, different schemes are used to extract features according to the characteristics of functional and structural data. Through bilinear operations, the associations between the functional and structural features of each region of interest (ROI) are captured. Then the associations are used to integrate the feature representation. Graph convolutional neural networks (GCNs) can effectively utilize topology and node features in brain network analysis. Therefore, we design a deep learning framework called BPF-GCN and conduct experiments on publicly available ASD dataset. The results show that the classification accuracy of BPF-GCN reached 82.35%, surpassing existing methods. This demonstrates the superiority of its classification performance, and the framework can extract ROIs related to ASD. Our work provides a valuable reference for the timely diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Jinxiong Fang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Da-Fang Zhang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.
| | - Kun Xie
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Luyun Xu
- College of Business, Hunan Normal University, Changsha, 410081, China
| | - Xia-An Bi
- College of Information Science and Engineering, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
5
|
Schielen SJC, Pilmeyer J, Aldenkamp AP, Zinger S. The diagnosis of ASD with MRI: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:318. [PMID: 39095368 PMCID: PMC11297045 DOI: 10.1038/s41398-024-03024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
While diagnosing autism spectrum disorder (ASD) based on an objective test is desired, the current diagnostic practice involves observation-based criteria. This study is a systematic review and meta-analysis of studies that aim to diagnose ASD using magnetic resonance imaging (MRI). The main objective is to describe the state of the art of diagnosing ASD using MRI in terms of performance metrics and interpretation. Furthermore, subgroups, including different MRI modalities and statistical heterogeneity, are analyzed. Studies that dichotomously diagnose individuals with ASD and healthy controls by analyses progressing from magnetic resonance imaging obtained in a resting state were systematically selected by two independent reviewers. Studies were sought on Web of Science and PubMed, which were last accessed on February 24, 2023. The included studies were assessed on quality and risk of bias using the revised Quality Assessment of Diagnostic Accuracy Studies tool. A bivariate random-effects model was used for syntheses. One hundred and thirty-four studies were included comprising 159 eligible experiments. Despite the overlap in the studied samples, an estimated 4982 unique participants consisting of 2439 individuals with ASD and 2543 healthy controls were included. The pooled summary estimates of diagnostic performance are 76.0% sensitivity (95% CI 74.1-77.8), 75.7% specificity (95% CI 74.0-77.4), and an area under curve of 0.823, but uncertainty in the study assessments limits confidence. The main limitations are heterogeneity and uncertainty about the generalization of diagnostic performance. Therefore, comparisons between subgroups were considered inappropriate. Despite the current limitations, methods progressing from MRI approach the diagnostic performance needed for clinical practice. The state of the art has obstacles but shows potential for future clinical application.
Collapse
Affiliation(s)
- Sjir J C Schielen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Jesper Pilmeyer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Albert P Aldenkamp
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Heeze, the Netherlands
| | - Svitlana Zinger
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
6
|
Dong Q, Cai H, Li Z, Liu J, Hu B. A Multiview Brain Network Transformer Fusing Individualized Information for Autism Spectrum Disorder Diagnosis. IEEE J Biomed Health Inform 2024; 28:4854-4865. [PMID: 38700974 DOI: 10.1109/jbhi.2024.3396457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for identifying Autism Spectrum Disorders (ASD) patients. Given the neurobiological heterogeneity across individuals and the unique presentation of ASD symptoms, the fusion of individualized information into diagnosis becomes essential. However, this aspect is overlooked in most methods. Furthermore, the existing methods typically focus on studying direct pairwise connections between brain ROIs, while disregarding interactions between indirectly connected neighbors. To overcome above challenges, we build common FC and individualized FC by tangent pearson embedding (TP) and common orthogonal basis extraction (COBE) respectively, and present a novel multiview brain transformer (MBT) aimed at effectively fusing common and indivinformation of subjects. MBT is mainly constructed by transformer layers with diffusion kernel (DK), fusion quality-inspired weighting module (FQW), similarity loss and orthonormal clustering fusion readout module (OCFRead). DK transformer can incorporate higher-order random walk methods to capture wider interactions among indirectly connected brain regions. FQW promotes adaptive fusion of features between views, and similarity loss and OCFRead are placed on the last layer to accomplish the ultimate integration of information. In our method, TP, DK and FQW modules all help to model wider connectivity in the brain that make up for the shortcomings of traditional methods. We conducted experiments on the public ABIDE dataset based on AAL and CC200 respectively. Our framework has shown promising results, outperforming state-of-the-art methods on both templates. This suggests its potential as a valuable approach for clinical ASD diagnosis.
Collapse
|
7
|
Liu R, Huang ZA, Hu Y, Zhu Z, Wong KC, Tan KC. Spatial-Temporal Co-Attention Learning for Diagnosis of Mental Disorders From Resting-State fMRI Data. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:10591-10605. [PMID: 37027556 DOI: 10.1109/tnnls.2023.3243000] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neuroimaging techniques have been widely adopted to detect the neurological brain structures and functions of the nervous system. As an effective noninvasive neuroimaging technique, functional magnetic resonance imaging (fMRI) has been extensively used in computer-aided diagnosis (CAD) of mental disorders, e.g., autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). In this study, we propose a spatial-temporal co-attention learning (STCAL) model for diagnosing ASD and ADHD from fMRI data. In particular, a guided co-attention (GCA) module is developed to model the intermodal interactions of spatial and temporal signal patterns. A novel sliding cluster attention module is designed to address global feature dependency of self-attention mechanism in fMRI time series. Comprehensive experimental results demonstrate that our STCAL model can achieve competitive accuracies of 73.0 ± 4.5%, 72.0 ± 3.8%, and 72.5 ± 4.2% on the ABIDE I, ABIDE II, and ADHD-200 datasets, respectively. Moreover, the potential for feature pruning based on the co-attention scores is validated by the simulation experiment. The clinical interpretation analysis of STCAL can allow medical professionals to concentrate on the discriminative regions of interest and key time frames from fMRI data.
Collapse
|
8
|
Mao Y, Lin X, Wu Y, Lu J, Shen J, Zhong S, Jin X, Ma J. Additive interaction between birth asphyxia and febrile seizures on autism spectrum disorder: a population-based study. Mol Autism 2024; 15:17. [PMID: 38600595 PMCID: PMC11007945 DOI: 10.1186/s13229-024-00596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental disorder that can significantly impact an individual's ability to socially integrate and adapt. It's crucial to identify key factors associated with ASD. Recent studies link both birth asphyxia (BA) and febrile seizures (FS) separately to higher ASD prevalence. However, investigations into the interplay of BA and FS and its relationship with ASD are yet to be conducted. The present study mainly focuses on exploring the interactive effect between BA and FS in the context of ASD. METHODS Utilizing a multi-stage stratified cluster sampling, we initially recruited 84,934 Shanghai children aged 3-12 years old from June 2014 to June 2015, ultimately including 74,251 post-exclusion criteria. A logistic regression model was conducted to estimate the interaction effect after controlling for pertinent covariates. The attributable proportion (AP), the relative excess risk due to interaction (RERI), the synergy index (SI), and multiplicative-scale interaction were computed to determine the interaction effect. RESULTS Among a total of 74,251 children, 192 (0.26%) were diagnosed with ASD. The adjusted odds ratio for ASD in children with BA alone was 3.82 (95% confidence interval [CI] 2.42-6.02), for FS alone 3.06 (95%CI 1.48-6.31), and for comorbid BA and FS 21.18 (95%CI 9.10-49.30), versus children without BA or FS. The additive interaction between BA and FS showed statistical significance (P < 0.001), whereas the multiplicative interaction was statistically insignificant (P > 0.05). LIMITATIONS This study can only demonstrate the relationship between the interaction of BA and FS with ASD but cannot prove causation. Animal brain experimentation is necessary to unravel its neural mechanisms. A larger sample size, ongoing monitoring, and detailed FS classification are needed for confirming BA-FS interaction in ASD. CONCLUSION In this extensive cross-sectional study, both BA and FS were significantly linked to ASD. The coexistence of these factors was associated with an additive increase in ASD prevalence, surpassing the cumulative risk of each individual factor.
Collapse
Affiliation(s)
- Yi Mao
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xindi Lin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuhan Wu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiayi Lu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiayao Shen
- Department of Nephrology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shaogen Zhong
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xingming Jin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Ma
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
9
|
Li C, Liu M, Xia J, Mei L, Yang Q, Shi F, Zhang H, Shen D. Individualized Assessment of Brain Aβ Deposition With fMRI Using Deep Learning. IEEE J Biomed Health Inform 2023; 27:5430-5438. [PMID: 37616143 DOI: 10.1109/jbhi.2023.3306460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
PET-based Alzheimer's disease (AD) assessment has many limitations in large-scale screening. Non-invasive techniques such as resting-state functional magnetic resonance imaging (rs-fMRI) have been proven valuable in early AD diagnosis. This study investigated feasibility of using rs-fMRI, especially functional connectivity (FC), for individualized assessment of brain amyloid-β deposition derived from PET. We designed a graph convolutional networks (GCNs) and random forest (RF) based integrated framework for using rs-fMRI-derived multi-level FC networks to predict amyloid-β PET patterns with the OASIS-3 (N = 258) and ADNI-2 (N = 291) datasets. Our method achieved satisfactory accuracy not only in Aβ-PET grade classification (for negative, intermediate, and positive grades, with accuracy in the three-class classification as 62.8% and 64.3% on two datasets, respectively), but also in prediction of whole-brain region-level Aβ-PET standard uptake value ratios (SUVRs) (with the mean square errors as 0.039 and 0.074 for two datasets, respectively). Model interpretability examination also revealed the contributive role of the limbic network. This study demonstrated high feasibility and reproducibility of using low-cost, more accessible magnetic resonance imaging (MRI) to approximate PET-based diagnosis.
Collapse
|
10
|
Zhang C, Ma Y, Qiao L, Zhang L, Liu M. Learning to Fuse Multiple Brain Functional Networks for Automated Autism Identification. BIOLOGY 2023; 12:971. [PMID: 37508401 PMCID: PMC10376072 DOI: 10.3390/biology12070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Functional connectivity network (FCN) has become a popular tool to identify potential biomarkers for brain dysfunction, such as autism spectrum disorder (ASD). Due to its importance, researchers have proposed many methods to estimate FCNs from resting-state functional MRI (rs-fMRI) data. However, the existing FCN estimation methods usually only capture a single relationship between brain regions of interest (ROIs), e.g., linear correlation, nonlinear correlation, or higher-order correlation, thus failing to model the complex interaction among ROIs in the brain. Additionally, such traditional methods estimate FCNs in an unsupervised way, and the estimation process is independent of the downstream tasks, which makes it difficult to guarantee the optimal performance for ASD identification. To address these issues, in this paper, we propose a multi-FCN fusion framework for rs-fMRI-based ASD classification. Specifically, for each subject, we first estimate multiple FCNs using different methods to encode rich interactions among ROIs from different perspectives. Then, we use the label information (ASD vs. healthy control (HC)) to learn a set of fusion weights for measuring the importance/discrimination of those estimated FCNs. Finally, we apply the adaptively weighted fused FCN on the ABIDE dataset to identify subjects with ASD from HCs. The proposed FCN fusion framework is straightforward to implement and can significantly improve diagnostic accuracy compared to traditional and state-of-the-art methods.
Collapse
Affiliation(s)
- Chaojun Zhang
- The School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China
- The School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Yunling Ma
- The School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Lishan Qiao
- The School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Limei Zhang
- The School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Samanta A, Sarma M, Samanta D. ALERT: Atlas-Based Low Estimation Rank Tensor Approach to Detect Autism Spectrum Disorder . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083014 DOI: 10.1109/embc40787.2023.10340610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In response to a stimulus, distinct areas of the human brain are activated. Also, it is known that the regions interact with one another. This functional connectivity is helpful to diagnose any neurological abnormality, such as autism spectrum disorder (ASD). This work proposes an approach to construct a functional connectivity network from fMRI image data. For obtaining a functional connectivity network, the time series component of fMRI data is used and from it correlation matrix is calculated showing the degree of interaction among the brain regions. To map the different regions of a brain, the brain atlas is considered. This essentially yields a low-rank tensor approximation of the functional connectivity matrix. A 2D convolutional deep neural network model is built to categorize topological similarity in the functional connectivity matrices related to ASD and typically developing control. The proposed approach has been tested with ABIDE dataset of fMRI data for autism spectrum disorder. Several brain atlases have been considered in the experiment. With a majority voting concept on the results from the atlases, the proposed technique reveals an ASD detection accuracy of 84.79%, which is significantly comparable to the state of the art techniques.Clinical Relevance- ASD is one of the least understood neurological disorders that has been recently recognized to have major sociological consequences on an affected individual's life. A symptom-based diagnosis is in practice. However, this requires prolonged behavioural examinations under the supervision of a highly skilled multidisciplinary team. An early and cost-effective detection using an fMRI image is considered an appropriate, comprehensive, and advanced treatment plan.
Collapse
|
12
|
Previously Marzena Szkodo MOR, Micai M, Caruso A, Fulceri F, Fazio M, Scattoni ML. Technologies to support the diagnosis and/or treatment of neurodevelopmental disorders: A systematic review. Neurosci Biobehav Rev 2023; 145:105021. [PMID: 36581169 DOI: 10.1016/j.neubiorev.2022.105021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In recent years, there has been a great interest in utilizing technology in mental health research. The rapid technological development has encouraged researchers to apply technology as a part of a diagnostic process or treatment of Neurodevelopmental Disorders (NDDs). With the large number of studies being published comes an urgent need to inform clinicians and researchers about the latest advances in this field. Here, we methodically explore and summarize findings from studies published between August 2019 and February 2022. A search strategy led to the identification of 4108 records from PubMed and APA PsycInfo databases. 221 quantitative studies were included, covering a wide range of technologies used for diagnosis and/or treatment of NDDs, with the biggest focus on Autism Spectrum Disorder (ASD). The most popular technologies included machine learning, functional magnetic resonance imaging, electroencephalogram, magnetic resonance imaging, and neurofeedback. The results of the review indicate that technology-based diagnosis and intervention for NDD population is promising. However, given a high risk of bias of many studies, more high-quality research is needed.
Collapse
Affiliation(s)
| | - Martina Micai
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Angela Caruso
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Fulceri
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Maria Fazio
- Department of Mathematics, Computer Science, Physics and Earth Sciences (MIFT), University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
13
|
Wang C, Zhang L, Zhang J, Qiao L, Liu M. Fusing Multiview Functional Brain Networks by Joint Embedding for Brain Disease Identification. J Pers Med 2023; 13:jpm13020251. [PMID: 36836485 PMCID: PMC9958959 DOI: 10.3390/jpm13020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Background: Functional brain networks (FBNs) derived from resting-state functional MRI (rs-fMRI) have shown great potential in identifying brain disorders, such as autistic spectrum disorder (ASD). Therefore, many FBN estimation methods have been proposed in recent years. Most existing methods only model the functional connections between brain regions of interest (ROIs) from a single view (e.g., by estimating FBNs through a specific strategy), failing to capture the complex interactions among ROIs in the brain. Methods: To address this problem, we propose fusion of multiview FBNs through joint embedding, which can make full use of the common information of multiview FBNs estimated by different strategies. More specifically, we first stack the adjacency matrices of FBNs estimated by different methods into a tensor and use tensor factorization to learn the joint embedding (i.e., a common factor of all FBNs) for each ROI. Then, we use Pearson's correlation to calculate the connections between each embedded ROI in order to reconstruct a new FBN. Results: Experimental results obtained on the public ABIDE dataset with rs-fMRI data reveal that our method is superior to several state-of-the-art methods in automated ASD diagnosis. Moreover, by exploring FBN "features" that contributed most to ASD identification, we discovered potential biomarkers for ASD diagnosis. The proposed framework achieves an accuracy of 74.46%, which is generally better than the compared individual FBN methods. In addition, our method achieves the best performance compared to other multinetwork methods, i.e., an accuracy improvement of at least 2.72%. Conclusions: We present a multiview FBN fusion strategy through joint embedding for fMRI-based ASD identification. The proposed fusion method has an elegant theoretical explanation from the perspective of eigenvector centrality.
Collapse
Affiliation(s)
- Chengcheng Wang
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Limei Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China
- Correspondence: (L.Z.); (M.L.)
| | - Jinshan Zhang
- College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (L.Z.); (M.L.)
| |
Collapse
|
14
|
Zhang X, Shams SP, Yu H, Wang Z, Zhang Q. A Similarity Measure-Based Approach Using RS-fMRI Data for Autism Spectrum Disorder Diagnosis. Diagnostics (Basel) 2023; 13:diagnostics13020218. [PMID: 36673028 PMCID: PMC9858445 DOI: 10.3390/diagnostics13020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Autism spectrum disorder (ASD) is a lifelong neurological disease, which seriously reduces the patients' life quality. Generally, an early diagnosis is beneficial to improve ASD children's life quality. Current methods based on samples from multiple sites for ASD diagnosis perform poorly in generalization due to the heterogeneity of the data from multiple sites. To address this problem, this paper presents a similarity measure-based approach for ASD diagnosis. Specifically, the few-shot learning strategy is used to measure potential similarities in the RS-fMRI data distributions, and, furthermore, a similarity function for samples from multiple sites is trained to enhance the generalization. On the ABIDE database, the presented approach is compared to some representative methods, such as SVM and random forest, in terms of accuracy, precision, and F1 score. The experimental results show that the experimental indicators of the proposed method are better than those of the comparison methods to varying degrees. For example, the accuracy on the TRINITY site is more than 5% higher than that of the comparison method, which clearly proves that the presented approach achieves a better generalization performance than the compared methods.
Collapse
Affiliation(s)
- Xiangfei Zhang
- School of Cyberspace Security, Hainan University, Haikou 570228, China
| | - Shayel Parvez Shams
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai 264005, China
| | - Hang Yu
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Zhengxia Wang
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Qingchen Zhang
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
- Correspondence:
| |
Collapse
|
15
|
Lu Z, Wang J, Mao R, Lu M, Shi J. Jointly Composite Feature Learning and Autism Spectrum Disorder Classification Using Deep Multi-Output Takagi-Sugeno-Kang Fuzzy Inference Systems. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:476-488. [PMID: 35349448 DOI: 10.1109/tcbb.2022.3163140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by poor social communication abilities and repetitive behaviors or restrictive interests, which has brought a heavy burden to families and society. In many attempts to understand ASD neurobiology, resting-state functional magnetic resonance imaging (rs-fMRI) has been an effective tool. However, current ASD diagnosis methods based on rs-fMRI have two major defects. First, the instability of rs-fMRI leads to functional connectivity (FC) uncertainty, affecting the performance of ASD diagnosis. Second, many FCs are involved in brain activity, making it difficult to determine effective features in ASD classification. In this study, we propose an interpretable ASD classifier DeepTSK, which combines a multi-output Takagi-Sugeno-Kang (MO-TSK) fuzzy inference system (FIS) for composite feature learning and a deep belief network (DBN) for ASD classification in a unified network. To avoid the suboptimal solution of DeepTSK, a joint optimization procedure is employed to simultaneously learn the parameters of MO-TSK and DBN. The proposed DeepTSK was evaluated on datasets collected from three sites of the Autism Brain Imaging Data Exchange (ABIDE) database. The experimental results showed the effectiveness of the proposed method, and the discriminant FCs are presented by analyzing the consequent parameters of Deep MO-TSK.
Collapse
|
16
|
Xiao L, Cai B, Qu G, Zhang G, Stephen JM, Wilson TW, Calhoun VD, Wang YP. Distance Correlation-Based Brain Functional Connectivity Estimation and Non-Convex Multi-Task Learning for Developmental fMRI Studies. IEEE Trans Biomed Eng 2022; 69:3039-3050. [PMID: 35316180 PMCID: PMC9594860 DOI: 10.1109/tbme.2022.3160447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Resting-state functional magnetic resonance imaging (rs-fMRI)-derived functional connectivity (FC) patterns have been extensively used to delineate global functional organization of the human brain in healthy development and neuropsychiatric disorders. In this paper, we investigate how FC in males and females differs in an age prediction framework. METHODS We first estimate FC between regions-of-interest (ROIs) using distance correlation instead of Pearson's correlation. Distance correlation, as a multivariate statistical method, explores spatial relations of voxel-wise time courses within individual ROIs and measures both linear and nonlinear dependence, capturing more complex between-ROI interactions. Then, we propose a novel non-convex multi-task learning (NC-MTL) model to study age-related gender differences in FC, where age prediction for each gender group is viewed as one task, and a composite regularizer with a combination of the non-convex l2,1-2 and l1-2 terms is introduced for selecting both common and task-specific features. RESULTS AND CONCLUSION We validate the effectiveness of our NC-MTL model with distance correlation-based FC derived from rs-fMRI for predicting ages of both genders. The experimental results on the Philadelphia Neurodevelopmental Cohort demonstrate that our NC-MTL model outperforms several other competing MTL models in age prediction. We also compare the age prediction performance of our NC-MTL model using FC estimated by Pearson's correlation and distance correlation, which shows that distance correlation-based FC is more discriminative for age prediction than Pearson's correlation-based FC. SIGNIFICANCE This paper presents a novel framework for functional connectome developmental studies, characterizing developmental gender differences in FC patterns.
Collapse
|
17
|
Chen S, Fang Z, Lu S, Gao C. Efficacy of Regularized Multitask Learning Based on SVM Models. IEEE TRANSACTIONS ON CYBERNETICS 2022; PP:1339-1352. [PMID: 35994540 DOI: 10.1109/tcyb.2022.3196308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article investigates the efficacy of a regularized multitask learning (MTL) framework based on SVM (M-SVM) to answer whether MTL always provides reliable results and how MTL outperforms independent learning. We first find that the M-SVM is Bayes risk consistent in the limit of a large sample size. This implies that despite the task dissimilarities, the M-SVM always produces a reliable decision rule for each task in terms of the misclassification error when the data size is large enough. Furthermore, we find that the task-interaction vanishes as the data size goes to infinity, and the convergence rates of the M-SVM and its single-task counterpart have the same upper bound. The former suggests that the M-SVM cannot improve the limit classifier's performance; based on the latter, we conjecture that the optimal convergence rate is not improved when the task number is fixed. As a novel insight into MTL, our theoretical and experimental results achieved an excellent agreement that the benefit of the MTL methods lies in the improvement of the preconvergence-rate (PCR) factor (to be denoted in Section III) rather than the convergence rate. Moreover, this improvement of PCR factors is more significant when the data size is small. In addition, our experimental results of five other MTL methods demonstrate the generality of this new insight.
Collapse
|
18
|
Zhang Y, Zhou T, Wu W, Xie H, Zhu H, Zhou G, Cichocki A. Improving EEG Decoding via Clustering-Based Multitask Feature Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:3587-3597. [PMID: 33556021 DOI: 10.1109/tnnls.2021.3053576] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Accurate electroencephalogram (EEG) pattern decoding for specific mental tasks is one of the key steps for the development of brain-computer interface (BCI), which is quite challenging due to the considerably low signal-to-noise ratio of EEG collected at the brain scalp. Machine learning provides a promising technique to optimize EEG patterns toward better decoding accuracy. However, existing algorithms do not effectively explore the underlying data structure capturing the true EEG sample distribution and, hence, can only yield a suboptimal decoding accuracy. To uncover the intrinsic distribution structure of EEG data, we propose a clustering-based multitask feature learning algorithm for improved EEG pattern decoding. Specifically, we perform affinity propagation-based clustering to explore the subclasses (i.e., clusters) in each of the original classes and then assign each subclass a unique label based on a one-versus-all encoding strategy. With the encoded label matrix, we devise a novel multitask learning algorithm by exploiting the subclass relationship to jointly optimize the EEG pattern features from the uncovered subclasses. We then train a linear support vector machine with the optimized features for EEG pattern decoding. Extensive experimental studies are conducted on three EEG data sets to validate the effectiveness of our algorithm in comparison with other state-of-the-art approaches. The improved experimental results demonstrate the outstanding superiority of our algorithm, suggesting its prominent performance for EEG pattern decoding in BCI applications.
Collapse
|
19
|
Zhang Y, Zhang H, Adeli E, Chen X, Liu M, Shen D. Multiview Feature Learning With Multiatlas-Based Functional Connectivity Networks for MCI Diagnosis. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:6822-6833. [PMID: 33306476 DOI: 10.1109/tcyb.2020.3016953] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Functional connectivity (FC) networks built from resting-state functional magnetic resonance imaging (rs-fMRI) has shown promising results for the diagnosis of Alzheimer's disease and its prodromal stage, that is, mild cognitive impairment (MCI). FC is usually estimated as a temporal correlation of regional mean rs-fMRI signals between any pair of brain regions, and these regions are traditionally parcellated with a particular brain atlas. Most existing studies have adopted a predefined brain atlas for all subjects. However, the constructed FC networks inevitably ignore the potentially important subject-specific information, particularly, the subject-specific brain parcellation. Similar to the drawback of the "single view" (versus the "multiview" learning) in medical image-based classification, FC networks constructed based on a single atlas may not be sufficient to reveal the underlying complicated differences between normal controls and disease-affected patients due to the potential bias from that particular atlas. In this study, we propose a multiview feature learning method with multiatlas-based FC networks to improve MCI diagnosis. Specifically, a three-step transformation is implemented to generate multiple individually specified atlases from the standard automated anatomical labeling template, from which a set of atlas exemplars is selected. Multiple FC networks are constructed based on these preselected atlas exemplars, providing multiple views of the FC network-based feature representations for each subject. We then devise a multitask learning algorithm for joint feature selection from the constructed multiple FC networks. The selected features are jointly fed into a support vector machine classifier for multiatlas-based MCI diagnosis. Extensive experimental comparisons are carried out between the proposed method and other competing approaches, including the traditional single-atlas-based method. The results indicate that our method significantly improves the MCI classification, demonstrating its promise in the brain connectome-based individualized diagnosis of brain diseases.
Collapse
|
20
|
Wang T, Bezerianos A, Cichocki A, Li J. Multikernel Capsule Network for Schizophrenia Identification. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:4741-4750. [PMID: 33259321 DOI: 10.1109/tcyb.2020.3035282] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Schizophrenia seriously affects the quality of life. To date, both simple (e.g., linear discriminant analysis) and complex (e.g., deep neural network) machine-learning methods have been utilized to identify schizophrenia based on functional connectivity features. The existing simple methods need two separate steps (i.e., feature extraction and classification) to achieve the identification, which disables simultaneous tuning for the best feature extraction and classifier training. The complex methods integrate two steps and can be simultaneously tuned to achieve optimal performance, but these methods require a much larger amount of data for model training. To overcome the aforementioned drawbacks, we proposed a multikernel capsule network (MKCapsnet), which was developed by considering the brain anatomical structure. Kernels were set to match partition sizes of the brain anatomical structure in order to capture interregional connectivities at the varying scales. With the inspiration of the widely used dropout strategy in deep learning, we developed capsule dropout in the capsule layer to prevent overfitting of the model. The comparison results showed that the proposed method outperformed the state-of-the-art methods. Besides, we compared performances using different parameters and illustrated the routing process to reveal characteristics of the proposed method. MKCapsnet is promising for schizophrenia identification. Our study first utilized the capsule neural network for analyzing functional connectivity of magnetic resonance imaging (MRI) and proposed a novel multikernel capsule structure with the consideration of brain anatomical parcellation, which could be a new way to reveal brain mechanisms. In addition, we provided useful information in the parameter setting, which is informative for further studies using a capsule network for other neurophysiological signal classification.
Collapse
|
21
|
Liu J, Wang Z, Xu K, Ji B, Zhang G, Wang Y, Deng J, Xu Q, Xu X, Liu H. Early Screening of Autism in Toddlers via Response-To-Instructions Protocol. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:3914-3924. [PMID: 32966227 DOI: 10.1109/tcyb.2020.3017866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Early screening of autism spectrum disorder (ASD) is crucial since early intervention evidently confirms significant improvement of functional social behavior in toddlers. This article attempts to bootstrap the response-to-instructions (RTIs) protocol with vision-based solutions in order to assist professional clinicians with an automatic autism diagnosis. The correlation between detected objects and toddler's emotional features, such as gaze, is constructed to analyze their autistic symptoms. Twenty toddlers between 16-32 months of age, 15 of whom diagnosed with ASD, participated in this study. The RTI method is validated against human codings, and group differences between ASD and typically developing (TD) toddlers are analyzed. The results suggest that the agreement between clinical diagnosis and the RTI method achieves 95% for all 20 subjects, which indicates vision-based solutions are highly feasible for automatic autistic diagnosis.
Collapse
|
22
|
Jiang X, Zhou Y, Zhang Y, Zhang L, Qiao L, De Leone R. Estimating High-Order Brain Functional Networks in Bayesian View for Autism Spectrum Disorder Identification. Front Neurosci 2022; 16:872848. [PMID: 35573311 PMCID: PMC9094041 DOI: 10.3389/fnins.2022.872848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Brain functional network (BFN) has become an increasingly important tool to understand the inherent organization of the brain and explore informative biomarkers of neurological disorders. Pearson’s correlation (PC) is the most widely accepted method for constructing BFNs and provides a basis for designing new BFN estimation schemes. Particularly, a recent study proposes to use two sequential PC operations, namely, correlation’s correlation (CC), for constructing the high-order BFN. Despite its empirical effectiveness in identifying neurological disorders and detecting subtle changes of connections in different subject groups, CC is defined intuitively without a solid and sustainable theoretical foundation. For understanding CC more rigorously and providing a systematic BFN learning framework, in this paper, we reformulate it in the Bayesian view with a prior of matrix-variate normal distribution. As a result, we obtain a probabilistic explanation of CC. In addition, we develop a Bayesian high-order method (BHM) to automatically and simultaneously estimate the high- and low-order BFN based on the probabilistic framework. An efficient optimization algorithm is also proposed. Finally, we evaluate BHM in identifying subjects with autism spectrum disorder (ASD) from typical controls based on the estimated BFNs. Experimental results suggest that the automatically learned high- and low-order BFNs yield a superior performance over the artificially defined BFNs via conventional CC and PC.
Collapse
Affiliation(s)
- Xiao Jiang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
- School of Science and Technology, University of Camerino, Camerino, Italy
| | - Yueying Zhou
- College of Computer Science and Technology, Nanjing University of Aeronautics, Nanjing, China
| | - Yining Zhang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
| | - Limei Zhang
- School of Mathematics Science, Liaocheng University, Liaocheng, China
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng, China
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, China
- *Correspondence: Lishan Qiao,
| | - Renato De Leone
- School of Science and Technology, University of Camerino, Camerino, Italy
- Renato De Leone,
| |
Collapse
|
23
|
Santana CP, de Carvalho EA, Rodrigues ID, Bastos GS, de Souza AD, de Brito LL. rs-fMRI and machine learning for ASD diagnosis: a systematic review and meta-analysis. Sci Rep 2022; 12:6030. [PMID: 35411059 PMCID: PMC9001715 DOI: 10.1038/s41598-022-09821-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/23/2022] [Indexed: 02/08/2023] Open
Abstract
Autism Spectrum Disorder (ASD) diagnosis is still based on behavioral criteria through a lengthy and time-consuming process. Much effort is being made to identify brain imaging biomarkers and develop tools that could facilitate its diagnosis. In particular, using Machine Learning classifiers based on resting-state fMRI (rs-fMRI) data is promising, but there is an ongoing need for further research on their accuracy and reliability. Therefore, we conducted a systematic review and meta-analysis to summarize the available evidence in the literature so far. A bivariate random-effects meta-analytic model was implemented to investigate the sensitivity and specificity across the 55 studies that offered sufficient information for quantitative analysis. Our results indicated overall summary sensitivity and specificity estimates of 73.8% and 74.8%, respectively. SVM stood out as the most used classifier, presenting summary estimates above 76%. Studies with bigger samples tended to obtain worse accuracies, except in the subgroup analysis for ANN classifiers. The use of other brain imaging or phenotypic data to complement rs-fMRI information seems promising, achieving higher sensitivities when compared to rs-fMRI data alone (84.7% versus 72.8%). Finally, our analysis showed AUC values between acceptable and excellent. Still, given the many limitations indicated in our study, further well-designed studies are warranted to extend the potential use of those classification algorithms to clinical settings.
Collapse
Affiliation(s)
- Caio Pinheiro Santana
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil.
| | - Emerson Assis de Carvalho
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
- Department of Computing, Federal Institute of Education, Science and Technology of South of Minas Gerais (IFSULDEMINAS), Machado, 37750-000, Brazil
| | - Igor Duarte Rodrigues
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
| | - Guilherme Sousa Bastos
- Institute of Systems Engineering and Information Technology, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
| | - Adler Diniz de Souza
- Institute of Mathematics and Computation, Federal University of Itajubá (UNIFEI), Itajubá, 37500-903, Brazil
| | | |
Collapse
|
24
|
Wang J, Zhang F, Jia X, Wang X, Zhang H, Ying S, Wang Q, Shi J, Shen D. Multi-Class ASD Classification via Label Distribution Learning with Class-Shared and Class-Specific Decomposition. Med Image Anal 2021; 75:102294. [PMID: 34826797 DOI: 10.1016/j.media.2021.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
The behavioral and cognitive deficits in autism spectrum disorder (ASD) patients are associated with abnormal brain function. The resting-state functional magnetic resonance imaging (rs-fMRI) is an effective non-invasive tool for revealing the brain dysfunction for ASD patients. However, most rs-fMRI based ASD diagnosis methods are developed for simple binary classification, instead of classification of multiple sub-types in ASD. Besides, they assume that the class boundary in ASD classification is crisp, whereas the symptoms of ASD sub-types are a continuum from mild to severe impairments in both social communication and restrictive repetitive behaviors/interests, and do not have crisp boundary between each other. To this end, we introduce label distribution learning (LDL) into multi-class ASD classification and propose LDL-CSCS under the LDL framework. Specifically, the label distribution is introduced to describe how individual disease labels correlate with the subject. In the learning crierion of LDL-CSCS, the label distribution is decomposed into the class-shared and class-specific components, in which the class-shared component records the common knowledge across all persons and the class-specific component records the specific information in each ASD sub-type. Low-rank constraint is imposed on the class-shared component whereas the group sparse constraint is imposed on the class-specific component, respectively. An Augmented Lagrange Method (ALM) is developed to find the optimal solution. The experimental results show that the proposed method for ASD diagnosis has superior classification performance, compared with some existing algorithms.
Collapse
Affiliation(s)
- Jun Wang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Fengyexin Zhang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
| | - Xiuyi Jia
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 210094, China
| | - Xin Wang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Han Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Shihui Ying
- Department of Mathematics, School of Science, Shanghai University, Shanghai 200444, China
| | - Qian Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Jun Shi
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China.
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
| |
Collapse
|
25
|
Diagnosis of obsessive-compulsive disorder via spatial similarity-aware learning and fused deep polynomial network. Med Image Anal 2021; 75:102244. [PMID: 34700244 DOI: 10.1016/j.media.2021.102244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 08/22/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a type of hereditary mental illness, which seriously affect the normal life of the patients. Sparse learning has been widely used in detecting brain diseases objectively by removing redundant information and retaining monitor valuable biological characteristics from the brain functional connectivity network (BFCN). However, most existing methods ignore the relationship between brain regions in each subject. To solve this problem, this paper proposes a spatial similarity-aware learning (SSL) model to build BFCNs. Specifically, we embrace the spatial relationship between adjacent or bilaterally symmetric brain regions via a smoothing regularization term in the model. We develop a novel fused deep polynomial network (FDPN) model to further learn the powerful information and attempt to solve the problem of curse of dimensionality using BFCN features. In the FDPN model, we stack a multi-layer deep polynomial network (DPN) and integrate the features from multiple output layers via the weighting mechanism. In this way, the FDPN method not only can identify the high-level informative features of BFCN but also can solve the problem of curse of dimensionality. A novel framework is proposed to detect OCD and unaffected first-degree relatives (UFDRs), which combines deep learning and traditional machine learning methods. We validate our algorithm in the resting-state functional magnetic resonance imaging (rs-fMRI) dataset collected by the local hospital and achieve promising performance.
Collapse
|
26
|
Xu M, Calhoun V, Jiang R, Yan W, Sui J. Brain imaging-based machine learning in autism spectrum disorder: methods and applications. J Neurosci Methods 2021; 361:109271. [PMID: 34174282 DOI: 10.1016/j.jneumeth.2021.109271] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/25/2021] [Accepted: 06/19/2021] [Indexed: 01/09/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition with early childhood onset and high heterogeneity. As the pathogenesis is still elusive, ASD diagnosis is comprised of a constellation of behavioral symptoms. Non-invasive brain imaging techniques, such as magnetic resonance imaging (MRI), provide a valuable objective measurement of the brain. Many efforts have been devoted to developing imaging-based diagnostic tools for ASD based on machine learning (ML) technologies. In this survey, we review recent advances that utilize machine learning approaches to classify individuals with and without ASD. First, we provide a brief overview of neuroimaging-based ASD classification studies, including the analysis of publications and general classification pipeline. Next, representative studies are highlighted and discussed in detail regarding different imaging modalities, methods and sample sizes. Finally, we highlight several common challenges and provide recommendations on future directions. In summary, identifying discriminative biomarkers for ASD diagnosis is challenging, and further establishing more comprehensive datasets and dissecting the individual and group heterogeneity will be critical to achieve better ADS diagnosis performance. Machine learning methods will continue to be developed and are poised to help advance the field in this regard.
Collapse
Affiliation(s)
- Ming Xu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China 100190; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China 100049
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA 30303
| | - Rongtao Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China 100190
| | - Weizheng Yan
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA 30303
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China 100088.
| |
Collapse
|
27
|
Hu Z, Wang J, Zhang C, Luo Z, Luo X, Xiao L, Shi J. Uncertainty Modeling for Multi center Autism Spectrum Disorder Classification Using Takagi-Sugeno-Kang Fuzzy Systems. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2021.3073368] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhongyi Hu
- Intelligent Information Systems Institute, Wenzhou University, Wenzhou 325035, China. (e-mail: )
| | - Jun Wang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Ins titute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Chunxiang Zhang
- School of Artificial Intelligence and Computer Science, Jiangnan University, WuXi 214122, China
| | - Zhenzhen Luo
- Intelligent Information Systems Institute, Wenzhou University, Wenzhou 325035, China
| | - Xiaoqing Luo
- School of Artificial Intelligence and Computer Science, Jiangnan University, WuXi 214122, China
| | - Lei Xiao
- Intelligent Information Systems Institute, Wenzhou University, Wenzhou 325035, China
| | - Jun Shi
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Ins titute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
28
|
Ahmed MR, Zhang Y, Liu Y, Liao H. Single Volume Image Generator and Deep Learning-Based ASD Classification. IEEE J Biomed Health Inform 2020; 24:3044-3054. [DOI: 10.1109/jbhi.2020.2998603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Segato A, Marzullo A, Calimeri F, De Momi E. Artificial intelligence for brain diseases: A systematic review. APL Bioeng 2020; 4:041503. [PMID: 33094213 PMCID: PMC7556883 DOI: 10.1063/5.0011697] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is a major branch of computer science that is fruitfully used for analyzing complex medical data and extracting meaningful relationships in datasets, for several clinical aims. Specifically, in the brain care domain, several innovative approaches have achieved remarkable results and open new perspectives in terms of diagnosis, planning, and outcome prediction. In this work, we present an overview of different artificial intelligent techniques used in the brain care domain, along with a review of important clinical applications. A systematic and careful literature search in major databases such as Pubmed, Scopus, and Web of Science was carried out using "artificial intelligence" and "brain" as main keywords. Further references were integrated by cross-referencing from key articles. 155 studies out of 2696 were identified, which actually made use of AI algorithms for different purposes (diagnosis, surgical treatment, intra-operative assistance, and postoperative assessment). Artificial neural networks have risen to prominent positions among the most widely used analytical tools. Classic machine learning approaches such as support vector machine and random forest are still widely used. Task-specific algorithms are designed for solving specific problems. Brain images are one of the most used data types. AI has the possibility to improve clinicians' decision-making ability in neuroscience applications. However, major issues still need to be addressed for a better practical use of AI in the brain. To this aim, it is important to both gather comprehensive data and build explainable AI algorithms.
Collapse
Affiliation(s)
- Alice Segato
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| | - Aldo Marzullo
- Department of Mathematics and Computer Science, University of Calabria, Rende 87036, Italy
| | - Francesco Calimeri
- Department of Mathematics and Computer Science, University of Calabria, Rende 87036, Italy
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| |
Collapse
|
30
|
Wang J, Zhang L, Wang Q, Chen L, Shi J, Chen X, Li Z, Shen D. Multi-Class ASD Classification Based on Functional Connectivity and Functional Correlation Tensor via Multi-Source Domain Adaptation and Multi-View Sparse Representation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3137-3147. [PMID: 32305905 DOI: 10.1109/tmi.2020.2987817] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The resting-state functional magnetic resonance imaging (rs-fMRI) reflects functional activity of brain regions by blood-oxygen-level dependent (BOLD) signals. Up to now, many computer-aided diagnosis methods based on rs-fMRI have been developed for Autism Spectrum Disorder (ASD). These methods are mostly the binary classification approaches to determine whether a subject is an ASD patient or not. However, the disease often consists of several sub-categories, which are complex and thus still confusing to many automatic classification methods. Besides, existing methods usually focus on the functional connectivity (FC) features in grey matter regions, which only account for a small portion of the rs-fMRI data. Recently, the possibility to reveal the connectivity information in the white matter regions of rs-fMRI has drawn high attention. To this end, we propose to use the patch-based functional correlation tensor (PBFCT) features extracted from rs-fMRI in white matter, in addition to the traditional FC features from gray matter, to develop a novel multi-class ASD diagnosis method in this work. Our method has two stages. Specifically, in the first stage of multi-source domain adaptation (MSDA), the source subjects belonging to multiple clinical centers (thus called as source domains) are all transformed into the same target feature space. Thus each subject in the target domain can be linearly reconstructed by the transformed subjects. In the second stage of multi-view sparse representation (MVSR), a multi-view classifier for multi-class ASD diagnosis is developed by jointly using both views of the FC and PBFCT features. The experimental results using the ABIDE dataset verify the effectiveness of our method, which is capable of accurately classifying each subject into a respective ASD sub-category.
Collapse
|
31
|
Zhao F, Chen Z, Rekik I, Lee SW, Shen D. Diagnosis of Autism Spectrum Disorder Using Central-Moment Features From Low- and High-Order Dynamic Resting-State Functional Connectivity Networks. Front Neurosci 2020; 14:258. [PMID: 32410930 PMCID: PMC7198826 DOI: 10.3389/fnins.2020.00258] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/09/2020] [Indexed: 01/06/2023] Open
Abstract
The sliding-window-based dynamic functional connectivity networks (D-FCNs) derived from resting-state functional magnetic resonance imaging (rs-fMRI) are effective methods for diagnosing various neurological diseases, including autism spectrum disorder (ASD). However, traditional D-FCNs are low-order networks based on pairwise correlation between brain regions, thus overlooking high-level interactions across multiple regions of interest (ROIs). Moreover, D-FCNs suffer from the temporal mismatching issue, i.e., subnetworks in the same temporal window do not have temporal correspondence across different subjects. To address the above problems, we first construct a novel high-order D-FCNs based on the principle of “correlation’s correlation” to further explore the higher level and more complex interaction relationships among multiple ROIs. Furthermore, we propose to use a central-moment method to extract temporal-invariance properties contained in either low- or high-order D-FCNs. Finally, we design and train an ensemble classifier by fusing the features extracted from conventional FCN, low-order D-FCNs, and high-order D-FCNs for the diagnosis of ASD and normal control subjects. Our method achieved the best ASD classification accuracy (83%), and our results revealed the features extracted from different networks fingerprinting the autistic brain at different connectional levels.
Collapse
Affiliation(s)
- Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.,Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China
| | - Zhiyuan Chen
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.,Shandong Co-Innovation Center of Future Intelligent Computing, Yantai, China
| | - Islem Rekik
- BASIRA Lab, CVIP Group, Computing, School of Science and Engineering, University of Dundee, Dundee, United Kingdom
| | - Seong-Whan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Central, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
32
|
Xu Q, Zeng Y, Tang W, Peng W, Xia T, Li Z, Teng F, Li W, Guo J. Multi-Task Joint Learning Model for Segmenting and Classifying Tongue Images Using a Deep Neural Network. IEEE J Biomed Health Inform 2020; 24:2481-2489. [PMID: 32310809 DOI: 10.1109/jbhi.2020.2986376] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Automatic tongue image segmentation and tongue image classification are two crucial tongue characterization tasks in traditional Chinese medicine (TCM). Due to the complexity of tongue segmentation and fine-grained traits of tongue image classification, both tasks are challenging. Fortunately, from the perspective of computer vision, these two tasks are highly interrelated, making them compatible with the idea of Multi-Task Joint learning (MTL). By sharing the underlying parameters and adding two different task loss functions, an MTL method for segmenting and classifying tongue images is proposed in this paper. Moreover, two state-of-the-art deep neural network variants (UNET and Discriminative Filter Learning (DFL)) are fused into the MTL to perform these two tasks. To the best of our knowledge, our method is the first attempt to manage both tasks simultaneously with MTL. We conducted extensive experiments with the proposed method. The experimental results show that our joint method outperforms the existing tongue characterization methods. Besides, visualizations and ablation studies are provided to aid in understanding our approach, which suggest that our method is highly consistent with human perception.
Collapse
|
33
|
Adaptive sparse learning using multi-template for neurodegenerative disease diagnosis. Med Image Anal 2020; 61:101632. [PMID: 32028212 DOI: 10.1016/j.media.2019.101632] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases are excessively affecting millions of patients, especially elderly people. Early detection and management of these diseases are crucial as the clinical symptoms take years to appear after the onset of neuro-degeneration. This paper proposes an adaptive feature learning framework using multiple templates for early diagnosis. A multi-classification scheme is developed based on multiple brain parcellation atlases with various regions of interest. Different sets of features are extracted and then fused, and a feature selection is applied with an adaptively chosen sparse degree. In addition, both linear discriminative analysis and locally preserving projections are integrated to construct a least square regression model. Finally, we propose a feature space to predict the severity of the disease by the guidance of clinical scores. Our proposed method is validated on both Alzheimer's disease neuroimaging initiative and Parkinson's progression markers initiative databases. Extensive experimental results suggest that the proposed method outperforms the state-of-the-art methods, such as the multi-modal multi-task learning or joint sparse learning. Our method demonstrates that accurate feature learning facilitates the identification of the highly relevant brain regions with significant contribution in the prediction of disease progression. This may pave the way for further medical analysis and diagnosis in practical applications.
Collapse
|
34
|
An Improved Deep Polynomial Network Algorithm for Transcranial Sonography–Based Diagnosis of Parkinson’s Disease. Cognit Comput 2019. [DOI: 10.1007/s12559-019-09691-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Lei B, Yang P, Zhuo Y, Zhou F, Ni D, Chen S, Xiao X, Wang T. Neuroimaging Retrieval via Adaptive Ensemble Manifold Learning for Brain Disease Diagnosis. IEEE J Biomed Health Inform 2018; 23:1661-1673. [PMID: 30281500 DOI: 10.1109/jbhi.2018.2872581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative and non-curable disease, with serious cognitive impairment, such as dementia. Clinically, it is critical to study the disease with multi-source data in order to capture a global picture of it. In this respect, an adaptive ensemble manifold learning (AEML) algorithm is proposed to retrieve multi-source neuroimaging data. Specifically, an objective function based on manifold learning is formulated to impose geometrical constraints by similarity learning. The complementary characteristics of various sources of brain disease data for disorder discovery are investigated by tuning weights from ensemble learning. In addition, a generalized norm is explicitly explored for adaptive sparseness degree control. The proposed AEML algorithm is evaluated by the public AD neuroimaging initiative database. Results obtained from the extensive experiments demonstrate that our algorithm outperforms the traditional methods.
Collapse
|
36
|
Lei H, Huang Z, Zhou F, Elazab A, Tan EL, Li H, Qin J, Lei B. Parkinson's Disease Diagnosis via Joint Learning From Multiple Modalities and Relations. IEEE J Biomed Health Inform 2018; 23:1437-1449. [PMID: 30183649 DOI: 10.1109/jbhi.2018.2868420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative progressive disease that mainly affects the motor systems of patients. To slow this disease deterioration, early and accurate diagnosis of PD is an effective way, which alleviates mental and physical sufferings by clinical intervention. In this paper, we propose a joint regression and classification framework for PD diagnosis via magnetic resonance and diffusion tensor imaging data. Specifically, we devise a unified multitask feature selection model to explore multiple relationships among features, samples, and clinical scores. We regress four clinical variables of depression, sleep, olfaction, cognition scores, as well as perform the classification of PD disease from the multimodal data. The multitask model explores the relationships at the level of clinical scores, image features, and subjects, to select the most informative and diseased-related features for diagnosis. The proposed method is evaluated on the public Parkinson's progression markers initiative dataset. The extensive experimental results show that the multitask framework can effectively boost the performance of regression and classification and outperforms other state-of-the-art methods. The computerized predictions of clinical scores and label for PD diagnosis may offer quantitative reference for decision support as well.
Collapse
|