1
|
Maqsood S, Damaševičius R, Maskeliūnas R, Forkert ND, Haider S, Latif S. Csec-net: a novel deep features fusion and entropy-controlled firefly feature selection framework for leukemia classification. Health Inf Sci Syst 2025; 13:9. [PMID: 39736875 PMCID: PMC11682032 DOI: 10.1007/s13755-024-00327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Leukemia, a life-threatening form of cancer, poses a significant global health challenge affecting individuals of all age groups, including both children and adults. Currently, the diagnostic process relies on manual analysis of microscopic images of blood samples. In recent years, machine learning employing deep learning approaches has emerged as cutting-edge solutions for image classification problems. Thus, the aim of this work was to develop and evaluate deep learning methods to enable a computer-aided leukemia diagnosis. The proposed method is composed of multiple stages: Firstly, the given dataset images undergo preprocessing. Secondly, five pre-trained convolutional neural network models, namely MobileNetV2, EfficientNetB0, ConvNeXt-V2, EfficientNetV2, and DarkNet-19, are modified and transfer learning is used for training. Thirdly, deep feature vectors are extracted from each of the convolutional neural network and combined using a convolutional sparse image decomposition fusion strategy. Fourthly, the proposed approach employs an entropy-controlled firefly feature selection technique, which selects the most optimal features for subsequent classification. Finally, the selected features are fed into a multi-class support vector machine for the final classification. The proposed algorithm was applied to a total of 15562 images having four datasets, namely ALLID_B1, ALLID_B2, C_NMC 2019, and ASH and demonstrated superior accuracies of 99.64%, 98.96%, 96.67%, and 98.89%, respectively, surpassing the performance of previous works in the field.
Collapse
Affiliation(s)
- Sarmad Maqsood
- Centre of Real Time Computer Systems, Faculty of Informatics, Kaunas University of Technology, LT-51386 Kaunas, Lithuania
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Robertas Damaševičius
- Centre of Real Time Computer Systems, Faculty of Informatics, Kaunas University of Technology, LT-51386 Kaunas, Lithuania
| | - Rytis Maskeliūnas
- Centre of Real Time Computer Systems, Faculty of Informatics, Kaunas University of Technology, LT-51386 Kaunas, Lithuania
| | - Nils D. Forkert
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Shahab Haider
- Faculty of Computer Science and Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23640 Pakistan
| | - Shahid Latif
- Department of Electrical Engineering, Iqra National University, Peshawar, 25000 Pakistan
| |
Collapse
|
2
|
Guerra RDT, Yamaguchi CK, Stefenon SF, Coelho LDS, Mariani VC. Deep Learning Approach for Automatic Heartbeat Classification. SENSORS (BASEL, SWITZERLAND) 2025; 25:1400. [PMID: 40096255 PMCID: PMC11902813 DOI: 10.3390/s25051400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/04/2025] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
Arrhythmia is an irregularity in the rhythm of the heartbeat, and it is the primary method for detecting cardiac abnormalities. The electrocardiogram (ECG) identifies arrhythmias and is one of the methods used to diagnose cardiac issues. Traditional arrhythmia detection methods are time-consuming, error-prone, and often subjective, making it difficult for doctors to discern between distinct patterns of arrhythmia. To understand ECG signals, this study presents a multi-class classifier and an autoencoder with long short-term memory (LSTM) network layers for extracting signal properties on a dataset from the Massachusetts Institute of Technology and Boston's Beth Israel Hospital (MIT-BIH). The suggested model had an accuracy rate of 98.57% on the arrhythmia dataset and 97.59% on the supraventricular dataset. In contrast to other deep learning models, the proposed model eliminates the problem of the gradient disappearing in classification tasks.
Collapse
Affiliation(s)
- Roger de T. Guerra
- Graduate Program in Electrical Engineering, Federal University of Parana, Curitiba 80242-980, PR, Brazil; (S.F.S.); (L.d.S.C.)
| | - Cristina K. Yamaguchi
- Postgraduate Program in Productive Systems in Association with UNIPLAC, UNC, UNESC, and UNIVILLE, Lages 88509-900, SC, Brazil;
| | - Stefano F. Stefenon
- Graduate Program in Electrical Engineering, Federal University of Parana, Curitiba 80242-980, PR, Brazil; (S.F.S.); (L.d.S.C.)
- Postgraduate Program in Productive Systems in Association with UNIPLAC, UNC, UNESC, and UNIVILLE, Lages 88509-900, SC, Brazil;
| | - Leandro dos S. Coelho
- Graduate Program in Electrical Engineering, Federal University of Parana, Curitiba 80242-980, PR, Brazil; (S.F.S.); (L.d.S.C.)
- Department of Electrical Engineering, Federal University of Parana, Curitiba 80242-980, PR, Brazil;
| | - Viviana C. Mariani
- Department of Electrical Engineering, Federal University of Parana, Curitiba 80242-980, PR, Brazil;
- Graduate Program in Mechanical Engineering, Federal University of Parana, Curitiba 80242-980, PR, Brazil
| |
Collapse
|
3
|
Sharmin R, Brindise MC, Kolliyil JJ, Meyers BA, Zhang J, Vlachos PP. Novel interpretable Feature set extraction and classification for accurate atrial fibrillation detection from ECGs. Comput Biol Med 2024; 179:108872. [PMID: 39013342 DOI: 10.1016/j.compbiomed.2024.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
OBJECTIVE We present a novel method for detecting atrial fibrillation (AFib) by analyzing Lead II electrocardiograms (ECGs) using a unique set of features. METHODS For this purpose, we used specific signal processing techniques, such as proper orthogonal decomposition, continuous wavelet transforms, discrete cosine transform, and standard cross-correlation, to extract 48 features from the ECGs. Thus, our approach aims to more effectively capture AFib signatures, such as beat-to-beat variability and fibrillatory waves, than traditional metrics. Moreover, our features were designed to be physiologically interpretable. Subsequently, we incorporated an XGBoost-based ECG classifier to train and evaluate it using the publicly available 'Training' dataset of the 2017 PhysioNet Challenge, which includes 'Normal,' 'AFib,' 'Other,' and 'Noisy' ECG categories. RESULTS Our method achieved an accuracy of 96 % and an F1-score of 0.83 for 'AFib' detection and 80 % accuracy and 0.85 F1-score for 'Normal' ECGs. Finally, we compared our method's performance with the top-classifiers from the 2017 PhysioNet Challenge, namely ENCASE, Random Forest, and Cascaded Binary. As reported by Clifford et al., 2017, these three best performing models scored 0.80, 0.83, 0.82, in terms of F1-score for 'AFib' detection, respectively. CONCLUSION Despite using significantly fewer features than the competition's state-of-the-art ECG detection algorithms (48 vs. 150-622), our model achieved a comparable F1-score of 0.83 for successful 'AFib' detection. SIGNIFICANCE The interpretable features specifically designed for 'AFib' detection results in our method's adaptability in clinical settings for real-time arrhythmia detection and is even effective with short ECGs (<10 heartbeats).
Collapse
Affiliation(s)
- Ruhi Sharmin
- Department of Biomedical Engineering, Purdue University, USA
| | - Melissa C Brindise
- Department of Mechanical Engineering, Pennsylvania State University, USA
| | - Jibin Joy Kolliyil
- Department of Mechanical Engineering, Pennsylvania State University, USA
| | - Brett A Meyers
- Department of Mechanical Engineering, Purdue University, USA
| | - Jiacheng Zhang
- Department of Mechanical Engineering, Purdue University, USA
| | - Pavlos P Vlachos
- Department of Biomedical Engineering, Purdue University, USA; Department of Mechanical Engineering, Purdue University, USA.
| |
Collapse
|
4
|
Ebeed H, Baz M, Habib E, Prabhu S, Ceasar SA. Integrated metabolomic analysis and molecular docking: Unveiling the potential of Nephrolepis exaltata (L.) Schott phytocompounds for mosquito control via glutathione-S-transferase targeting. Int J Biol Macromol 2024; 273:133072. [PMID: 38885861 DOI: 10.1016/j.ijbiomac.2024.133072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Plants contain a wide range of potential phytochemicals that are target-specific, and less toxic to human health. The present study aims to investigate the metabolomic profile of Nephrolepis exaltata (L.) Schott and its potential for mosquito control by targeting Glutathione-S-Transferase, focusing on the larvicidal activity against Culex pipiens. Crude extracts (CEs) were prepared using ethanol, ethyl acetate and n-hexane. CEs have been used for assessment of mosquitocidal bioassay. The metabolomic analyses for CEs were characterized for each CE by gas chromatography-mass spectrometry (GC-MS). The most efficient CE with the highest larval mortality and the least LC50 was the hexane CE. Then, alkaline phosphatase (ALP) activity, and glutathione-S-transferase (GST) activity were assessed in larvae treated with the hexane CE. The results demonstrated a decline in protein content, induction of ALP activity, and reduction in GST activity. Finally, molecular docking and dynamic simulation techniques were employed to evaluate the interaction between the hexane phytochemicals and the GST protein. D-(+)-Glucuronic acid, 3TMS derivative and Sebacic acid, 2TMS derivative showed best binding affinities to GST protein pointing to their interference with the enzyme detoxification functions, potentially leading to reduced ability to metabolize insecticides.
Collapse
Affiliation(s)
- Heba Ebeed
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt; National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt.
| | - Mohamed Baz
- Department of Entomology, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Eman Habib
- Botany and Microbiology Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683 104, Kerala, India
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, 683 104, Kerala, India
| |
Collapse
|
5
|
Chen S, Wang H, Zhang H, Peng C, Li Y, Wang B. A novel method of swin transformer with time-frequency characteristics for ECG-based arrhythmia detection. Front Cardiovasc Med 2024; 11:1401143. [PMID: 38911517 PMCID: PMC11193364 DOI: 10.3389/fcvm.2024.1401143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Arrhythmia is an important indication of underlying cardiovascular diseases (CVD) and is prevalent worldwide. Accurate diagnosis of arrhythmia is crucial for timely and effective treatment. Electrocardiogram (ECG) plays a key role in the diagnosis of arrhythmia. With the continuous development of deep learning and machine learning processes in the clinical field, ECG processing algorithms have significantly advanced the field with timely and accurate diagnosis of arrhythmia. Methods In this study, we combined the wavelet time-frequency maps with the novel Swin Transformer deep learning model for the automatic detection of cardiac arrhythmias. In specific practice, we used the MIT-BIH arrhythmia dataset, and to improve the signal quality, we removed the high-frequency noise, artifacts, electromyographic noise and respiratory motion effects in the ECG signals by the wavelet thresholding method; we used the complex Morlet wavelet for the feature extraction, and plotted wavelet time-frequency maps to visualise the time-frequency information of the ECG; we introduced the Swin Transformer model for classification and achieve high classification accuracy of ECG signals through hierarchical construction and self attention mechanism, and combines windowed multi-head self-attention (W-MSA) and shifted window-based multi-head self-attention (SW-MSA) to comprehensively utilise the local and global information. Results To enhance the confidence of the experimental results, we evaluated the performance using intra-patient and inter-patient paradigm analyses, and the model classification accuracies reached 99.34% and 98.37%, respectively, which are better than the currently available detection methods. Discussion The results reveal that our proposed method is superior to currently available methods for detecting arrhythmia ECG. This provides a new idea for ECG based arrhythmia diagnosis.
Collapse
Affiliation(s)
- Siyuan Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hao Wang
- College of Computer Science and Technology, Harbin Engineering University, Harbin, China
| | - Huijie Zhang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Cailiang Peng
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Li
- Heilongjiang University of Chinese Medicine, Harbin, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bing Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Moreno-Sánchez PA, García-Isla G, Corino VDA, Vehkaoja A, Brukamp K, van Gils M, Mainardi L. ECG-based data-driven solutions for diagnosis and prognosis of cardiovascular diseases: A systematic review. Comput Biol Med 2024; 172:108235. [PMID: 38460311 DOI: 10.1016/j.compbiomed.2024.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/11/2024]
Abstract
Cardiovascular diseases (CVD) are a leading cause of death globally, and result in significant morbidity and reduced quality of life. The electrocardiogram (ECG) plays a crucial role in CVD diagnosis, prognosis, and prevention; however, different challenges still remain, such as an increasing unmet demand for skilled cardiologists capable of accurately interpreting ECG. This leads to higher workload and potential diagnostic inaccuracies. Data-driven approaches, such as machine learning (ML) and deep learning (DL) have emerged to improve existing computer-assisted solutions and enhance physicians' ECG interpretation of the complex mechanisms underlying CVD. However, many ML and DL models used to detect ECG-based CVD suffer from a lack of explainability, bias, as well as ethical, legal, and societal implications (ELSI). Despite the critical importance of these Trustworthy Artificial Intelligence (AI) aspects, there is a lack of comprehensive literature reviews that examine the current trends in ECG-based solutions for CVD diagnosis or prognosis that use ML and DL models and address the Trustworthy AI requirements. This review aims to bridge this knowledge gap by providing a systematic review to undertake a holistic analysis across multiple dimensions of these data-driven models such as type of CVD addressed, dataset characteristics, data input modalities, ML and DL algorithms (with a focus on DL), and aspects of Trustworthy AI like explainability, bias and ethical considerations. Additionally, within the analyzed dimensions, various challenges are identified. To these, we provide concrete recommendations, equipping other researchers with valuable insights to understand the current state of the field comprehensively.
Collapse
Affiliation(s)
| | - Guadalupe García-Isla
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Italy
| | - Valentina D A Corino
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Italy
| | - Antti Vehkaoja
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Mark van Gils
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Luca Mainardi
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Italy
| |
Collapse
|
7
|
Ansari Y, Mourad O, Qaraqe K, Serpedin E. Deep learning for ECG Arrhythmia detection and classification: an overview of progress for period 2017-2023. Front Physiol 2023; 14:1246746. [PMID: 37791347 PMCID: PMC10542398 DOI: 10.3389/fphys.2023.1246746] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Cardiovascular diseases are a leading cause of mortality globally. Electrocardiography (ECG) still represents the benchmark approach for identifying cardiac irregularities. Automatic detection of abnormalities from the ECG can aid in the early detection, diagnosis, and prevention of cardiovascular diseases. Deep Learning (DL) architectures have been successfully employed for arrhythmia detection and classification and offered superior performance to traditional shallow Machine Learning (ML) approaches. This survey categorizes and compares the DL architectures used in ECG arrhythmia detection from 2017-2023 that have exhibited superior performance. Different DL models such as Convolutional Neural Networks (CNNs), Multilayer Perceptrons (MLPs), Transformers, and Recurrent Neural Networks (RNNs) are reviewed, and a summary of their effectiveness is provided. This survey provides a comprehensive roadmap to expedite the acclimation process for emerging researchers willing to develop efficient algorithms for detecting ECG anomalies using DL models. Our tailored guidelines bridge the knowledge gap allowing newcomers to align smoothly with the prevailing research trends in ECG arrhythmia detection. We shed light on potential areas for future research and refinement in model development and optimization, intending to stimulate advancement in ECG arrhythmia detection and classification.
Collapse
Affiliation(s)
- Yaqoob Ansari
- ECEN Program, Texas A&M University at Qatar, Doha, Qatar
| | | | - Khalid Qaraqe
- ECEN Program, Texas A&M University at Qatar, Doha, Qatar
| | - Erchin Serpedin
- ECEN Department, Texas A&M University, College Station, TX, United States
| |
Collapse
|
8
|
Jiahao L, Shuixian L, Keshun Y, Bohua Z. An end-end arrhythmia diagnosis model based on deep learning neural network with multi-scale feature extraction. Phys Eng Sci Med 2023; 46:1341-1352. [PMID: 37393423 DOI: 10.1007/s13246-023-01286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/22/2023] [Indexed: 07/03/2023]
Abstract
This study presents an innovative end-to-end deep learning arrhythmia diagnosis model that aims to address the problems in arrhythmia diagnosis. The model performs pre-processing of the heartbeat signal by automatically and efficiently extracting time-domain, time-frequency-domain and multi-scale features at different scales. These features are imported into an adaptive online convolutional network-based classification inference module for arrhythmia diagnosis. Experimental results show that the AOCT-based deep learning neural network diagnostic module has excellent parallel computing and classification inference capabilities, and the overall performance of the model improves with increasing scales. In particular, when multi-scale features are used as inputs, the model is able to learn both time-frequency domain information and other rich information, thus significantly improving the performance of the end-to-end diagnostic model. The final results show that the AOCT-based deep learning neural network model has an average accuracy of 99.72%, a recall of 99.62%, and an F1 score of 99.3% in diagnosing four common heart diseases.
Collapse
Affiliation(s)
- Li Jiahao
- Ganzhou Polytechnic, Zhanggong District, Ganzhou City, 341099, Jiangxi Province, China
| | - Luo Shuixian
- The First Affiliated Hospital of Gannan Medical College, No. 23, Qingnian Road, Ganzhou City, 341001, Jiangxi Province, China
| | - You Keshun
- Jiangxi University of Science and Technology, 1958 Hakka Avenue, Ganzhou City, 341000, Jiangxi Province, China.
| | - Zen Bohua
- Ganzhou Polytechnic, Zhanggong District, Ganzhou City, 341099, Jiangxi Province, China
| |
Collapse
|
9
|
Cuevas-Chávez A, Hernández Y, Ortiz-Hernandez J, Sánchez-Jiménez E, Ochoa-Ruiz G, Pérez J, González-Serna G. A Systematic Review of Machine Learning and IoT Applied to the Prediction and Monitoring of Cardiovascular Diseases. Healthcare (Basel) 2023; 11:2240. [PMID: 37628438 PMCID: PMC10454027 DOI: 10.3390/healthcare11162240] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
According to the Pan American Health Organization, cardiovascular disease is the leading cause of death worldwide, claiming an estimated 17.9 million lives each year. This paper presents a systematic review to highlight the use of IoT, IoMT, and machine learning to detect, predict, or monitor cardiovascular disease. We had a final sample of 164 high-impact journal papers, focusing on two categories: cardiovascular disease detection using IoT/IoMT technologies and cardiovascular disease using machine learning techniques. For the first category, we found 82 proposals, while for the second, we found 85 proposals. The research highlights list of IoT/IoMT technologies, machine learning techniques, datasets, and the most discussed cardiovascular diseases. Neural networks have been popularly used, achieving an accuracy of over 90%, followed by random forest, XGBoost, k-NN, and SVM. Based on the results, we conclude that IoT/IoMT technologies can predict cardiovascular diseases in real time, ensemble techniques obtained one of the best performances in the accuracy metric, and hypertension and arrhythmia were the most discussed diseases. Finally, we identified the lack of public data as one of the main obstacles for machine learning approaches for cardiovascular disease prediction.
Collapse
Affiliation(s)
- Alejandra Cuevas-Chávez
- Computer Science Department, Tecnológico Nacional de México/Cenidet, Cuernavaca 62490, Mexico; (J.O.-H.); (E.S.-J.); (J.P.); (G.G.-S.)
| | - Yasmín Hernández
- Computer Science Department, Tecnológico Nacional de México/Cenidet, Cuernavaca 62490, Mexico; (J.O.-H.); (E.S.-J.); (J.P.); (G.G.-S.)
| | - Javier Ortiz-Hernandez
- Computer Science Department, Tecnológico Nacional de México/Cenidet, Cuernavaca 62490, Mexico; (J.O.-H.); (E.S.-J.); (J.P.); (G.G.-S.)
| | - Eduardo Sánchez-Jiménez
- Computer Science Department, Tecnológico Nacional de México/Cenidet, Cuernavaca 62490, Mexico; (J.O.-H.); (E.S.-J.); (J.P.); (G.G.-S.)
| | - Gilberto Ochoa-Ruiz
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
| | - Joaquín Pérez
- Computer Science Department, Tecnológico Nacional de México/Cenidet, Cuernavaca 62490, Mexico; (J.O.-H.); (E.S.-J.); (J.P.); (G.G.-S.)
| | - Gabriel González-Serna
- Computer Science Department, Tecnológico Nacional de México/Cenidet, Cuernavaca 62490, Mexico; (J.O.-H.); (E.S.-J.); (J.P.); (G.G.-S.)
| |
Collapse
|
10
|
Huang Y, Ni Z, Lu Z, He X, Hu J, Li B, Ya H, Shi Y. Heterogeneous temporal representation for diabetic blood glucose prediction. Front Physiol 2023; 14:1225638. [PMID: 37534367 PMCID: PMC10393041 DOI: 10.3389/fphys.2023.1225638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
Background and aims: Blood glucose prediction (BGP) has increasingly been adopted for personalized monitoring of blood glucose levels in diabetic patients, providing valuable support for physicians in diagnosis and treatment planning. Despite the remarkable success achieved, applying BGP in multi-patient scenarios remains problematic, largely due to the inherent heterogeneity and uncertain nature of continuous glucose monitoring (CGM) data obtained from diverse patient profiles. Methodology: This study proposes the first graph-based Heterogeneous Temporal Representation (HETER) network for multi-patient Blood Glucose Prediction (BGP). Specifically, HETER employs a flexible subsequence repetition method (SSR) to align the heterogeneous input samples, in contrast to the traditional padding or truncation methods. Then, the relationships between multiple samples are constructed as a graph and learned by HETER to capture global temporal characteristics. Moreover, to address the limitations of conventional graph neural networks in capturing local temporal dependencies and providing linear representations, HETER incorporates both a temporally-enhanced mechanism and a linear residual fusion into its architecture. Results: Comprehensive experiments were conducted to validate the proposed method using real-world data from 112 patients in two hospitals, comparing it with five well-known baseline methods. The experimental results verify the robustness and accuracy of the proposed HETER, which achieves the maximal improvement of 31.42%, 27.18%, and 34.85% in terms of MAE, MAPE, and RMSE, respectively, over the second-best comparable method. Discussions: HETER integrates global and local temporal information from multi-patient samples to alleviate the impact of heterogeneity and uncertainty. This method can also be extended to other clinical tasks, thereby facilitating efficient and accurate capture of crucial pattern information in structured medical data.
Collapse
Affiliation(s)
- Yaohui Huang
- College of Electronic Information, Guangxi Minzu University, Nanning, China
- Laboratory of Intelligent Information Processing and Intelligent Medical, Guangxi Minzu University, Nanning, China
| | - Zhikai Ni
- Department of Electronic Science, Xiamen University, Xiamen, China
| | - Zhenkun Lu
- College of Electronic Information, Guangxi Minzu University, Nanning, China
- Laboratory of Intelligent Information Processing and Intelligent Medical, Guangxi Minzu University, Nanning, China
| | - Xinqi He
- College of Electronic Information, Guangxi Minzu University, Nanning, China
| | - Jinbo Hu
- College of Electronic Information, Guangxi Minzu University, Nanning, China
| | - Boxuan Li
- College of Electronic Information, Guangxi Minzu University, Nanning, China
| | - Houguan Ya
- College of Electronic Information, Guangxi Minzu University, Nanning, China
| | - Yunxian Shi
- College of Electronic Information, Guangxi Minzu University, Nanning, China
| |
Collapse
|
11
|
Islam MR, Kabir MM, Mridha MF, Alfarhood S, Safran M, Che D. Deep Learning-Based IoT System for Remote Monitoring and Early Detection of Health Issues in Real-Time. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115204. [PMID: 37299933 DOI: 10.3390/s23115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
With an aging population and increased chronic diseases, remote health monitoring has become critical to improving patient care and reducing healthcare costs. The Internet of Things (IoT) has recently drawn much interest as a potential remote health monitoring remedy. IoT-based systems can gather and analyze a wide range of physiological data, including blood oxygen levels, heart rates, body temperatures, and ECG signals, and then provide real-time feedback to medical professionals so they may take appropriate action. This paper proposes an IoT-based system for remote monitoring and early detection of health problems in home clinical settings. The system comprises three sensor types: MAX30100 for measuring blood oxygen level and heart rate; AD8232 ECG sensor module for ECG signal data; and MLX90614 non-contact infrared sensor for body temperature. The collected data is transmitted to a server using the MQTT protocol. A pre-trained deep learning model based on a convolutional neural network with an attention layer is used on the server to classify potential diseases. The system can detect five different categories of heartbeats: Normal Beat, Supraventricular premature beat, Premature ventricular contraction, Fusion of ventricular, and Unclassifiable beat from ECG sensor data and fever or non-fever from body temperature. Furthermore, the system provides a report on the patient's heart rate and oxygen level, indicating whether they are within normal ranges or not. The system automatically connects the user to the nearest doctor for further diagnosis if any critical abnormalities are detected.
Collapse
Affiliation(s)
- Md Reazul Islam
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh
| | - Md Mohsin Kabir
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh
| | - Muhammad Firoz Mridha
- Department of Computer Science, American International University-Bangladesh, Dhaka 1229, Bangladesh
| | - Sultan Alfarhood
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia
| | - Mejdl Safran
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia
| | - Dunren Che
- School of Computing, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
12
|
Kulkarni S, Rabidas R. Fully convolutional network for automated detection and diagnosis of mammographic masses. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-22. [PMID: 37362703 PMCID: PMC10169189 DOI: 10.1007/s11042-023-14757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 02/05/2023] [Indexed: 06/28/2023]
Abstract
Breast cancer, though rare in male, is very frequent in female and has high mortality rate which can be reduced if detected and diagnosed at the early stage. Thus, in this paper, deep learning architecture based on U-Net is proposed for the detection of breast masses and its characterization as benign or malignant. The evaluation of the proposed architecture in detection is carried out on two benchmark datasets- INbreast and DDSM and achieved a true positive rate of 99.64% at 0.25 false positives per image for INbreast dataset while the same for DDSM are 97.36% and 0.38 FPs/I, respectively. For mass characterization, an accuracy of 97.39% with an AUC of 0.97 is obtained for INbreast while the same for DDSM are 96.81%, and 0.96, respectively. The measured results are further compared with the state-of-the-art techniques where the introduced scheme takes an edge over others.
Collapse
Affiliation(s)
- Sujata Kulkarni
- Department of Electronics & Communication Engineering, Assam University, Silchar, 788010 Assam India
| | - Rinku Rabidas
- Department of Electronics & Communication Engineering, Assam University, Silchar, 788010 Assam India
| |
Collapse
|
13
|
Dahou A, Aseeri AO, Mabrouk A, Ibrahim RA, Al-Betar MA, Elaziz MA. Optimal Skin Cancer Detection Model Using Transfer Learning and Dynamic-Opposite Hunger Games Search. Diagnostics (Basel) 2023; 13:diagnostics13091579. [PMID: 37174970 PMCID: PMC10178333 DOI: 10.3390/diagnostics13091579] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recently, pre-trained deep learning (DL) models have been employed to tackle and enhance the performance on many tasks such as skin cancer detection instead of training models from scratch. However, the existing systems are unable to attain substantial levels of accuracy. Therefore, we propose, in this paper, a robust skin cancer detection framework for to improve the accuracy by extracting and learning relevant image representations using a MobileNetV3 architecture. Thereafter, the extracted features are used as input to a modified Hunger Games Search (HGS) based on Particle Swarm Optimization (PSO) and Dynamic-Opposite Learning (DOLHGS). This modification is used as a novel feature selection to alloacte the most relevant feature to maximize the model's performance. For evaluation of the efficiency of the developed DOLHGS, the ISIC-2016 dataset and the PH2 dataset were employed, including two and three categories, respectively. The proposed model has accuracy 88.19% on the ISIC-2016 dataset and 96.43% on PH2. Based on the experimental results, the proposed approach showed more accurate and efficient performance in skin cancer detection than other well-known and popular algorithms in terms of classification accuracy and optimized features.
Collapse
Affiliation(s)
- Abdelghani Dahou
- Mathematics and Computer Science Department, University of Ahmed DRAIA, Adrar 01000, Algeria
| | - Ahmad O Aseeri
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alhassan Mabrouk
- Mathematics and Computer Science Department, Faculty of Science, Beni-Suef University, Beni-Suef 65214, Egypt
| | - Rehab Ali Ibrahim
- Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed Azmi Al-Betar
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Mohamed Abd Elaziz
- Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Faculty of Computer Science & Engineering, Galala University, Suez 43511, Egypt
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos 10999, Lebanon
| |
Collapse
|
14
|
Kumar A, Kumar M, Mahapatra RP, Bhattacharya P, Le TTH, Verma S, Mohiuddin K. Flamingo-Optimization-Based Deep Convolutional Neural Network for IoT-Based Arrhythmia Classification. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094353. [PMID: 37177564 PMCID: PMC10181507 DOI: 10.3390/s23094353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 05/15/2023]
Abstract
Cardiac arrhythmia is a deadly disease that threatens the lives of millions of people, which shows the need for earlier detection and classification. An abnormal signal in the heart causing arrhythmia can be detected at an earlier stage when the health data from the patient are monitored using IoT technology. Arrhythmias may suddenly lead to death and the classification of arrhythmias is considered a complicated process. In this research, an effective classification model for the classification of heart disease is developed using flamingo optimization. Initially, the ECG signal from the heart is collected and then it is subjected to the preprocessing stage; to detect and control the electrical activity of the heart, the electrocardiogram (ECG) is used. The input signals collected using IoT nodes are collectively presented in the base station for the classification using flamingo-optimization-based deep convolutional networks, which effectively predict the disease. With the aid of communication technologies and the contribution of IoT, medical professionals can easily monitor the health condition of patients. The performance is analyzed in terms of accuracy, sensitivity, and specificity.
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Ghaziabad 201204, India
| | - Mohit Kumar
- MIT Art, Design and Technology University, Pune 412201, India
| | - Rajendra Prasad Mahapatra
- Department of Computer Science and Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Ghaziabad 201204, India
| | - Pronaya Bhattacharya
- Department of Computer Science and Engineering, Amity School of Engineering and Technology, Research and Innovation Cell, Amity University, Kolkata 700135, India
| | - Thi-Thu-Huong Le
- Blockchain Platform Research Center, Pusan National University, Busan 609735, Republic of Korea
| | - Sahil Verma
- Faculty of Computer Science and Engineering, Uttaranchal University University, Dehradun 248007, India
| | - Khalid Mohiuddin
- Faculty of Information Systems, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
15
|
Arney D, Zhang Y, Kennedy-Metz LR, Dias RD, Goldman JM, Zenati MA. An Open-Source, Interoperable Architecture for Generating Real-Time Surgical Team Cognitive Alerts from Heart-Rate Variability Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:3890. [PMID: 37112231 PMCID: PMC10145698 DOI: 10.3390/s23083890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/09/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Clinical alarm and decision support systems that lack clinical context may create non-actionable nuisance alarms that are not clinically relevant and can cause distractions during the most difficult moments of a surgery. We present a novel, interoperable, real-time system for adding contextual awareness to clinical systems by monitoring the heart-rate variability (HRV) of clinical team members. We designed an architecture for real-time capture, analysis, and presentation of HRV data from multiple clinicians and implemented this architecture as an application and device interfaces on the open-source OpenICE interoperability platform. In this work, we extend OpenICE with new capabilities to support the needs of the context-aware OR including a modularized data pipeline for simultaneously processing real-time electrocardiographic (ECG) waveforms from multiple clinicians to create estimates of their individual cognitive load. The system is built with standardized interfaces that allow for free interchange of software and hardware components including sensor devices, ECG filtering and beat detection algorithms, HRV metric calculations, and individual and team alerts based on changes in metrics. By integrating contextual cues and team member state into a unified process model, we believe future clinical applications will be able to emulate some of these behaviors to provide context-aware information to improve the safety and quality of surgical interventions.
Collapse
Affiliation(s)
- David Arney
- Medical Device Plug-and-Play Interoperability and Cybersecurity Program, Massachusetts General Hospital, Boston, MA 02115, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
| | - Yi Zhang
- Medical Device Plug-and-Play Interoperability and Cybersecurity Program, Massachusetts General Hospital, Boston, MA 02115, USA
| | | | - Roger D. Dias
- STRATUS Center for Medical Simulation, Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Julian M. Goldman
- Medical Device Plug-and-Play Interoperability and Cybersecurity Program, Massachusetts General Hospital, Boston, MA 02115, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
| | - Marco A. Zenati
- Division of Cardiac Surgery, Veterans Affairs Boston Healthcare System, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Shen L, Zhang X, Huang S, Wu B, Li J. A diagnostic method for cardiomyopathy based on multimodal data. BIOMED ENG-BIOMED TE 2023:bmt-2023-0099. [PMID: 37013592 DOI: 10.1515/bmt-2023-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/09/2023] [Indexed: 04/05/2023]
Abstract
OBJECTIVES Currently, a multitude of machine learning techniques are available for the diagnosis of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) by utilizing electrocardiography (ECG) data. However, these methods rely on digital versions of ECG data, while in practice, numerous ECG data still exist in paper form. As a result, the accuracy of the existing machine learning diagnostic models is suboptimal in practical scenarios. In order to enhance the accuracy of machine learning models for diagnosing cardiomyopathy, we propose a multimodal machine learning model capable of diagnosing both HCM and DCM. METHODS Our study employed an artificial neural network (ANN) for feature extraction from both the echocardiogram report form and biochemical examination data. Furthermore, a convolutional neural network (CNN) was utilized for feature extraction from the electrocardiogram (ECG). The resulting extracted features were subsequently integrated and inputted into a multilayer perceptron (MLP) for diagnostic classification. RESULTS Our multimodal fusion model achieved a precision of 89.87%, recall of 91.20%, F1 score of 89.13%, and precision of 89.72%. CONCLUSIONS Compared to existing machine learning models, our proposed multimodal fusion model has achieved superior results in various performance metrics. We believe that our method is effective.
Collapse
Affiliation(s)
- Linshan Shen
- College of Computer Science and Technology, Harbin Engineering University, Harbin, China
| | - Xuwei Zhang
- College of Computer Science and Technology, Harbin Engineering University, Harbin, China
| | - Shaobin Huang
- College of Computer Science and Technology, Harbin Engineering University, Harbin, China
| | - Bing Wu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingjie Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Denysyuk HV, Pinto RJ, Silva PM, Duarte RP, Marinho FA, Pimenta L, Gouveia AJ, Gonçalves NJ, Coelho PJ, Zdravevski E, Lameski P, Leithardt V, Garcia NM, Pires IM. Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review. Heliyon 2023; 9:e13601. [PMID: 36852052 PMCID: PMC9958295 DOI: 10.1016/j.heliyon.2023.e13601] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
The prevalence of cardiovascular diseases is increasing around the world. However, the technology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject is being researched, and different methods can automatically identify these diseases, helping patients and healthcare professionals with the treatments. This paper presents a systematic review of disease identification, classification, and recognition with ECG sensors. The review was focused on studies published between 2017 and 2022 in different scientific databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The study demonstrated that different datasets are available online with data related to various diseases. Several ML/DP-based models were identified in the research, where Convolutional Neural Network and Support Vector Machine were the most applied algorithms. This review can allow us to identify the techniques that can be used in a system that promotes the patient's autonomy.
Collapse
Key Words
- AI, Artificial Intelligence
- BNN, Binarized Neural Network
- CNN, Concolutional Neural Networks
- Cardiovascular diseases
- DL, Deep Learning
- DNN, Deep Neural Networks
- Diagnosis
- ECG sensors
- ECG, Electrocardiography
- GAN, Generative Adversarial Networks
- GMM, Gaussian Mixture Model
- GNB, Gaussian Naive bayes
- GRU, Gated Recurrent Unit
- LASSO, Least Absolute Shrinkage and Selection Operator
- LDA, Linear Discriminant Analysis
- LR, Linear Regression
- LSTM, Long Short-Term Memory
- ML, Machine Learning
- MLP, Multiplayer Perceptron
- MLR, Multiple Linear Regression
- NLP, Natural Language Processing
- POAF, Postoperative Atrial Fibrillation
- RF, Random Forest
- RNN, Recurrent Neural Network
- SHAP, SHapley Additive exPlanations
- SVM, Support Vector Machine
- Systematic review
- WHO, World Health Organization
- kNN, k-nearest neighbors
Collapse
Affiliation(s)
| | - Rui João Pinto
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Pedro Miguel Silva
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Rui Pedro Duarte
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Francisco Alexandre Marinho
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Luís Pimenta
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - António Jorge Gouveia
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Norberto Jorge Gonçalves
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Paulo Jorge Coelho
- Polytechnic of Leiria, Leiria, Portugal
- Institute for Systems Engineering and Computers at Coimbra (INESC Coimbra), Coimbra, Portugal
| | - Eftim Zdravevski
- Faculty of Computer Science and Engineering, University Ss Cyril and Methodius, 1000 Skopje, Macedonia
| | - Petre Lameski
- Faculty of Computer Science and Engineering, University Ss Cyril and Methodius, 1000 Skopje, Macedonia
| | - Valderi Leithardt
- VALORIZA, Research Center for Endogenous Resources Valorization, Instituto Politécnico de Portalegre, 7300-555 Portalegre, Portugal
- COPELABS, Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Nuno M. Garcia
- Instituto de Telecomunicações, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
| | - Ivan Miguel Pires
- Instituto de Telecomunicações, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
| |
Collapse
|
18
|
Sakr AS, Pławiak P, Tadeusiewicz R, Pławiak J, Sakr M, Hammad M. ECG-COVID: An end-to-end deep model based on electrocardiogram for COVID-19 detection. Inf Sci (N Y) 2023; 619:324-339. [PMID: 36415325 PMCID: PMC9673093 DOI: 10.1016/j.ins.2022.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/05/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
The early and accurate detection of COVID-19 is vital nowadays to avoid the vast and rapid spread of this virus and ease lockdown restrictions. As a result, researchers developed methods to diagnose COVID-19. However, these methods have several limitations. Therefore, presenting new methods is essential to improve the diagnosis of COVID-19. Recently, investigation of the electrocardiogram (ECG) signals becoming an easy way to detect COVID-19 since the ECG process is non-invasive and easy to use. Therefore, we proposed in this paper a novel end-to-end deep learning model (ECG-COVID) based on ECG for COVID-19 detection. We employed several deep Convolutional Neural Networks (CNNs) on a dataset of 1109 ECG images, which is built for screening the perception of COVID-19 and cardiac patients. After that, we selected the most efficient model as our model for evaluation. The proposed model is end-to-end where the input ECG images are fed directly to the model for the final decision without using any additional stages. The proposed method achieved an average accuracy of 98.81%, Precision of 98.8%, Sensitivity of 98.8% and, F1-score of 98.81% for COVID-19 detection. As cases of corona continue to rise and hospitalizations continue again, hospitals may find our study helpful when dealing with these patients who did not get significantly worse.
Collapse
Affiliation(s)
- Ahmed S Sakr
- Department of Information System, Faculty of Computers and Information, Menoufia University, Egypt
| | - Paweł Pławiak
- Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
| | - Ryszard Tadeusiewicz
- AGH University of Science and Technology, Department of Biocybernetics and Biomedical Engineering, Krakow, Poland
| | - Joanna Pławiak
- Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warsaw 24, 31-155 Krakow, Poland
| | - Mohamed Sakr
- Computer Science Department, Faculty of Computers and Information, Menoufia University, Egypt
| | - Mohamed Hammad
- Department of Information Technology, Faculty of Computers and Information, Menoufia University, Egypt
| |
Collapse
|
19
|
Khan F, Yu X, Yuan Z, Rehman AU. ECG classification using 1-D convolutional deep residual neural network. PLoS One 2023; 18:e0284791. [PMID: 37098024 PMCID: PMC10128986 DOI: 10.1371/journal.pone.0284791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
An electrocardiograph (ECG) is widely used in diagnosis and prediction of cardiovascular diseases (CVDs). The traditional ECG classification methods have complex signal processing phases that leads to expensive designs. This paper provides a deep learning (DL) based system that employs the convolutional neural networks (CNNs) for classification of ECG signals present in PhysioNet MIT-BIH Arrhythmia database. The proposed system implements 1-D convolutional deep residual neural network (ResNet) model that performs feature extraction by directly using the input heartbeats. We have used synthetic minority oversampling technique (SMOTE) that process class-imbalance problem in the training dataset and effectively classifies the five heartbeat types in the test dataset. The classifier's performance is evaluated with ten-fold cross validation (CV) using accuracy, precision, sensitivity, F1-score, and kappa. We have obtained an average accuracy of 98.63%, precision of 92.86%, sensitivity of 92.41%, and specificity of 99.06%. The average F1-score and Kappa obtained were 92.63% and 95.5% respectively. The study shows that proposed ResNet performs well with deep layers compared to other 1-D CNNs.
Collapse
Affiliation(s)
- Fahad Khan
- School of Automation, Northwestern Polytechnical University, Xi'an, China
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Xiaojun Yu
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Zhaohui Yuan
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Atiq Ur Rehman
- Artificial Intelligence and Intelligent Systems Research Group, School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden
- Department of Electrical and Computer Engineering, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan
| |
Collapse
|
20
|
Sun J, Liu Q, Wang Y, Wang L, Song X, Zhao X. Five-year prognosis model of esophageal cancer based on genetic algorithm improved deep neural network. Ing Rech Biomed 2023. [DOI: 10.1016/j.irbm.2022.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Hammad M, Meshoul S, Dziwiński P, Pławiak P, Elgendy IA. Efficient Lightweight Multimodel Deep Fusion Based on ECG for Arrhythmia Classification. SENSORS (BASEL, SWITZERLAND) 2022; 22:9347. [PMID: 36502049 PMCID: PMC9736761 DOI: 10.3390/s22239347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
An arrhythmia happens when the electrical signals that organize the heartbeat do not work accurately. Most cases of arrhythmias may increase the risk of stroke or cardiac arrest. As a result, early detection of arrhythmia reduces fatality rates. This research aims to provide a lightweight multimodel based on convolutional neural networks (CNNs) that can transfer knowledge from many lightweight deep learning models and decant it into one model to aid in the diagnosis of arrhythmia by using electrocardiogram (ECG) signals. Thus, we gained a multimodel able to classify arrhythmia from ECG signals. Our system's effectiveness is examined by using a publicly accessible database and a comparison to the current methodologies for arrhythmia classification. The results we achieved by using our multimodel are better than those obtained by using a single model and better than most of the previous detection methods. It is worth mentioning that this model produced accurate classification results on small collection of data. Experts in this field can use this model as a guide to help them make decisions and save time.
Collapse
Affiliation(s)
- Mohamed Hammad
- Department of Information Technology, Faculty of Computers and Information, Menoufia University, Shibin El Kom 32511, Egypt
| | - Souham Meshoul
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Piotr Dziwiński
- Department of Intelligent Computer Systems, Czestochowa University of Technology, Armii Krajowej 36, 42-218 Czestochowa, Poland
| | - Paweł Pławiak
- Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Baltycka 5, 44-100 Gliwice, Poland
| | - Ibrahim A. Elgendy
- Department of Computer Science, Faculty of Computers and Information, Menoufia University, Shibin El Kom 32511, Egypt
| |
Collapse
|
22
|
QRS detection and classification in Holter ECG data in one inference step. Sci Rep 2022; 12:12641. [PMID: 35879331 PMCID: PMC9314324 DOI: 10.1038/s41598-022-16517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 11/11/2022] Open
Abstract
While various QRS detection and classification methods were developed in the past, the Holter ECG data acquired during daily activities by wearable devices represent new challenges such as increased noise and artefacts due to patient movements. Here, we present a deep-learning model to detect and classify QRS complexes in single-lead Holter ECG. We introduce a novel approach, delivering QRS detection and classification in one inference step. We used a private dataset (12,111 Holter ECG recordings, length of 30 s) for training, validation, and testing the method. Twelve public databases were used to further test method performance. We built a software tool to rapidly annotate QRS complexes in a private dataset, and we annotated 619,681 QRS complexes. The standardised and down-sampled ECG signal forms a 30-s long input for the deep-learning model. The model consists of five ResNet blocks and a gated recurrent unit layer. The model's output is a 30-s long 4-channel probability vector (no-QRS, normal QRS, premature ventricular contraction, premature atrial contraction). Output probabilities are post-processed to receive predicted QRS annotation marks. For the QRS detection task, the proposed method achieved the F1 score of 0.99 on the private test set. An overall mean F1 cross-database score through twelve external public databases was 0.96 ± 0.06. In terms of QRS classification, the presented method showed micro and macro F1 scores of 0.96 and 0.74 on the private test set, respectively. Cross-database results using four external public datasets showed micro and macro F1 scores of 0.95 ± 0.03 and 0.73 ± 0.06, respectively. Presented results showed that QRS detection and classification could be reliably computed in one inference step. The cross-database tests showed higher overall QRS detection performance than any of compared methods.
Collapse
|
23
|
Ahmed M, Masood S, Ahmad M, A. Abd El-Latif A. Intelligent Driver Drowsiness Detection for Traffic Safety Based on Multi CNN Deep Model and Facial Subsampling. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2022; 23:19743-19752. [DOI: 10.1109/tits.2021.3134222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Muneeb Ahmed
- Department of Computer Engineering, Jamia Millia Islamia, New Delhi, India
| | - Sarfaraz Masood
- Department of Computer Engineering, Jamia Millia Islamia, New Delhi, India
| | - Musheer Ahmad
- Department of Computer Engineering, Jamia Millia Islamia, New Delhi, India
| | - Ahmed A. Abd El-Latif
- Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt
| |
Collapse
|
24
|
Pattern lock screen detection method based on lightweight deep feature extraction. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Multistrategy Improved Sparrow Search Algorithm Optimized Deep Neural Network for Esophageal Cancer. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1036913. [PMID: 36203733 PMCID: PMC9532078 DOI: 10.1155/2022/1036913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 01/09/2023]
Abstract
Deep neural network is a complex pattern recognition network system. It is widely favored by scholars for its strong nonlinear fitting ability. However, training deep neural network models on small datasets typically realizes worse performance than shallow neural network. In this study, a strategy to improve the sparrow search algorithm based on the iterative map, iterative perturbation, and Gaussian mutation is developed. This optimized strategy improved the sparrow search algorithm validated by fourteen benchmark functions, and the algorithm has the best search accuracy and the fastest convergence speed. An algorithm based on the iterative map, iterative perturbation, and Gaussian mutation improved sparrow search algorithm is designed to optimize deep neural networks. The modified sparrow algorithm is exploited to search for the optimal connection weights of deep neural network. This algorithm is implemented for the esophageal cancer dataset along with the other six algorithms. The proposed model is able to achieve 0.92 under all the eight scoring criteria, which is better than the performance of the other six algorithms. Therefore, an optimized deep neural network based on an improved sparrow search algorithm with iterative map, iterative perturbation, and Gaussian mutation is an effective approach to predict the survival rate of esophageal cancer.
Collapse
|
26
|
HCTNet: An experience-guided deep learning network for inter-patient arrhythmia classification on imbalanced dataset. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Hammad M, Chelloug SA, Alkanhel R, Prakash AJ, Muthanna A, Elgendy IA, Pławiak P. Automated Detection of Myocardial Infarction and Heart Conduction Disorders Based on Feature Selection and a Deep Learning Model. SENSORS (BASEL, SWITZERLAND) 2022; 22:6503. [PMID: 36080960 PMCID: PMC9460171 DOI: 10.3390/s22176503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 05/09/2023]
Abstract
An electrocardiogram (ECG) is an essential piece of medical equipment that helps diagnose various heart-related conditions in patients. An automated diagnostic tool is required to detect significant episodes in long-term ECG records. It is a very challenging task for cardiologists to analyze long-term ECG records in a short time. Therefore, a computer-based diagnosis tool is required to identify crucial episodes. Myocardial infarction (MI) and conduction disorders (CDs), sometimes known as heart blocks, are medical diseases that occur when a coronary artery becomes fully or suddenly stopped or when blood flow in these arteries slows dramatically. As a result, several researchers have utilized deep learning methods for MI and CD detection. However, there are one or more of the following challenges when using deep learning algorithms: (i) struggles with real-life data, (ii) the time after the training phase also requires high processing power, (iii) they are very computationally expensive, requiring large amounts of memory and computational resources, and it is not easy to transfer them to other problems, (iv) they are hard to describe and are not completely understood (black box), and (v) most of the literature is based on the MIT-BIH or PTB databases, which do not cover most of the crucial arrhythmias. This paper proposes a new deep learning approach based on machine learning for detecting MI and CDs using large PTB-XL ECG data. First, all challenging issues of these heart signals have been considered, as the signal data are from different datasets and the data are filtered. After that, the MI and CD signals are fed to the deep learning model to extract the deep features. In addition, a new custom activation function is proposed, which has fast convergence to the regular activation functions. Later, these features are fed to an external classifier, such as a support vector machine (SVM), for detection. The efficiency of the proposed method is demonstrated by the experimental findings, which show that it improves satisfactorily with an overall accuracy of 99.20% when using a CNN for extracting the features with an SVM classifier.
Collapse
Affiliation(s)
- Mohamed Hammad
- Department of Information Technology, Faculty of Computers and Information, Menoufia University, Shibin El Kom 32511, Egypt or
| | - Samia Allaoua Chelloug
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Reem Alkanhel
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Allam Jaya Prakash
- Department of Electronics and Communication, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Ammar Muthanna
- Department of Applied Probability and Informatics, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Ibrahim A. Elgendy
- Department of Computer Science, Faculty of Computers and Information, Menoufia University, Shibin El Kom 32511, Egypt
| | - Paweł Pławiak
- Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Baltycka 5, 44-100 Gliwice, Poland
| |
Collapse
|
28
|
Sakr AS, Soliman NF, Al-Gaashani MS, Pławiak P, Ateya AA, Hammad M. An Efficient Deep Learning Approach for Colon Cancer Detection. APPLIED SCIENCES 2022; 12:8450. [DOI: 10.3390/app12178450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Colon cancer is the second most common cause of cancer death in women and the third most common cause of cancer death in men. Therefore, early detection of this cancer can lead to lower infection and death rates. In this research, we propose a new lightweight deep learning approach based on a Convolutional Neural Network (CNN) for efficient colon cancer detection. In our method, the input histopathological images are normalized before feeding them into our CNN model, and then colon cancer detection is performed. The efficiency of the proposed system is analyzed with publicly available histopathological images database and compared with the state-of-the-art existing methods for colon cancer detection. The result analysis demonstrates that the proposed deep model for colon cancer detection provides a higher accuracy of 99.50%, which is considered the best accuracy compared with the majority of other deep learning approaches. Because of this high result, the proposed approach is computationally efficient.
Collapse
Affiliation(s)
- Ahmed S. Sakr
- Department of Information System, Faculty of Computers and Information, Menoufia University, Shibin El Kom 32511, Egypt
| | - Naglaa F. Soliman
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mehdhar S. Al-Gaashani
- College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Paweł Pławiak
- Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
| | - Abdelhamied A. Ateya
- Department of Electronics and Communications Engineering, Zagazig University, Zagazig 7120001, Egypt
| | - Mohamed Hammad
- Department of Information Technology, Faculty of Computers and Information, Menoufia University, Shibin El Kom 32511, Egypt
| |
Collapse
|
29
|
El-Rahiem BA, El-Samie FEA, Amin M. Multimodal biometric authentication based on deep fusion of electrocardiogram (ECG) and finger vein. MULTIMEDIA SYSTEMS 2022; 28:1325-1337. [DOI: 10.1007/s00530-021-00810-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/13/2021] [Indexed: 09/01/2023]
|
30
|
Hosny M, Zhu M, Gao W, Fu Y. A novel deep learning model for STN localization from LFPs in Parkinson’s disease. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Irfan S, Anjum N, Althobaiti T, Alotaibi AA, Siddiqui AB, Ramzan N. Heartbeat Classification and Arrhythmia Detection Using a Multi-Model Deep-Learning Technique. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22155606. [PMID: 35957162 PMCID: PMC9370835 DOI: 10.3390/s22155606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 05/25/2023]
Abstract
Cardiac arrhythmias pose a significant danger to human life; therefore, it is of utmost importance to be able to efficiently diagnose these arrhythmias promptly. There exist many techniques for the detection of arrhythmias; however, the most widely adopted method is the use of an Electrocardiogram (ECG). The manual analysis of ECGs by medical experts is often inefficient. Therefore, the detection and recognition of ECG characteristics via machine-learning techniques have become prevalent. There are two major drawbacks of existing machine-learning approaches: (a) they require extensive training time; and (b) they require manual feature selection. To address these issues, this paper presents a novel deep-learning framework that integrates various networks by stacking similar layers in each network to produce a single robust model. The proposed framework has been tested on two publicly available datasets for the recognition of five micro-classes of arrhythmias. The overall classification sensitivity, specificity, positive predictive value, and accuracy of the proposed approach are 98.37%, 99.59%, 98.41%, and 99.35%, respectively. The results are compared with state-of-the-art approaches. The proposed approach outperformed the existing approaches in terms of sensitivity, specificity, positive predictive value, accuracy and computational cost.
Collapse
Affiliation(s)
- Saad Irfan
- Department of Computer Science, Capital University of Science and Technology, Islamabad 44000, Pakistan; (S.I.); (A.B.S.)
| | - Nadeem Anjum
- Department of Computer Science, Capital University of Science and Technology, Islamabad 44000, Pakistan; (S.I.); (A.B.S.)
| | - Turke Althobaiti
- Faculty of Science, Northern Border University, Arar 1321, Saudi Arabia;
| | | | - Abdul Basit Siddiqui
- Department of Computer Science, Capital University of Science and Technology, Islamabad 44000, Pakistan; (S.I.); (A.B.S.)
| | - Naeem Ramzan
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK;
| |
Collapse
|
32
|
Hammad M, Bakrey M, Bakhiet A, Tadeusiewicz R, El-Latif AAA, Pławiak P. A novel end-to-end deep learning approach for cancer detection based on microscopic medical images. Biocybern Biomed Eng 2022; 42:737-748. [DOI: 10.1016/j.bbe.2022.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
33
|
Abstract
Arrhythmia is a significant cause of death, and it is essential to analyze the electrocardiogram (ECG) signals as this is usually used to diagnose arrhythmia. However, the traditional time series classification methods based on ECG ignore the nonlinearity, temporality, or other characteristics inside these signals. This paper proposes an electrocardiogram classification method that encodes one-dimensional ECG signals into the three-channel images, named ECG classification based on Mix Time-series Imaging (EC-MTSI). Specifically, this hybrid transformation method combines Gramian angular field (GAF), recurrent plot (RP), and tiling, preserving the original ECG time series’ time dependence and correlation. We use a variety of neural networks to extract features and perform feature fusion and classification. This retains sufficient details while emphasizing local information. To demonstrate the effectiveness of the EC-MTSI, we conduct abundant experiments in a commonly-used dataset. In our experiments, the general accuracy reached 93.23%, and the accuracy of identifying high-risk arrhythmias of ventricular beats and supraventricular beats alone are as high as 97.4% and 96.3%, respectively. The results reveal that the proposed method significantly outperforms the existing approaches.
Collapse
|
34
|
Srivastava A, Pratiher S, Alam S, Hari A, Banerjee N, Ghosh N, Patra A. A deep residual inception network with channel attention modules for multi-label cardiac abnormality detection from reduced-lead ECG. Physiol Meas 2022; 43. [PMID: 35550571 DOI: 10.1088/1361-6579/ac6f40] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/12/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Most arrhythmias due to cardiovascular diseases alter the electrical activity, resulting in morphological alterations in electrocardiogram (ECG) recordings. ECG acquisition is a low-cost, non-invasive process and is commonly used for continuous monitoring as a diagnostic tool for cardiac abnormality identification. Our objective is to diagnose twenty-nine cardiac abnormalities and sinus rhythm using varied lead ECG signals. APPROACH This work proposes a deep residual inception network with channel attention mechanism (RINCA) for twenty-nine cardiac arrhythmia classification (CAC) along with normal ECG from multi-label ECG signal with different lead combinations. The RINCA architecture employing the Inception-based convolutional neural network backbone uses residual skip connections with the channel attention mechanism. The Inception model facilitates efficient computation and prevents overfitting while exploring deeper networks through dimensionality reduction and stacked 1-dimensional convolutions. The residual skip connections alleviate the vanishing gradient problem. The attention modules selectively leverage the temporally significant segments in a sequence and predominant channels for multi-lead ECG signals, contributing to the decision-making. MAIN RESULTS Exhaustive experimental evaluation on the large-scale 'PhysioNet/Computing in Cardiology Challenge (2021)' dataset demonstrates RINCA efficacy. On the hidden test data set, RINCA achieves the challenge metric score of 0.55, 0.51, 0.53, 0.51, and 0.53 (ranked 2nd, 5th, 4th, 5th and 4th) for the twelve-lead, six-lead, four-lead, three-lead, and two-lead combination cases, respectively. SIGNIFICANCE The proposed RINCA model is more robust against varied sampling frequency, recording time, and data with heterogeneous demographics than the existing art. The explainability analysis shows RINCA potential in clinical interpretations.
Collapse
Affiliation(s)
- Apoorva Srivastava
- ELECTRICAL ENGINEERING, Indian Institute of Technology Kharagpur, Department of Electrical Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, Kharagpur, 721302, INDIA
| | - Sawon Pratiher
- ELECTRICAL ENGINEERING, Indian Institute of Technology Kharagpur, Department of Electrical Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, Kharagpur, 721302, INDIA
| | - Sazedul Alam
- University of Maryland Baltimore County, University of Maryland, Baltimore County, Baltimore, MD 21250 USA., Baltimore, Maryland, 21250-0001, UNITED STATES
| | - Ajith Hari
- ELECTRICAL ENGINEERING, Indian Institute of Technology Kharagpur, Department of Electrical Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, Kharagpur, 721302, INDIA
| | - Nilanjan Banerjee
- University of Maryland Baltimore County, University of Maryland, Baltimore County, Baltimore, MD 21250 USA., Baltimore, Maryland, 21250-0001, UNITED STATES
| | - Nirmalya Ghosh
- ELECTRICAL ENGINEERING, Indian Institute of Technology Kharagpur, Department of Electrical Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, Kharagpur, West Bengal, 721302, INDIA
| | - Amit Patra
- ELECTRICAL ENGINEERING, Indian Institute of Technology Kharagpur, Department of Electrical Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, Kharagpur, West Bengal, 721302, INDIA
| |
Collapse
|
35
|
Signal-piloted processing metaheuristic optimization and wavelet decomposition based elucidation of arrhythmia for mobile healthcare. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
36
|
A transformer-based deep neural network for arrhythmia detection using continuous ECG signals. Comput Biol Med 2022; 144:105325. [DOI: 10.1016/j.compbiomed.2022.105325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
|
37
|
Verma A, Amin SB, Naeem M, Saha M. Detecting COVID-19 from chest computed tomography scans using AI-driven android application. Comput Biol Med 2022; 143:105298. [PMID: 35220076 PMCID: PMC8858433 DOI: 10.1016/j.compbiomed.2022.105298] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/01/2022] [Accepted: 01/21/2022] [Indexed: 12/16/2022]
Abstract
The COVID-19 (coronavirus disease 2019) pandemic affected more than 186 million people with over 4 million deaths worldwide by June 2021. The magnitude of which has strained global healthcare systems. Chest Computed Tomography (CT) scans have a potential role in the diagnosis and prognostication of COVID-19. Designing a diagnostic system, which is cost-efficient and convenient to operate on resource-constrained devices like mobile phones would enhance the clinical usage of chest CT scans and provide swift, mobile, and accessible diagnostic capabilities. This work proposes developing a novel Android application that detects COVID-19 infection from chest CT scans using a highly efficient and accurate deep learning algorithm. It further creates an attention heatmap, augmented on the segmented lung parenchyma region in the chest CT scans which shows the regions of infection in the lungs through an algorithm developed as a part of this work, and verified through radiologists. We propose a novel selection approach combined with multi-threading for a faster generation of heatmaps on a Mobile Device, which reduces the processing time by about 93%. The neural network trained to detect COVID-19 in this work is tested with a F1 score and accuracy, both of 99.58% and sensitivity of 99.69%, which is better than most of the results in the domain of COVID diagnosis from CT scans. This work will be beneficial in high-volume practices and help doctors triage patients for the early diagnosis of COVID-19 quickly and efficiently.
Collapse
Affiliation(s)
- Aryan Verma
- Department of Computer Science and Engineering, National Institute of Technology, Hamirpur, HP, 177005, India.
| | - Sagar B Amin
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Muhammad Naeem
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Monjoy Saha
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
38
|
CNN-FWS: A Model for the Diagnosis of Normal and Abnormal ECG with Feature Adaptive. ENTROPY 2022; 24:e24040471. [PMID: 35455133 PMCID: PMC9025839 DOI: 10.3390/e24040471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/04/2022]
Abstract
(1) Background and objective: Cardiovascular disease is one of the most common causes of death in today’s world. ECG is crucial in the early detection and prevention of cardiovascular disease. In this study, an improved deep learning method is proposed to diagnose abnormal and normal ECG accurately. (2) Methods: This paper proposes a CNN-FWS that combines three convolutional neural networks (CNN) and recursive feature elimination based on feature weights (FW-RFE), which diagnoses abnormal and normal ECG. F1 score and Recall are used to evaluate the performance. (3) Results: A total of 17,259 records were used in this study, which validated the diagnostic performance of CNN-FWS for normal and abnormal ECG signals in 12 leads. The experimental results show that the F1 score of CNN-FWS is 0.902, and the Recall of CNN-FWS is 0.889. (4) Conclusion: CNN-FWS absorbs the advantages of convolutional neural networks (CNN) to obtain three parts of different spatial information and enrich the learned features. CNN-FWS can select the most relevant features while eliminating unrelated and redundant features by FW-RFE, making the residual features more representative and effective. The method is an end-to-end modeling approach that enables an adaptive feature selection process without human intervention.
Collapse
|
39
|
Jain A, Nadeem A, Majdi Altoukhi H, Jamal SS, Atiglah HK, Elwahsh H. Personalized Liver Cancer Risk Prediction Using Big Data Analytics Techniques with Image Processing Segmentation. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8154523. [PMID: 35387251 PMCID: PMC8979737 DOI: 10.1155/2022/8154523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 01/29/2022] [Indexed: 11/17/2022]
Abstract
A technology known as data analytics is a massively parallel processing approach that may be used to forecast a wide range of illnesses. Many scientific research methodologies have the problem of requiring a significant amount of time and processing effort, which has a negative impact on the overall performance of the system. Virtual screening (VS) is a drug discovery approach that makes use of big data techniques and is based on the concept of virtual screening. This approach is utilised for the development of novel drugs, and it is a time-consuming procedure that includes the docking of ligands in several databases in order to build the protein receptor. The proposed work is divided into two modules: image processing-based cancer segmentation and analysis using extracted features using big data analytics, and cancer segmentation and analysis using extracted features using image processing. This statistical approach is critical in the development of new drugs for the treatment of liver cancer. Machine learning methods were utilised in the prediction of liver cancer, including the MapReduce and Mahout algorithms, which were used to prefilter the set of ligand filaments before they were used in the prediction of liver cancer. This work proposes the SMRF algorithm, an improved scalable random forest algorithm built on the MapReduce foundation. Using a computer cluster or cloud computing environment, this new method categorises massive datasets. With SMRF, small amounts of data are processed and optimised over a large number of computers, allowing for the highest possible throughput. When compared to the standard random forest method, the testing findings reveal that the SMRF algorithm exhibits the same level of accuracy deterioration but exhibits superior overall performance. The accuracy range of 80 percent using the performance metrics analysis is included in the actual formulation of the medicine that is utilised for liver cancer prediction in this study.
Collapse
Affiliation(s)
- Anurag Jain
- Computer Science and Engineering Department, Radharaman Engineering College, Bhopal, Madhya Pradesh, India
| | - Ahmed Nadeem
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Huda Majdi Altoukhi
- Affiliation: Department of Radiology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Sajjad Shaukat Jamal
- Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Henry kwame Atiglah
- Department of Electrical and Electronics Engineering, Tamale Technical University, Tamale, Ghana
| | - Haitham Elwahsh
- Computer Science Department, Faculty of Computers and Information, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
40
|
Sakr AS, Pławiak P, Tadeusiewicz R, Hammad M. Cancelable ECG biometric based on combination of deep transfer learning with DNA and amino acid approaches for human authentication. Inf Sci (N Y) 2022; 585:127-143. [DOI: 10.1016/j.ins.2021.11.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Tuncer T, Dogan S, Plawiak P, Subasi A. A novel Discrete Wavelet-Concatenated Mesh Tree and ternary chess pattern based ECG signal recognition method. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
42
|
Biosensor-Assisted Method for Abdominal Syndrome Classification Using Machine Learning Algorithm. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4454226. [PMID: 35126492 PMCID: PMC8816582 DOI: 10.1155/2022/4454226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/29/2022]
Abstract
The digestive system is one of the essential systems in human physiology where the stomach has a significant part to play with its accessories like the esophagus, duodenum, small intestines, and large intestinal tract. Many individuals across the globe suffer from gastric dysrhythmia in combination with dyspepsia (improper digestion), unexplained nausea (feeling), vomiting, abdominal discomfort, ulcer of the stomach, and gastroesophageal reflux illnesses. Some of the techniques used to identify anomalies include clinical analysis, endoscopy, electrogastrogram, and imaging. Electrogastrogram is the registration of electrical impulses that pass through the stomach muscles and regulate the contraction of the muscle. The electrode senses the electrical impulses from the stomach muscles, and the electrogastrogram is recorded. A computer analyzes the captured electrogastrogram (EGG) signals. The usual electric rhythm produces an enhanced current in the typical stomach muscle after a meal. Postmeal electrical rhythm is abnormal in those with stomach muscles or nerve anomalies. This study considers EGG of ordinary individuals, bradycardia, dyspepsia, nausea, tachycardia, ulcer, and vomiting for analysis. Data are collected in collaboration with the doctor for preprandial and postprandial conditions for people with diseases and everyday individuals. In CWT with a genetic algorithm, db4 is utilized to obtain an EGG signal wave pattern in a 3D plot using MATLAB. The figure shows that the existence of the peak reflects the EGG signal cycle. The number of present peaks categorizes EGG. Adaptive Resonance Classifier Network (ARCN) is utilized to identify EGG signals as normal or abnormal subjects, depending on the parameter of alertness (μ). This study may be used as a medical tool to diagnose digestive system problems before proposing invasive treatments. Accuracy of the proposed work comes up with 95.45%, and sensitivity and specificity range is added as 92.45% and 87.12%.
Collapse
|
43
|
Roslidar R, Syaryadhi M, Saddami K, Pradhan B, Arnia F, Syukri M, Munadi K. BreaCNet: A high-accuracy breast thermogram classifier based on mobile convolutional neural network. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:1304-1331. [PMID: 35135205 DOI: 10.3934/mbe.2022060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The presence of a well-trained, mobile CNN model with a high accuracy rate is imperative to build a mobile-based early breast cancer detector. In this study, we propose a mobile neural network model breast cancer mobile network (BreaCNet) and its implementation framework. BreaCNet consists of an effective segmentation algorithm for breast thermograms and a classifier based on the mobile CNN model. The segmentation algorithm employing edge detection and second-order polynomial curve fitting techniques can effectively capture the thermograms' region of interest (ROI), thereby facilitating efficient feature extraction. The classifier was developed based on ShuffleNet by adding one block consisting of a convolutional layer with 1028 filters. The modified Shufflenet demonstrated a good fit learning with 6.1 million parameters and 22 MB size. Simulation results showed that modified ShuffleNet alone resulted in a 72% accuracy rate, but the performance excelled to a 100% accuracy rate when integrated with the proposed segmentation algorithm. In terms of diagnostic accuracy of the normal and abnormal test, BreaCNet significantly improves the sensitivity rate from 43% to 100% and specificity of 100%. We confirmed that feeding only the ROI of the input dataset to the network can improve the classifier's performance. On the implementation aspect of BreaCNet, the on-device inference is recommended to ensure users' data privacy and handle an unreliable network connection.
Collapse
Affiliation(s)
- Roslidar Roslidar
- Doctoral Program, School of Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Indonesia
- Telematics Research Center, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Mohd Syaryadhi
- Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Indonesia
| | - Khairun Saddami
- Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Indonesia
| | - Biswajeet Pradhan
- Centre for Advanced Modelling and Geospatial Information Systems (CAMGIS), Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
- Center of Excellence for Climate Change Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Earth Observation Center, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Fitri Arnia
- Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Indonesia
- Telematics Research Center, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Maimun Syukri
- Medical Faculty, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Khairul Munadi
- Department of Electrical and Computer Engineering, Universitas Syiah Kuala, Indonesia
- Telematics Research Center, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Tsunami and Disaster Mitigation Research Center, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
44
|
Wang YW, Chen CJ, Wang TC, Huang HC, Chen HM, Shih JY, Chen JS, Huang YS, Chang YC, Chang RF. Multi-energy level fusion for nodal metastasis classification of primary lung tumor on dual energy CT using deep learning. Comput Biol Med 2021; 141:105185. [PMID: 34986453 DOI: 10.1016/j.compbiomed.2021.105185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 11/03/2022]
Abstract
Lymph node metastasis also called nodal metastasis (Nmet), is a clinically primary task for physicians. The survival and recurrence of lung cancer are related to the Nmet staging from Tumor-Node-Metastasis (TNM) reports. Furthermore, preoperative Nmet prediction is still a challenge for the patient in managing the surgical plan and making treatment decisions. We proposed a multi-energy level fusion model with a principal feature enhancement (PFE) block incorporating radiologist and computer science knowledge for Nmet prediction. The proposed model is custom-designed by gemstone spectral imaging (GSI) with different energy levels on dual-energy computer tomography (CT) from a primary tumor of lung cancer. In the experiment, we take three different energy level fusion datasets: lower energy level fusion (40, 50, 60, 70 keV), higher energy level fusion (110, 120, 130, 140 keV), and average energy level fusion (40, 70, 100, 140 keV). The proposed model is trained by lower energy level fusion that is 93% accurate and the value of Kappa is 86%. When we used the lower energy level images to train the fusion model, there has been a significant difference to other energy level fusion models. Hence, we apply 5-fold cross-validation, which is used to validate the performance result of the multi-keV model with different fusion datasets of energy level images in the pathology report. The cross-validation result also demonstrates that the model with the lower energy level dataset is more robust and suitable in predicting the Nmet of the primary tumor. The lower energy level shows more information of tumor angiogenesis or heterogeneity provided the proposed fusion model with a PFE block and channel attention blocks to predict Nmet from primary tumors.
Collapse
Affiliation(s)
- You-Wei Wang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
| | - Chii-Jen Chen
- Department of Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Teh-Chen Wang
- Department of Medical Imaging, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - Hsu-Cheng Huang
- Department of Medical Imaging, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - Hsin-Ming Chen
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Shing Chen
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Sen Huang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yeun-Chung Chang
- Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Ruey-Feng Chang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
45
|
Syed HH, Khan MA, Tariq U, Armghan A, Alenezi F, Khan JA, Rho S, Kadry S, Rajinikanth V. A Rapid Artificial Intelligence-Based Computer-Aided Diagnosis System for COVID-19 Classification from CT Images. Behav Neurol 2021; 2021:2560388. [PMID: 34966463 PMCID: PMC8712188 DOI: 10.1155/2021/2560388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
The excessive number of COVID-19 cases reported worldwide so far, supplemented by a high rate of false alarms in its diagnosis using the conventional polymerase chain reaction method, has led to an increased number of high-resolution computed tomography (CT) examinations conducted. The manual inspection of the latter, besides being slow, is susceptible to human errors, especially because of an uncanny resemblance between the CT scans of COVID-19 and those of pneumonia, and therefore demands a proportional increase in the number of expert radiologists. Artificial intelligence-based computer-aided diagnosis of COVID-19 using the CT scans has been recently coined, which has proven its effectiveness in terms of accuracy and computation time. In this work, a similar framework for classification of COVID-19 using CT scans is proposed. The proposed method includes four core steps: (i) preparing a database of three different classes such as COVID-19, pneumonia, and normal; (ii) modifying three pretrained deep learning models such as VGG16, ResNet50, and ResNet101 for the classification of COVID-19-positive scans; (iii) proposing an activation function and improving the firefly algorithm for feature selection; and (iv) fusing optimal selected features using descending order serial approach and classifying using multiclass supervised learning algorithms. We demonstrate that once this method is performed on a publicly available dataset, this system attains an improved accuracy of 97.9% and the computational time is almost 34 (sec).
Collapse
Affiliation(s)
- Hassaan Haider Syed
- Department of Computer Science, HITEC University Taxila, Museum Road, Taxila, Pakistan
| | - Muhammad Attique Khan
- Department of Computer Science, HITEC University Taxila, Museum Road, Taxila, Pakistan
| | - Usman Tariq
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ammar Armghan
- Department of Electrical Engineering, Jouf University, Sakaka 75471, Saudi Arabia
| | - Fayadh Alenezi
- Department of Electrical Engineering, Jouf University, Sakaka 75471, Saudi Arabia
| | - Junaid Ali Khan
- Department of Computer Science, HITEC University Taxila, Museum Road, Taxila, Pakistan
| | - Seungmin Rho
- Department of Industrial Security, Chung-Ang University, Seoul, Republic of Korea (06974)
| | - Seifedine Kadry
- Faculty of Applied Computing and Technology, Noroff University College, Kristiansand, Norway
| | - Venkatesan Rajinikanth
- Department of Electronics and Instrumentation, St. Joseph's College of Engineering, Chennai 600119, India
| |
Collapse
|
46
|
Secure Health Monitoring Communication Systems Based on IoT and Cloud Computing for Medical Emergency Applications. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:8016525. [PMID: 34938329 PMCID: PMC8687823 DOI: 10.1155/2021/8016525] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/18/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022]
Abstract
Smart health surveillance technology has attracted wide attention between patients and professionals or specialists to provide early detection of critical abnormal situations without the need to be in direct contact with the patient. This paper presents a secure smart monitoring portable multivital signal system based on Internet-of-Things (IoT) technology. The implemented system is designed to measure the key health parameters: heart rate (HR), blood oxygen saturation (SpO2), and body temperature, simultaneously. The captured physiological signals are processed and encrypted using the Advanced Encryption Standard (AES) algorithm before sending them to the cloud. An ESP8266 integrated unit is used for processing, encryption, and providing connectivity to the cloud over Wi-Fi. On the other side, trusted medical organization servers receive and decrypt the measurements and display the values on the monitoring dashboard for the authorized specialists. The proposed system measurements are compared with a number of commercial medical devices. Results demonstrate that the measurements of the proposed system are within the 95% confidence interval. Moreover, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Relative Error (MRE) for the proposed system are calculated as 1.44, 1.12, and 0.012, respectively, for HR, 1.13, 0.92, and 0.009, respectively, for SpO2, and 0.13, 0.11, and 0.003, respectively, for body temperature. These results demonstrate the high accuracy and reliability of the proposed system.
Collapse
|
47
|
Arshad M, Khan MA, Tariq U, Armghan A, Alenezi F, Younus Javed M, Aslam SM, Kadry S. A Computer-Aided Diagnosis System Using Deep Learning for Multiclass Skin Lesion Classification. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:9619079. [PMID: 34912449 PMCID: PMC8668359 DOI: 10.1155/2021/9619079] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/28/2022]
Abstract
In the USA, each year, almost 5.4 million people are diagnosed with skin cancer. Melanoma is one of the most dangerous types of skin cancer, and its survival rate is 5%. The development of skin cancer has risen over the last couple of years. Early identification of skin cancer can help reduce the human mortality rate. Dermoscopy is a technology used for the acquisition of skin images. However, the manual inspection process consumes more time and required much cost. The recent development in the area of deep learning showed significant performance for classification tasks. In this research work, a new automated framework is proposed for multiclass skin lesion classification. The proposed framework consists of a series of steps. In the first step, augmentation is performed. For the augmentation process, three operations are performed: rotate 90, right-left flip, and up and down flip. In the second step, deep models are fine-tuned. Two models are opted, such as ResNet-50 and ResNet-101, and updated their layers. In the third step, transfer learning is applied to train both fine-tuned deep models on augmented datasets. In the succeeding stage, features are extracted and performed fusion using a modified serial-based approach. Finally, the fused vector is further enhanced by selecting the best features using the skewness-controlled SVR approach. The final selected features are classified using several machine learning algorithms and selected based on the accuracy value. In the experimental process, the augmented HAM10000 dataset is used and achieved an accuracy of 91.7%. Moreover, the performance of the augmented dataset is better as compared to the original imbalanced dataset. In addition, the proposed method is compared with some recent studies and shows improved performance.
Collapse
Affiliation(s)
- Mehak Arshad
- Department of Computer Science, HITEC University Taxila, Taxila, Pakistan
| | | | - Usman Tariq
- College of Computer Engineering and Science, Prince Sattam Bin Abdulaziz University, Al-Kharaj, Saudi Arabia
| | - Ammar Armghan
- Department of Electrical Engineering, Jouf University, Sakaka 75471, Saudi Arabia
| | - Fayadh Alenezi
- Department of Electrical Engineering, Jouf University, Sakaka 75471, Saudi Arabia
| | | | - Shabnam Mohamed Aslam
- Department of Information Technology, College of Computer and Information Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Seifedine Kadry
- Faculty of Applied Computing and Technology, Noroff University College, Kristiansand, Norway
| |
Collapse
|
48
|
Matthiesen S, Diederichsen SZ, Hansen MKH, Villumsen C, Lassen MCH, Jacobsen PK, Risum N, Winkel BG, Philbert BT, Svendsen JH, Andersen TO. Clinician Preimplementation Perspectives of a Decision-Support Tool for the Prediction of Cardiac Arrhythmia Based on Machine Learning: Near-Live Feasibility and Qualitative Study. JMIR Hum Factors 2021; 8:e26964. [PMID: 34842528 PMCID: PMC8665383 DOI: 10.2196/26964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/23/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Artificial intelligence (AI), such as machine learning (ML), shows great promise for improving clinical decision-making in cardiac diseases by outperforming statistical-based models. However, few AI-based tools have been implemented in cardiology clinics because of the sociotechnical challenges during transitioning from algorithm development to real-world implementation. OBJECTIVE This study explored how an ML-based tool for predicting ventricular tachycardia and ventricular fibrillation (VT/VF) could support clinical decision-making in the remote monitoring of patients with an implantable cardioverter defibrillator (ICD). METHODS Seven experienced electrophysiologists participated in a near-live feasibility and qualitative study, which included walkthroughs of 5 blinded retrospective patient cases, use of the prediction tool, and questionnaires and interview questions. All sessions were video recorded, and sessions evaluating the prediction tool were transcribed verbatim. Data were analyzed through an inductive qualitative approach based on grounded theory. RESULTS The prediction tool was found to have potential for supporting decision-making in ICD remote monitoring by providing reassurance, increasing confidence, acting as a second opinion, reducing information search time, and enabling delegation of decisions to nurses and technicians. However, the prediction tool did not lead to changes in clinical action and was found less useful in cases where the quality of data was poor or when VT/VF predictions were found to be irrelevant for evaluating the patient. CONCLUSIONS When transitioning from AI development to testing its feasibility for clinical implementation, we need to consider the following: expectations must be aligned with the intended use of AI; trust in the prediction tool is likely to emerge from real-world use; and AI accuracy is relational and dependent on available information and local workflows. Addressing the sociotechnical gap between the development and implementation of clinical decision-support tools based on ML in cardiac care is essential for succeeding with adoption. It is suggested to include clinical end-users, clinical contexts, and workflows throughout the overall iterative approach to design, development, and implementation.
Collapse
Affiliation(s)
- Stina Matthiesen
- Department of Computer Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Vital Beats, Copenhagen, Denmark
| | - Søren Zöga Diederichsen
- Vital Beats, Copenhagen, Denmark
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | | | - Peter Karl Jacobsen
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Risum
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bo Gregers Winkel
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Berit T Philbert
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tariq Osman Andersen
- Department of Computer Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Vital Beats, Copenhagen, Denmark
| |
Collapse
|
49
|
Yang Z, Gao Y, Fu X. A decision-making algorithm combining the aspect-based sentiment analysis and intuitionistic fuzzy-VIKOR for online hotel reservation. ANNALS OF OPERATIONS RESEARCH 2021; 326:1-17. [PMID: 34744239 PMCID: PMC8558001 DOI: 10.1007/s10479-021-04339-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 05/07/2023]
Abstract
In the process of hotel reservation on online traveling platforms, online reviews, as a fundamental source where the actual information of a product can be had access to, have been attached with high importance by customers when they have difficulty making a decision on which hotel to pick. However, with enormous amount of online reviews distributed in diverse online traveling platforms, customers tend to have few patience or time to manually read all these reviews and get the exact information they want. Inspired by the widespread application of aspect-based sentiment analysis in the field of data mining, a bidirectional long short-term memory (Bi-LSTM) and attention mechanism based model to predict multiple attributes of a product from online review texts is proposed. Experimental result shows that such Bi-LSTM with attention mechanism model apparently improves the accuracy of the prediction, compared with single LSTM model. Meanwhile, based on the output of the prediction, we analyze and transfer it into a statistical matrix. With an intuitionistic fuzzy compromise decision-making method VIKOR applied, an overall ranking, according to multiple product attributes can be made, in which way to help customers make decisions. To prove the rationality of the algorithm, online hotel reviews from three stream online travelling platforms are crawled as a case.
Collapse
Affiliation(s)
- Zaoli Yang
- College of Economics and Management, Beijing University of Technology, Beijing, 100124 China
| | - Yue Gao
- School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| | - Xiangling Fu
- School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, 100876 China
| |
Collapse
|
50
|
Daponte P, De Vito L, Iadarola G, Picariello F. ECG Monitoring Based on Dynamic Compressed Sensing of Multi-Lead Signals. SENSORS 2021; 21:s21217003. [PMID: 34770310 PMCID: PMC8587449 DOI: 10.3390/s21217003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022]
Abstract
This paper presents an innovative method for multiple lead electrocardiogram (ECG) monitoring based on Compressed Sensing (CS). The proposed method extends to multiple leads signals, a dynamic Compressed Sensing method, that were previously developed on a single lead. The dynamic sensing method makes use of a sensing matrix in which its elements are dynamically obtained from the signal to be compressed. In this method, for the application to multiple leads, it is proposed to use a single sensing matrix for which its elements are obtained from a combination of multiple leads. The proposed method is evaluated on a wide set of signals and acquired on healthy subjects and on subjects affected by different pathologies, such as myocardial infarction, cardiomyopathy, and bundle branch block. The experimental results demonstrated that the proposed method can be adopted for a Compression Ratio (CR) up to 10, without compromising signal quality. In particular, for CR= 10, it exhibits a percentage of root-mean-squared difference average among a wide set of ECG signals lower than 3%.
Collapse
|