1
|
Yuan K, Miao D, Pedrycz W, Zhang H, Hu L. Multigranularity Data Analysis With Zentropy Uncertainty Measure for Efficient and Robust Feature Selection. IEEE TRANSACTIONS ON CYBERNETICS 2024; PP:740-752. [PMID: 40030537 DOI: 10.1109/tcyb.2024.3499952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Multigranularity data analysis has recently become an active research topic in the intelligent computing and data mining fields. Feature selection via multigranularity data analysis is an effective tool for characterizing hierarchical data and enhancing the accuracy of the results. Although the multigranularity data analysis method has been widely adopted for feature selection, existing studies still present one prevalent disadvantage: multigranularity data analysis mostly focuses on information presented at a single granularity while ignoring the hierarchical structure of multigranularity data, which is contrary to the nature of multigranularity. Hence, this article proposes a multigranularity data analysis with a zentropy uncertainty measure for efficient and robust feature selection. Specifically, a consistent degree is first introduced to obtain optimal granularity combinations and establish an efficient neighborhood model for multigranularity information processing. Then, a novel and robust uncertainty measure is developed by integrating the multigranularity information, namely the zentropy-based measure. Considering its accuracy among uncertainty measures, two important measures are further designed and applied to feature selection. Extensive experiments demonstrate that the proposed method can achieve better robustness and classification performance than other state-of-the-art methods.
Collapse
|
2
|
Jiao R, Xue B, Zhang M. Benefiting From Single-Objective Feature Selection to Multiobjective Feature Selection: A Multiform Approach. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:7773-7786. [PMID: 36346857 DOI: 10.1109/tcyb.2022.3218345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Evolutionary multiobjective feature selection (FS) has gained increasing attention in recent years. However, it still faces some challenges, for example, the frequently appeared duplicated solutions in either the search space or the objective space lead to the diversity loss of the population, and the huge search space results in the low search efficiency of the algorithm. Minimizing the number of selected features and maximizing the classification performance are two major objectives in FS. Usually, the fitness function of a single-objective FS problem linearly aggregates these two objectives through a weighted sum method. Given a predefined direction (weight) vector, the single-objective FS task can explore the specified direction or area extensively. Different direction vectors result in different search directions in the objective space. Motivated by this, this article proposes a multiform framework, which solves a multiobjective FS task combined with its auxiliary single-objective FS tasks in a multitask environment. By setting different direction vectors, promising feature subsets from single-objective FS tasks can be utilized, to boost the evolutionary search of the multiobjective FS task. By comparing with five classical and state-of-the-art multiobjective evolutionary algorithms, as well as four well-performing FS algorithms, the effectiveness and efficiency of the proposed method are verified via extensive experiments on 18 classification datasets. Furthermore, the effectiveness of the proposed method is also investigated in a noisy environment.
Collapse
|
3
|
Luo C, Wang S, Li T, Chen H, Lv J, Yi Z. Large-Scale Meta-Heuristic Feature Selection Based on BPSO Assisted Rough Hypercuboid Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:10889-10903. [PMID: 35552142 DOI: 10.1109/tnnls.2022.3171614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The selection of prominent features for building more compact and efficient models is an important data preprocessing task in the field of data mining. The rough hypercuboid approach is an emerging technique that can be applied to eliminate irrelevant and redundant features, especially for the inexactness problem in approximate numerical classification. By integrating the meta-heuristic-based evolutionary search technique, a novel global search method for numerical feature selection is proposed in this article based on the hybridization of the rough hypercuboid approach and binary particle swarm optimization (BPSO) algorithm, namely RH-BPSO. To further alleviate the issue of high computational cost when processing large-scale datasets, parallelization approaches for calculating the hybrid feature evaluation criteria are presented by decomposing and recombining hypercuboid equivalence partition matrix via horizontal data partitioning. A distributed meta-heuristic optimized rough hypercuboid feature selection (DiRH-BPSO) algorithm is thus developed and embedded in the Apache Spark cloud computing model. Extensive experimental results indicate that RH-BPSO is promising and can significantly outperform the other representative feature selection algorithms in terms of classification accuracy, the cardinality of the selected feature subset, and execution efficiency. Moreover, experiments on distributed-memory multicore clusters show that DiRH-BPSO is significantly faster than its sequential counterpart and is perfectly capable of completing large-scale feature selection tasks that fail on a single node due to memory constraints. Parallel scalability and extensibility analysis also demonstrate that DiRH-BPSO could scale out and extend well with the growth of computational nodes and the volume of data.
Collapse
|
4
|
Li J, Chen J, Qi F, Dan T, Weng W, Zhang B, Yuan H, Cai H, Zhong C. Two-Dimensional Unsupervised Feature Selection via Sparse Feature Filter. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:5605-5617. [PMID: 35404827 DOI: 10.1109/tcyb.2022.3162908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Unsupervised feature selection is a vital yet challenging topic for effective data learning. Recently, 2-D feature selection methods show good performance on image analysis by utilizing the structure information of image. Current 2-D methods usually adopt a sparse regularization to spotlight the key features. However, such scheme introduces additional hyperparameter needed for pruning, limiting the applicability of unsupervised algorithms. To overcome these challenges, we design a feature filter to estimate the weight of image features for unsupervised feature selection. Theoretical analysis shows that a sparse regularization can be derived from the feature filter by transformation, indicating that the filter plays the same role as the popular sparse regularization does. We deploy two distinct strategies in terms of feature selection, called multiple feature filters and single common feature filter. The former divides the optimization problem into multiple independent subproblems and selects features that meet the respective interests of each subproblem. The latter selects features that are in the interest of the overall optimization problem. Extensive experiments on seven benchmark datasets show that our unsupervised 2-D weight-based feature selection methods achieve superior performance over the state-of-the-art methods.
Collapse
|
5
|
Chen X, Ye Y, Yao H, Liu C, He A, Hou X, Zhao K, Cui Z, Li Y, Qiu J, Chen P, Yang Y, Zhuang J, Yu K. Predicting post-operative vault and optimal implantable collamer lens size using machine learning based on various ophthalmic device combinations. Biomed Eng Online 2023; 22:59. [PMID: 37322471 DOI: 10.1186/s12938-023-01123-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Implantable Collamer Lens (ICL) surgery has been proven to be a safe, effective, and predictable method for correcting myopia and myopic astigmatism. However, predicting the vault and ideal ICL size remains technically challenging. Despite the growing use of artificial intelligence (AI) in ophthalmology, no AI studies have provided available choices of different instruments and combinations for further vault and size predictions. This study aimed to fill this gap and predict post-operative vault and appropriate ICL size utilizing the comparison of numerous AI algorithms, stacking ensemble learning, and data from various ophthalmic devices and combinations. RESULTS This retrospective and cross-sectional study included 1941 eyes of 1941 patients from Zhongshan Ophthalmic Center. For both vault prediction and ICL size selection, the combination containing Pentacam, Sirius, and UBM demonstrated the best results in test sets [R2 = 0.499 (95% CI 0.470-0.528), mean absolute error = 130.655 (95% CI 128.949-132.111), accuracy = 0.895 (95% CI 0.883-0.907), AUC = 0.928 (95% CI 0.916-0.941)]. Sulcus-to-sulcus (STS), a parameter from UBM, ranked among the top five significant contributors to both post-operative vault and optimal ICL size prediction, consistently outperforming white-to-white (WTW). Moreover, dual-device combinations or single-device parameters could also effectively predict vault and ideal ICL size, and excellent ICL selection prediction was achievable using only UBM parameters. CONCLUSIONS Strategies based on multiple machine learning algorithms for different ophthalmic devices and combinations are applicable for vault predicting and ICL sizing, potentially improving the safety of the ICL implantation. Moreover, our findings emphasize the crucial role of UBM in the perioperative period of ICL surgery, as it provides key STS measurements that outperformed WTW measurements in predicting post-operative vault and optimal ICL size, highlighting its potential to enhance ICL implantation safety and accuracy.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yiming Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Huan Yao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chang Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Anqi He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiangtao Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Keming Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zedu Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Pei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ying Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
6
|
Wan J, Chen H, Li T, Yuan Z, Liu J, Huang W. Interactive and Complementary Feature Selection via Fuzzy Multigranularity Uncertainty Measures. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:1208-1221. [PMID: 34613928 DOI: 10.1109/tcyb.2021.3112203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Feature selection has been studied by many researchers using information theory to select the most informative features. Up to now, however, little attention has been paid to the interactivity and complementarity between features and their relationships. In addition, most of the approaches do not cope well with fuzzy and uncertain data and are not adaptable to the distribution characteristics of data. Therefore, to make up for these two deficiencies, a novel interactive and complementary feature selection approach based on fuzzy multineighborhood rough set model (ICFS_FmNRS) is proposed. First, fuzzy multineighborhood granules are constructed to better adapt to the data distribution. Second, feature multicorrelations (i.e., relevancy, redundancy, interactivity, and complementarity) are considered and defined comprehensively using fuzzy multigranularity uncertainty measures. Next, the features with interactivity and complementarity are mined by the forward iterative selection strategy. Finally, compared with the benchmark approaches on several datasets, the experimental results show that ICFS_FmNRS effectively improves the classification performance of feature subsets while reducing the dimension of feature space.
Collapse
|
7
|
Huang Z, Li J. Discernibility Measures for Fuzzy β Covering and Their Application. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:9722-9735. [PMID: 33687855 DOI: 10.1109/tcyb.2021.3054742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a combination of fuzzy sets and covering rough sets, fuzzy β covering has attracted much attention in recent years. The fuzzy β neighborhood serves as the basic granulation unit of fuzzy β covering. In this article, a new discernibility measure with respect to the fuzzy β neighborhood is proposed to characterize the distinguishing ability of a fuzzy covering family. To this end, the parameterized fuzzy β neighborhood is introduced to describe the similarity between samples, where the distinguishing ability of a given fuzzy covering family can be evaluated. Some variants of the discernibility measure, such as the joint discernibility measure, conditional discernibility measure, and mutual discernibility measure, are then presented to reflect the change of distinguishing ability caused by different fuzzy covering families. These measures have similar properties as the Shannon entropy. Finally, to deal with knowledge reduction with fuzzy β covering, we formalize a new type of decision table, that is, fuzzy β covering decision tables. The data reduction of fuzzy covering decision tables is addressed from the viewpoint of maintaining the distinguishing ability of a fuzzy covering family, and a forward attribute reduction algorithm is designed to reduce redundant fuzzy coverings. Extensive experiments show that the proposed method can effectively evaluate the uncertainty of different types of datasets and exhibit better performance in attribute reduction compared with some existing algorithms.
Collapse
|
8
|
Song XF, Zhang Y, Gong DW, Gao XZ. A Fast Hybrid Feature Selection Based on Correlation-Guided Clustering and Particle Swarm Optimization for High-Dimensional Data. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:9573-9586. [PMID: 33729976 DOI: 10.1109/tcyb.2021.3061152] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The "curse of dimensionality" and the high computational cost have still limited the application of the evolutionary algorithm in high-dimensional feature selection (FS) problems. This article proposes a new three-phase hybrid FS algorithm based on correlation-guided clustering and particle swarm optimization (PSO) (HFS-C-P) to tackle the above two problems at the same time. To this end, three kinds of FS methods are effectively integrated into the proposed algorithm based on their respective advantages. In the first and second phases, a filter FS method and a feature clustering-based method with low computational cost are designed to reduce the search space used by the third phase. After that, the third phase applies oneself to finding an optimal feature subset by using an evolutionary algorithm with the global searchability. Moreover, a symmetric uncertainty-based feature deletion method, a fast correlation-guided feature clustering strategy, and an improved integer PSO are developed to improve the performance of the three phases, respectively. Finally, the proposed algorithm is validated on 18 publicly available real-world datasets in comparison with nine FS algorithms. Experimental results show that the proposed algorithm can obtain a good feature subset with the lowest computational cost.
Collapse
|
9
|
Xiao F. CEQD: A Complex Mass Function to Predict Interference Effects. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:7402-7414. [PMID: 33400662 DOI: 10.1109/tcyb.2020.3040770] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Uncertainty is inevitable in the decision-making process of real applications. Quantum mechanics has become an interesting and popular topic in predicting and explaining human decision-making behaviors, especially regarding interference effects caused by uncertainty in the process of decision making, due to the limitations of Bayesian reasoning. In addition, complex evidence theory (CET), as a generalized Dempster-Shafer evidence theory, has been proposed to represent and handle uncertainty in the framework of the complex plane, and it is an effective tool in uncertainty reasoning. Particularly, the complex mass function, also known as a complex basic belief assignment in CET, is complex-value modeled, which is superior to the classical mass function in expressing uncertain information. CET is considered to have certain inherent connections with quantum mechanics since both are complex-value modeled and can be applied in handling uncertainty in decision-making problems. In this article, therefore, by bridging CET and quantum mechanics, we propose a new complex evidential quantum dynamical (CEQD) model to predict interference effects on human decision-making behaviors. In addition, uniform and weighted complex Pignistic belief transformation functions are proposed, which can be used effectively in the CEQD model to help explain interference effects. The experimental results and comparisons demonstrate the effectiveness of the proposed method. In summary, the proposed CEQD method provides a new perspective to study and explain the interference effects involved in human decision-making behaviors, which is significant for decision theory.
Collapse
|
10
|
Zheng J, Luo C, Li T, Chen H. A novel hierarchical feature selection method based on large margin nearest neighbor learning. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Fang W, Zhang Q, Lu H, Lin JCW. High-utility itemsets mining based on binary particle swarm optimization with multiple adjustment strategies. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Sang B, Chen H, Wan J, Yang L, Li T, Xu W, Luo C. Self-adaptive weighted interaction feature selection based on robust fuzzy dominance rough sets for monotonic classification. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.109523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Su Y, Du K, Wang J, Wei JM, Liu J. Multi-variable AUC for sifting complementary features and its biomedical application. Brief Bioinform 2022; 23:6536295. [PMID: 35212712 DOI: 10.1093/bib/bbac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Although sifting functional genes has been discussed for years, traditional selection methods tend to be ineffective in capturing potential specific genes. First, typical methods focus on finding features (genes) relevant to class while irrelevant to each other. However, the features that can offer rich discriminative information are more likely to be the complementary ones. Next, almost all existing methods assess feature relations in pairs, yielding an inaccurate local estimation and lacking a global exploration. In this paper, we introduce multi-variable Area Under the receiver operating characteristic Curve (AUC) to globally evaluate the complementarity among features by employing Area Above the receiver operating characteristic Curve (AAC). Due to AAC, the class-relevant information newly provided by a candidate feature and that preserved by the selected features can be achieved beyond pairwise computation. Furthermore, we propose an AAC-based feature selection algorithm, named Multi-variable AUC-based Combined Features Complementarity, to screen discriminative complementary feature combinations. Extensive experiments on public datasets demonstrate the effectiveness of the proposed approach. Besides, we provide a gene set about prostate cancer and discuss its potential biological significance from the machine learning aspect and based on the existing biomedical findings of some individual genes.
Collapse
Affiliation(s)
- Yue Su
- College of Computer Science at Nankai University, China
| | - Keyu Du
- College of Computer Science at Nankai University, China
| | - Jun Wang
- College of Mathematics and Statistics Science at Ludong University, China
| | - Jin-Mao Wei
- College of Computer Science at Nankai University, China
| | - Jian Liu
- College of Computer Science at Nankai University, China
| |
Collapse
|
14
|
Sang B, Chen H, Yang L, Li T, Xu W, Luo C. Feature selection for dynamic interval-valued ordered data based on fuzzy dominance neighborhood rough set. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Feature selection via max-independent ratio and min-redundant ratio based on adaptive weighted kernel density estimation. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2021.03.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
|
17
|
Qian W, Huang J, Wang Y, Xie Y. Label distribution feature selection for multi-label classification with rough set. Int J Approx Reason 2021. [DOI: 10.1016/j.ijar.2020.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Sang B, Chen H, Yang L, Zhou D, Li T, Xu W. Incremental attribute reduction approaches for ordered data with time-evolving objects. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2020.106583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|