1
|
Chen F, Fu H, Yu H, Chu Y. Using HVS Dual-Pathway and Contrast Sensitivity to Blindly Assess Image Quality. SENSORS (BASEL, SWITZERLAND) 2023; 23:4974. [PMID: 37430884 DOI: 10.3390/s23104974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 07/12/2023]
Abstract
Blind image quality assessment (BIQA) aims to evaluate image quality in a way that closely matches human perception. To achieve this goal, the strengths of deep learning and the characteristics of the human visual system (HVS) can be combined. In this paper, inspired by the ventral pathway and the dorsal pathway of the HVS, a dual-pathway convolutional neural network is proposed for BIQA tasks. The proposed method consists of two pathways: the "what" pathway, which mimics the ventral pathway of the HVS to extract the content features of distorted images, and the "where" pathway, which mimics the dorsal pathway of the HVS to extract the global shape features of distorted images. Then, the features from the two pathways are fused and mapped to an image quality score. Additionally, gradient images weighted by contrast sensitivity are used as the input to the "where" pathway, allowing it to extract global shape features that are more sensitive to human perception. Moreover, a dual-pathway multi-scale feature fusion module is designed to fuse the multi-scale features of the two pathways, enabling the model to capture both global features and local details, thus improving the overall performance of the model. Experiments conducted on six databases show that the proposed method achieves state-of-the-art performance.
Collapse
Affiliation(s)
- Fan Chen
- Department of Artificial Intelligence, Shenzhen University, Shenzhen 518060, China
| | - Hong Fu
- Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong, China
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Ying Chu
- Department of Artificial Intelligence, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
No-Reference Image Quality Assessment with Convolutional Neural Networks and Decision Fusion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
No-reference image quality assessment (NR-IQA) has always been a difficult research problem because digital images may suffer very diverse types of distortions and their contents are extremely various. Moreover, IQA is also a very hot topic in the research community since the number and role of digital images in everyday life is continuously growing. Recently, a huge amount of effort has been devoted to exploiting convolutional neural networks and other deep learning techniques for no-reference image quality assessment. Since deep learning relies on a massive amount of labeled data, utilizing pretrained networks has become very popular in the literature. In this study, we introduce a novel, deep learning-based NR-IQA architecture that relies on the decision fusion of multiple image quality scores coming from different types of convolutional neural networks. The main idea behind this scheme is that a diverse set of different types of networks is able to better characterize authentic image distortions than a single network. The experimental results show that our method can effectively estimate perceptual image quality on four large IQA benchmark databases containing either authentic or artificial distortions. These results are also confirmed in significance and cross database tests.
Collapse
|
3
|
Jiang J, Wang X, Li B, Tian M, Yao H. Multi-Dimensional Feature Fusion Network for No-Reference Quality Assessment of In-the-Wild Videos. SENSORS 2021; 21:s21165322. [PMID: 34450761 PMCID: PMC8401047 DOI: 10.3390/s21165322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/07/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022]
Abstract
Over the past few decades, video quality assessment (VQA) has become a valuable research field. The perception of in-the-wild video quality without reference is mainly challenged by hybrid distortions with dynamic variations and the movement of the content. In order to address this barrier, we propose a no-reference video quality assessment (NR-VQA) method that adds the enhanced awareness of dynamic information to the perception of static objects. Specifically, we use convolutional networks with different dimensions to extract low-level static-dynamic fusion features for video clips and subsequently implement alignment, followed by a temporal memory module consisting of recurrent neural networks branches and fully connected (FC) branches to construct feature associations in a time series. Meanwhile, in order to simulate human visual habits, we built a parametric adaptive network structure to obtain the final score. We further validated the proposed method on four datasets (CVD2014, KoNViD-1k, LIVE-Qualcomm, and LIVE-VQC) to test the generalization ability. Extensive experiments have demonstrated that the proposed method not only outperforms other NR-VQA methods in terms of overall performance of mixed datasets but also achieves competitive performance in individual datasets compared to the existing state-of-the-art methods.
Collapse
|
4
|
Lévêque L, Outtas M, Liu H, Zhang L. Comparative study of the methodologies used for subjective medical image quality assessment. Phys Med Biol 2021; 66. [PMID: 34225264 DOI: 10.1088/1361-6560/ac1157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022]
Abstract
Healthcare professionals have been increasingly viewing medical images and videos in their routine clinical practice, and this in a wide variety of environments. Both the perception and interpretation of medical visual information, across all branches of practice or medical specialties (e.g. diagnostic, therapeutic, or surgical medicine), career stages, and practice settings (e.g. emergency care), appear to be critical for patient care. However, medical images and videos are not self-explanatory and, therefore, need to be interpreted by humans, i.e. medical experts. In addition, various types of degradations and artifacts may appear during image acquisition or processing, and consequently affect medical imaging data. Such distortions tend to impact viewers' quality of experience, as well as their clinical practice. It is accordingly essential to better understand how medical experts perceive the quality of visual content. Thankfully, progress has been made in the recent literature towards such understanding. In this article, we present an up-to-date state-of the-art of relatively recent (i.e. not older than ten years old) existing studies on the subjective quality assessment of medical images and videos, as well as research works using task-based approaches. Furthermore, we discuss the merits and drawbacks of the methodologies used, and we provide recommendations about experimental designs and statistical processes to evaluate the perception of medical images and videos for future studies, which could then be used to optimise the visual experience of image readers in real clinical practice. Finally, we tackle the issue of the lack of available annotated medical image and video quality databases, which appear to be indispensable for the development of new dedicated objective metrics.
Collapse
Affiliation(s)
- Lucie Lévêque
- Nantes Laboratory of Digital Sciences (LS2N), University of Nantes, Nantes, France
| | - Meriem Outtas
- Department of Industrial Computer Science and Electronics, National Institute of Applied Sciences, Rennes, France
| | - Hantao Liu
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Lu Zhang
- Department of Industrial Computer Science and Electronics, National Institute of Applied Sciences, Rennes, France
| |
Collapse
|
5
|
Yang X, Li F, Zhang W, He L. Blind Image Quality Assessment of Natural Scenes Based on Entropy Differences in the DCT Domain. ENTROPY 2018; 20:e20110885. [PMID: 33266610 PMCID: PMC7512467 DOI: 10.3390/e20110885] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 11/27/2022]
Abstract
Blind/no-reference image quality assessment is performed to accurately evaluate the perceptual quality of a distorted image without prior information from a reference image. In this paper, an effective blind image quality assessment approach based on entropy differences in the discrete cosine transform domain for natural images is proposed. Information entropy is an effective measure of the amount of information in an image. We find the discrete cosine transform coefficient distribution of distorted natural images shows a pulse-shape phenomenon, which directly affects the differences of entropy. Then, a Weibull model is used to fit the distributions of natural and distorted images. This is because the Weibull model sufficiently approximates the pulse-shape phenomenon as well as the sharp-peak and heavy-tail phenomena of natural scene statistics rules. Four features that are related to entropy differences and human visual system are extracted from the Weibull model for three scaling images. Image quality is assessed by the support vector regression method based on the extracted features. This blind Weibull statistics algorithm is thoroughly evaluated using three widely used databases: LIVE, TID2008, and CSIQ. The experimental results show that the performance of the proposed blind Weibull statistics method is highly consistent with that of human visual perception and greater than that of the state-of-the-art blind and full-reference image quality assessment methods in most cases.
Collapse
Affiliation(s)
- Xiaohan Yang
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Fan Li
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence:
| | - Wei Zhang
- The State Key Laboratory of Integrated Services Networks, Xidian University, Xi’an 710071, China
| | - Lijun He
- School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
6
|
Outtas M, Zhang L, Deforges O, Serir A, Hamidouche W, Chen Y. Subjective and objective evaluations of feature selected multi output filter for speckle reduction on ultrasound images. ACTA ACUST UNITED AC 2018; 63:185014. [DOI: 10.1088/1361-6560/aadbc9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Zhou W, Yu L, Zhou Y, Qiu W, Wu MW, Luo T. Local and Global Feature Learning for Blind Quality Evaluation of Screen Content and Natural Scene Images. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2018; 27:2086-2095. [PMID: 29432092 DOI: 10.1109/tip.2018.2794207] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The blind quality evaluation of screen content images (SCIs) and natural scene images (NSIs) has become an important, yet very challenging issue. In this paper, we present an effective blind quality evaluation technique for SCIs and NSIs based on a dictionary of learned local and global quality features. First, a local dictionary is constructed using local normalized image patches and conventional -means clustering. With this local dictionary, the learned local quality features can be obtained using a locality-constrained linear coding with max pooling. To extract the learned global quality features, the histogram representations of binary patterns are concatenated to form a global dictionary. The collaborative representation algorithm is used to efficiently code the learned global quality features of the distorted images using this dictionary. Finally, kernel-based support vector regression is used to integrate these features into an overall quality score. Extensive experiments involving the proposed evaluation technique demonstrate that in comparison with most relevant metrics, the proposed blind metric yields significantly higher consistency in line with subjective fidelity ratings.
Collapse
|
8
|
Ma K, Duanmu Z, Wu Q, Wang Z, Yong H, Li H, Zhang L. Waterloo Exploration Database: New Challenges for Image Quality Assessment Models. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2017; 26:1004-1016. [PMID: 27893392 DOI: 10.1109/tip.2016.2631888] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The great content diversity of real-world digital images poses a grand challenge to image quality assessment (IQA) models, which are traditionally designed and validated on a handful of commonly used IQA databases with very limited content variation. To test the generalization capability and to facilitate the wide usage of IQA techniques in real-world applications, we establish a large-scale database named the Waterloo Exploration Database, which in its current state contains 4744 pristine natural images and 94 880 distorted images created from them. Instead of collecting the mean opinion score for each image via subjective testing, which is extremely difficult if not impossible, we present three alternative test criteria to evaluate the performance of IQA models, namely, the pristine/distorted image discriminability test, the listwise ranking consistency test, and the pairwise preference consistency test (P-test). We compare 20 well-known IQA models using the proposed criteria, which not only provide a stronger test in a more challenging testing environment for existing models, but also demonstrate the additional benefits of using the proposed database. For example, in the P-test, even for the best performing no-reference IQA model, more than 6 million failure cases against the model are "discovered" automatically out of over 1 billion test pairs. Furthermore, we discuss how the new database may be exploited using innovative approaches in the future, to reveal the weaknesses of existing IQA models, to provide insights on how to improve the models, and to shed light on how the next-generation IQA models may be developed. The database and codes are made publicly available at: https://ece.uwaterloo.ca/~k29ma/exploration/.
Collapse
|
9
|
Ghadiyaram D, Bovik AC. Perceptual quality prediction on authentically distorted images using a bag of features approach. J Vis 2017; 17:32. [PMID: 28129417 PMCID: PMC5283082 DOI: 10.1167/17.1.32] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 11/24/2022] Open
Abstract
Current top-performing blind perceptual image quality prediction models are generally trained on legacy databases of human quality opinion scores on synthetically distorted images. Therefore, they learn image features that effectively predict human visual quality judgments of inauthentic and usually isolated (single) distortions. However, real-world images usually contain complex composite mixtures of multiple distortions. We study the perceptually relevant natural scene statistics of such authentically distorted images in different color spaces and transform domains. We propose a "bag of feature maps" approach that avoids assumptions about the type of distortion(s) contained in an image and instead focuses on capturing consistencies-or departures therefrom-of the statistics of real-world images. Using a large database of authentically distorted images, human opinions of them, and bags of features computed on them, we train a regressor to conduct image quality prediction. We demonstrate the competence of the features toward improving automatic perceptual quality prediction by testing a learned algorithm using them on a benchmark legacy database as well as on a newly introduced distortion-realistic resource called the LIVE In the Wild Image Quality Challenge Database. We extensively evaluate the perceptual quality prediction model and algorithm and show that it is able to achieve good-quality prediction power that is better than other leading models.
Collapse
Affiliation(s)
- Deepti Ghadiyaram
- Department of Computer Science, University of Texas at Austin, Austin, TX, ://www.cs.utexas.edu/~deepti/
| | | |
Collapse
|