1
|
Lian F, Sun Y, Li M. Extracting organs of interest from medical images based on convolutional neural network with auxiliary and refined constraints. Sci Rep 2025; 15:2036. [PMID: 39814795 PMCID: PMC11736126 DOI: 10.1038/s41598-025-86087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Accurately extracting organs from medical images provides radiologist with more comprehensive evidences to clinical diagnose, which offers up a higher accuracy and efficiency. However, the key to achieving accurate segmentation lies in abundant clues for contour distinction, which has a high demand for the network architecture design and its practical training status. To this end, we design auxiliary and refined constraints to optimize the energy function by supplying additional guidance in training procedure, thus promoting model's ability to capture information. Specifically, for the auxiliary constraint, a set of convolutional structures are involved into a conventional network to act as a discriminator, then adversarial network is established. Based on the obtained architecture, we further build adversarial mechanism by introducing a second discriminator into segmentor for refinement. The involvement of refined constraint contributes to ameliorate training situation, optimize model performance, and boost its ability of collecting information for segmentation. We evaluate the proposed framework on two public databases (NIH Pancreas-CT and MICCAI Sliver07). Experimental results show that the proposed network achieves comparable performance to current pancreas segmentation algorithms and outperforms most state-of-the-art liver segmentation methods. The obtained results on public datasets sufficiently demonstrate the effectiveness of the proposed model for organ segmentation.
Collapse
Affiliation(s)
- Fenghui Lian
- School of Aviation Operations and Services, Air Force Aviation University, Changchun, 130000, China
| | - Yingjie Sun
- School of Aviation Operations and Services, Air Force Aviation University, Changchun, 130000, China
| | - Meiyu Li
- Department of Rehabilitation Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
- Yuanshen Rehabilitation Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Qin J, Luo H, He F, Qin G. DSA-Former: A Network of Hybrid Variable Structures for Liver and Liver Tumour Segmentation. Int J Med Robot 2024; 20:e70004. [PMID: 39535347 DOI: 10.1002/rcs.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Accurately annotated CT images of liver tumours can effectively assist doctors in diagnosing and treating liver cancer. However, due to the relatively low density of the liver, its tumours, and surrounding tissues, as well as the existence of multi-scale problems, accurate automatic segmentation still faces challenges. METHODS We propose a segmentation network DSA-Former that combines convolutional kernels and attention. By combining the morphological and edge features of liver tumour images, capture global/local features and key inter-layer information, and integrate attention mechanisms obtaining detailed information to improve segmentation accuracy. RESULTS Compared to other methods, our approach demonstrates significant advantages in evaluation metrics such as the Dice coefficient, IOU, VOE, and HD95. Specifically, we achieve Dice coefficients of 96.8% for liver segmentation and 72.2% for liver tumour segmentation. CONCLUSION Our method offers enhanced precision in segmenting liver and liver tumour images, laying a robust foundation for liver cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jun Qin
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Huizhen Luo
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Fei He
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Guihe Qin
- School of Computer Science and Technology, Jilin University, Changchun, China
| |
Collapse
|
3
|
Wei D, Jiang Y, Zhou X, Wu D, Feng X. A Review of Advancements and Challenges in Liver Segmentation. J Imaging 2024; 10:202. [PMID: 39194991 DOI: 10.3390/jimaging10080202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Liver segmentation technologies play vital roles in clinical diagnosis, disease monitoring, and surgical planning due to the complex anatomical structure and physiological functions of the liver. This paper provides a comprehensive review of the developments, challenges, and future directions in liver segmentation technology. We systematically analyzed high-quality research published between 2014 and 2024, focusing on liver segmentation methods, public datasets, and evaluation metrics. This review highlights the transition from manual to semi-automatic and fully automatic segmentation methods, describes the capabilities and limitations of available technologies, and provides future outlooks.
Collapse
Affiliation(s)
- Di Wei
- Department of Radiology, The Eighth Affiliated Hospital of The Sun Yat-sen University, No. 3025, Middle Shennan Road, Shenzhen 518033, China
| | - Yundan Jiang
- Department of Radiology, The Eighth Affiliated Hospital of The Sun Yat-sen University, No. 3025, Middle Shennan Road, Shenzhen 518033, China
| | - Xuhui Zhou
- Department of Radiology, The Eighth Affiliated Hospital of The Sun Yat-sen University, No. 3025, Middle Shennan Road, Shenzhen 518033, China
| | - Di Wu
- Department of Radiology, The Eighth Affiliated Hospital of The Sun Yat-sen University, No. 3025, Middle Shennan Road, Shenzhen 518033, China
| | - Xiaorong Feng
- Department of Radiology, The Eighth Affiliated Hospital of The Sun Yat-sen University, No. 3025, Middle Shennan Road, Shenzhen 518033, China
| |
Collapse
|
4
|
Ling Y, Wang Y, Liu Q, Yu J, Xu L, Zhang X, Liang P, Kong D. EPolar-UNet: An edge-attending polar UNet for automatic medical image segmentation with small datasets. Med Phys 2024; 51:1702-1713. [PMID: 38299370 DOI: 10.1002/mp.16957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Medical image segmentation is one of the most key steps in computer-aided clinical diagnosis, geometric characterization, measurement, image registration, and so forth. Convolutional neural networks especially UNet and its variants have been successfully used in many medical image segmentation tasks. However, the results are limited by the deficiency in extracting high resolution edge information because of the design of the skip connections in UNet and the need for large available datasets. PURPOSE In this paper, we proposed an edge-attending polar UNet (EPolar-UNet), which was trained on the polar coordinate system instead of classic Cartesian coordinate system with an edge-attending construction in skip connection path. METHODS EPolar-UNet extracted the location information from an eight-stacked hourglass network as the pole for polar transformation and extracted the boundary cues from an edge-attending UNet, which consisted of a deconvolution layer and a subtraction operation. RESULTS We evaluated the performance of EPolar-UNet across three imaging modalities for different segmentation tasks: CVC-ClinicDB dataset for polyp, ISIC-2018 dataset for skin lesion, and our private ultrasound dataset for liver tumor segmentation. Our proposed model outperformed state-of-the-art models on all three datasets and needed only 30%-60% of training data compared with the benchmark UNet model to achieve similar performances for medical image segmentation tasks. CONCLUSIONS We proposed an end-to-end EPolar-UNet for automatic medical image segmentation and showed good performance on small datasets, which was critical in the field of medical image segmentation.
Collapse
Affiliation(s)
- Yating Ling
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Yuling Wang
- Department of Interventional Ultrasound, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Liu
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Jie Yu
- Department of Interventional Ultrasound, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Xu
- Zhejiang Qiushi Institute for Mathematical Medicine, Hangzhou, China
| | - Xiaoqian Zhang
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| | - Ping Liang
- Department of Interventional Ultrasound, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dexing Kong
- School of Mathematical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Horkaew P, Chansangrat J, Keeratibharat N, Le DC. Recent advances in computerized imaging and its vital roles in liver disease diagnosis, preoperative planning, and interventional liver surgery: A review. World J Gastrointest Surg 2023; 15:2382-2397. [PMID: 38111769 PMCID: PMC10725533 DOI: 10.4240/wjgs.v15.i11.2382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/30/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
The earliest and most accurate detection of the pathological manifestations of hepatic diseases ensures effective treatments and thus positive prognostic outcomes. In clinical settings, screening and determining the extent of a pathology are prominent factors in preparing remedial agents and administering appropriate therapeutic procedures. Moreover, in a patient undergoing liver resection, a realistic preoperative simulation of the subject-specific anatomy and physiology also plays a vital part in conducting initial assessments, making surgical decisions during the procedure, and anticipating postoperative results. Conventionally, various medical imaging modalities, e.g., computed tomography, magnetic resonance imaging, and positron emission tomography, have been employed to assist in these tasks. In fact, several standardized procedures, such as lesion detection and liver segmentation, are also incorporated into prominent commercial software packages. Thus far, most integrated software as a medical device typically involves tedious interactions from the physician, such as manual delineation and empirical adjustments, as per a given patient. With the rapid progress in digital health approaches, especially medical image analysis, a wide range of computer algorithms have been proposed to facilitate those procedures. They include pattern recognition of a liver, its periphery, and lesion, as well as pre- and postoperative simulations. Prior to clinical adoption, however, software must conform to regulatory requirements set by the governing agency, for instance, valid clinical association and analytical and clinical validation. Therefore, this paper provides a detailed account and discussion of the state-of-the-art methods for liver image analyses, visualization, and simulation in the literature. Emphasis is placed upon their concepts, algorithmic classifications, merits, limitations, clinical considerations, and future research trends.
Collapse
Affiliation(s)
- Paramate Horkaew
- School of Computer Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jirapa Chansangrat
- School of Radiology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nattawut Keeratibharat
- School of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Doan Cong Le
- Faculty of Information Technology, An Giang University, Vietnam National University (Ho Chi Minh City), An Giang 90000, Vietnam
| |
Collapse
|
6
|
Hille G, Agrawal S, Tummala P, Wybranski C, Pech M, Surov A, Saalfeld S. Joint liver and hepatic lesion segmentation in MRI using a hybrid CNN with transformer layers. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107647. [PMID: 37329803 DOI: 10.1016/j.cmpb.2023.107647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/21/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
Backgound and Objective: Deep learning-based segmentation of the liver and hepatic lesions therein steadily gains relevance in clinical practice due to the increasing incidence of liver cancer each year. Whereas various network variants with overall promising results in the field of medical image segmentation have been successfully developed over the last years, almost all of them struggle with the challenge of accurately segmenting hepatic lesions in magnetic resonance imaging (MRI). This led to the idea of combining elements of convolutional and transformer-based architectures to overcome the existing limitations. METHODS This work presents a hybrid network called SWTR-Unet, consisting of a pretrained ResNet, transformer blocks as well as a common Unet-style decoder path. This network was primarily applied to single-modality non-contrast-enhanced liver MRI and additionally to the publicly available computed tomography (CT) data of the liver tumor segmentation (LiTS) challenge to verify the applicability on other modalities. For a broader evaluation, multiple state-of-the-art networks were implemented and applied, ensuring direct comparability. Furthermore, correlation analysis and an ablation study were carried out, to investigate various influencing factors on the segmentation accuracy of the presented method. RESULTS With Dice similarity scores of averaged 98±2% for liver and 81±28% lesion segmentation on the MRI dataset and 97±2% and 79±25%, respectively on the CT dataset, the proposed SWTR-Unet proved to be a precise approach for liver and hepatic lesion segmentation with state-of-the-art results for MRI and competing accuracy in CT imaging. CONCLUSION The achieved segmentation accuracy was found to be on par with manually performed expert segmentations as indicated by inter-observer variabilities for liver lesion segmentation. In conclusion, the presented method could save valuable time and resources in clinical practice.
Collapse
Affiliation(s)
- Georg Hille
- Department of Simulation and Graphics, Otto-von-Guericke University, Magdeburg, Germany.
| | - Shubham Agrawal
- Department of Simulation and Graphics, Otto-von-Guericke University, Magdeburg, Germany
| | - Pavan Tummala
- Department of Simulation and Graphics, Otto-von-Guericke University, Magdeburg, Germany
| | - Christian Wybranski
- Department of Radiology, University Hospital of Magdeburg, Magdeburg, Germany
| | - Maciej Pech
- Department of Radiology, University Hospital of Magdeburg, Magdeburg, Germany
| | - Alexey Surov
- Department of Radiology, University Hospital of Magdeburg, Magdeburg, Germany
| | - Sylvia Saalfeld
- Department of Simulation and Graphics, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
7
|
Li Y, Zou B, Dai P, Liao M, Bai HX, Jiao Z. AC-E Network: Attentive Context-Enhanced Network for Liver Segmentation. IEEE J Biomed Health Inform 2023; 27:4052-4061. [PMID: 37204947 DOI: 10.1109/jbhi.2023.3278079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Segmentation of liver from CT scans is essential in computer-aided liver disease diagnosis and treatment. However, the 2DCNN ignores the 3D context, and the 3DCNN suffers from numerous learnable parameters and high computational cost. In order to overcome this limitation, we propose an Attentive Context-Enhanced Network (AC-E Network) consisting of 1) an attentive context encoding module (ACEM) that can be integrated into the 2D backbone to extract 3D context without a sharp increase in the number of learnable parameters; 2) a dual segmentation branch including complemental loss making the network attend to both the liver region and boundary so that getting the segmented liver surface with high accuracy. Extensive experiments on the LiTS and the 3D-IRCADb datasets demonstrate that our method outperforms existing approaches and is competitive to the state-of-the-art 2D-3D hybrid method on the equilibrium of the segmentation precision and the number of model parameters.
Collapse
|
8
|
Zhang B, Wang Y, Ding C, Deng Z, Li L, Qin Z, Ding Z, Bian L, Yang C. Multi-scale feature pyramid fusion network for medical image segmentation. Int J Comput Assist Radiol Surg 2023; 18:353-365. [PMID: 36042149 DOI: 10.1007/s11548-022-02738-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/11/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Medical image segmentation is the most widely used technique in diagnostic and clinical research. However, accurate segmentation of target organs from blurred border regions and low-contrast adjacent organs in Computed tomography (CT) imaging is crucial for clinical diagnosis and treatment. METHODS In this article, we propose a Multi-Scale Feature Pyramid Fusion Network (MS-Net) based on the codec structure formed by the combination of Multi-Scale Attention Module (MSAM) and Stacked Feature Pyramid Module (SFPM). Among them, MSAM is used to skip connections, which aims to extract different levels of context details by dynamically adjusting the receptive fields under different network depths; the SFPM including multi-scale strategies and multi-layer Feature Perception Module (FPM) is nested in the network at the deepest point, which aims to better focus the network's attention on the target organ by adaptively increasing the weight of the features of interest. RESULTS Experiments demonstrate that the proposed MS-Net significantly improved the Dice score from 91.74% to 94.54% on CHAOS, from 97.59% to 98.59% on Lung, and from 82.55% to 86.06% on ISIC 2018, compared with U-Net. Additionally, comparisons with other six state-of-the-art codec structures also show the presented network has great advantages on evaluation indicators such as Miou, Dice, ACC and AUC. CONCLUSION The experimental results show that both the MSAM and SFPM techniques proposed in this paper can assist the network to improve the segmentation effect, so that the proposed MS-Net method achieves better results in the CHAOS, Lung and ISIC 2018 segmentation tasks.
Collapse
Affiliation(s)
- Bing Zhang
- Power Systems Engineering Research Center, Ministry of Education, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Yang Wang
- Power Systems Engineering Research Center, Ministry of Education, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Caifu Ding
- Power Systems Engineering Research Center, Ministry of Education, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Ziqing Deng
- Power Systems Engineering Research Center, Ministry of Education, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Linwei Li
- Power Systems Engineering Research Center, Ministry of Education, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Zesheng Qin
- Power Systems Engineering Research Center, Ministry of Education, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Zhao Ding
- Power Systems Engineering Research Center, Ministry of Education, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
| | - Lifeng Bian
- Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China.
| | - Chen Yang
- Power Systems Engineering Research Center, Ministry of Education, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Kong Z, Zhang M, Zhu W, Yi Y, Wang T, Zhang B. Data enhancement based on M2-Unet for liver segmentation in Computed Tomography. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Liu H, Fu Y, Zhang S, Liu J, Wang Y, Wang G, Fang J. GCHA-Net: Global context and hybrid attention network for automatic liver segmentation. Comput Biol Med 2023; 152:106352. [PMID: 36481761 DOI: 10.1016/j.compbiomed.2022.106352] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Liver segmentation is a critical step in liver cancer diagnosis and surgical planning. The U-Net's architecture is one of the most efficient deep networks for medical image segmentation. However, the continuous downsampling operators in U-Net causes the loss of spatial information. To solve these problems, we propose a global context and hybrid attention network, called GCHA-Net, to adaptive capture the structural and detailed features. To capture the global features, a global attention module (GAM) is designed to model the channel and positional dimensions of the interdependencies. To capture the local features, a feature aggregation module (FAM) is designed, where a local attention module (LAM) is proposed to capture the spatial information. LAM can make our model focus on the local liver regions and suppress irrelevant information. The experimental results on the dataset LiTS2017 show that the dice per case (DPC) value and dice global (DG) value of liver were 96.5% and 96.9%, respectively. Compared with the state-of-the-art models, our model has superior performance in liver segmentation. Meanwhile, we test the experiment results on the 3Dircadb dataset, and it shows our model can obtain the highest accuracy compared with the closely related models. From these results, it can been seen that the proposed model can effectively capture the global context information and build the correlation between different convolutional layers. The code is available at the website: https://github.com/HuaxiangLiu/GCAU-Net.
Collapse
Affiliation(s)
- Huaxiang Liu
- Institute of Intelligent Information Processing, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Youyao Fu
- Institute of Intelligent Information Processing, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Shiqing Zhang
- Institute of Intelligent Information Processing, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Jun Liu
- College of Mechanical Engineering, Quzhou University, Quzhou, 324000, Zhejiang, China
| | - Yong Wang
- School of Aeronautics and Astronautics, Sun Yat Sen University, Guangzhou, 510275, Guangdong, China
| | - Guoyu Wang
- Institute of Intelligent Information Processing, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Jiangxiong Fang
- Institute of Intelligent Information Processing, Taizhou University, Taizhou, 318000, Zhejiang, China; College of Mechanical Engineering, Quzhou University, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
11
|
Jin R, Wang M, Xu L, Lu J, Song E, Ma G. Automatic 3D CT liver segmentation based on fast global minimization of probabilistic active contour. Med Phys 2022; 50:2100-2120. [PMID: 36413182 DOI: 10.1002/mp.16116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/27/2022] [Accepted: 11/05/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Automatic liver segmentation from computed tomography (CT) images is an essential preprocessing step for computer-aided diagnosis of liver diseases. However, due to the large differences in liver shapes, low-contrast to adjacent tissues, and existence of tumors or other abnormalities, liver segmentation has been very challenging. This study presents an accurate and fast liver segmentation method based on a novel probabilistic active contour (PAC) model and its fast global minimization scheme (3D-FGMPAC), which is explainable as compared with deep learning methods. METHODS The proposed method first constructs a slice-indexed-histogram to localize the volume of interest (VOI) and estimate the probability that a voxel belongs to the liver according its intensity. The probabilistic image would be used to initialize the 3D PAC model. Secondly, a new contour indicator function, which is a component of the model, is produced by combining the gradient-based edge detection and Hessian-matrix-based surface detection. Then, a fast numerical scheme derived for the 3D PAC model is performed to evolve the initial probabilistic image into the global minimizer of the model, which is a smoothed probabilistic image showing a distinctly highlighted liver. Next, a simple region-growing strategy is applied to extract the whole liver mask from the smoothed probabilistic image. Finally, a B-spline surface is constructed to fit the patch of the rib cage to prevent possible leakage into adjacent intercostal tissues. RESULTS The proposed method is evaluated on two public datasets. The average Dice score, volume overlap error, volume difference, symmetric surface distance and volume processing time are 0.96, 7.35%, 0.02%, 1.17 mm and 19.8 s for the Sliver07 dataset, and 0.95, 8.89%, - 0.02 % $-0.02\%$ , 1.45 mm and 23.08 s for the 3Dircadb dataset, respectively. CONCLUSIONS The proposed fully-automatic approach can effectively segment the liver from low-contrast and complex backgrounds. The quantitative and qualitative results demonstrate that the proposed segmentation method outperforms state-of-the-art traditional automatic liver segmentation algorithms and achieves very competitive performance compared with recent deep leaning-based methods.
Collapse
Affiliation(s)
- Renchao Jin
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Manyang Wang
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Xu
- School of Computer and Information Engineering, Hubei University, Wuhan, China
| | - Jiayi Lu
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Enmin Song
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangzhi Ma
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Ma J, Zhang Y, Gu S, Zhu C, Ge C, Zhang Y, An X, Wang C, Wang Q, Liu X, Cao S, Zhang Q, Liu S, Wang Y, Li Y, He J, Yang X. AbdomenCT-1K: Is Abdominal Organ Segmentation a Solved Problem? IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022; 44:6695-6714. [PMID: 34314356 DOI: 10.1109/tpami.2021.3100536] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the unprecedented developments in deep learning, automatic segmentation of main abdominal organs seems to be a solved problem as state-of-the-art (SOTA) methods have achieved comparable results with inter-rater variability on many benchmark datasets. However, most of the existing abdominal datasets only contain single-center, single-phase, single-vendor, or single-disease cases, and it is unclear whether the excellent performance can generalize on diverse datasets. This paper presents a large and diverse abdominal CT organ segmentation dataset, termed AbdomenCT-1K, with more than 1000 (1K) CT scans from 12 medical centers, including multi-phase, multi-vendor, and multi-disease cases. Furthermore, we conduct a large-scale study for liver, kidney, spleen, and pancreas segmentation and reveal the unsolved segmentation problems of the SOTA methods, such as the limited generalization ability on distinct medical centers, phases, and unseen diseases. To advance the unsolved problems, we further build four organ segmentation benchmarks for fully supervised, semi-supervised, weakly supervised, and continual learning, which are currently challenging and active research topics. Accordingly, we develop a simple and effective method for each benchmark, which can be used as out-of-the-box methods and strong baselines. We believe the AbdomenCT-1K dataset will promote future in-depth research towards clinical applicable abdominal organ segmentation methods.
Collapse
|
13
|
Senthilvelan J, Jamshidi N. A pipeline for automated deep learning liver segmentation (PADLLS) from contrast enhanced CT exams. Sci Rep 2022; 12:15794. [PMID: 36138084 PMCID: PMC9500060 DOI: 10.1038/s41598-022-20108-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Multiple studies have created state-of-the-art liver segmentation models using Deep Convolutional Neural Networks (DCNNs) such as the V-net and H-DenseUnet. Oversegmentation however continues to be a problem. We set forth to address these limitations by developing a an automated workflow that leverages the strengths of different DCNN architectures, resulting in a pipeline that enables fully automated liver segmentation. A Pipeline for Automated Deep Learning Liver Segmentation (PADLLS) was developed and implemented that cascades multiple DCNNs that were trained on more than 200 CT scans. First, a V-net is used to create a rough liver, spleen, and stomach mask. After stomach and spleen pixels are removed using their respective masks and ascites is removed using a morphological algorithm, the scan is passed to a H-DenseUnet to yield the final segmentation. The segmentation accuracy of the pipleline was compared to the H-DenseUnet and the V-net using the SLIVER07 and 3DIRCADb datasets as benchmarks. The PADLLS Dice score for the SLIVER07 dataset was calculated to be 0.957 ± 0.033 and was significantly better than the H-DenseUnet's score of 0.927 ± 0.044 (p = 0.0219) and the V-net's score of 0.872 ± 0.121 (p = 0.0067). The PADLLS Dice score for the 3DIRCADb dataset was 0.965 ± 0.016 and was significantly better than the H-DenseUnet's score of 0.930 ± 0.041 (p = 0.0014) the V-net's score of 0.874 ± 0.060 (p < 0.001). In conclusion, our pipeline (PADLLS) outperforms existing liver segmentation models, serves as a valuable tool for image-based analysis, and is freely available for download and use.
Collapse
Affiliation(s)
- Jayasuriya Senthilvelan
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 757 Westwood Ave, Suite 2125, Los Angeles, CA, 90095, USA
| | - Neema Jamshidi
- Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 757 Westwood Ave, Suite 2125, Los Angeles, CA, 90095, USA.
| |
Collapse
|
14
|
Chen C, Zhou K, Guo X, Wang Z, Xiao R, Wang G. Cerebrovascular segmentation in phase-contrast magnetic resonance angiography by multi-feature fusion and vessel completion. Comput Med Imaging Graph 2022; 98:102070. [DOI: 10.1016/j.compmedimag.2022.102070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
|
15
|
Ansari MY, Abdalla A, Ansari MY, Ansari MI, Malluhi B, Mohanty S, Mishra S, Singh SS, Abinahed J, Al-Ansari A, Balakrishnan S, Dakua SP. Practical utility of liver segmentation methods in clinical surgeries and interventions. BMC Med Imaging 2022; 22:97. [PMID: 35610600 PMCID: PMC9128093 DOI: 10.1186/s12880-022-00825-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Clinical imaging (e.g., magnetic resonance imaging and computed tomography) is a crucial adjunct for clinicians, aiding in the diagnosis of diseases and planning of appropriate interventions. This is especially true in malignant conditions such as hepatocellular carcinoma (HCC), where image segmentation (such as accurate delineation of liver and tumor) is the preliminary step taken by the clinicians to optimize diagnosis, staging, and treatment planning and intervention (e.g., transplantation, surgical resection, radiotherapy, PVE, embolization, etc). Thus, segmentation methods could potentially impact the diagnosis and treatment outcomes. This paper comprehensively reviews the literature (during the year 2012-2021) for relevant segmentation methods and proposes a broad categorization based on their clinical utility (i.e., surgical and radiological interventions) in HCC. The categorization is based on the parameters such as precision, accuracy, and automation.
Collapse
|
16
|
Ahmad M, Qadri SF, Ashraf MU, Subhi K, Khan S, Zareen SS, Qadri S. Efficient Liver Segmentation from Computed Tomography Images Using Deep Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2665283. [PMID: 35634046 PMCID: PMC9132625 DOI: 10.1155/2022/2665283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/06/2022] [Indexed: 12/11/2022]
Abstract
Segmentation of a liver in computed tomography (CT) images is an important step toward quantitative biomarkers for a computer-aided decision support system and precise medical diagnosis. To overcome the difficulties that come across the liver segmentation that are affected by fuzzy boundaries, stacked autoencoder (SAE) is applied to learn the most discriminative features of the liver among other tissues in abdominal images. In this paper, we propose a patch-based deep learning method for the segmentation of a liver from CT images using SAE. Unlike the traditional machine learning methods, instead of anticipating pixel by pixel learning, our algorithm utilizes the patches to learn the representations and identify the liver area. We preprocessed the whole dataset to get the enhanced images and converted each image into many overlapping patches. These patches are given as input to SAE for unsupervised feature learning. Finally, the learned features with labels of the images are fine tuned, and the classification is performed to develop the probability map in a supervised way. Experimental results demonstrate that our proposed algorithm shows satisfactory results on test images. Our method achieved a 96.47% dice similarity coefficient (DSC), which is better than other methods in the same domain.
Collapse
Affiliation(s)
- Mubashir Ahmad
- College of Computer Science and Software Engineering, Computer Vision Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
- Department of Computer Science and IT, The University of Lahore, Sargodha Campus, 40100, Lahore, Pakistan
| | - Syed Furqan Qadri
- College of Computer Science and Software Engineering, Computer Vision Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - M. Usman Ashraf
- Department of Computer Science, GC Women University, Sialkot 51310, Pakistan
| | - Khalid Subhi
- Department of Computer Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salabat Khan
- College of Computer Science and Software Engineering, Computer Vision Institute, Shenzhen University, Shenzhen, Guangdong Province 518060, China
| | - Syeda Shamaila Zareen
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Salman Qadri
- Department of Computer Science, MNS University of Agriculture, Multan 60650, Pakistan
| |
Collapse
|
17
|
Liu L, Wang Y, Chang J, Zhang P, Liang G, Zhang H. LLRHNet: Multiple Lesions Segmentation Using Local-Long Range Features. Front Neuroinform 2022; 16:859973. [PMID: 35600503 PMCID: PMC9119082 DOI: 10.3389/fninf.2022.859973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
The encoder-decoder-based deep convolutional neural networks (CNNs) have made great improvements in medical image segmentation tasks. However, due to the inherent locality of convolution, CNNs generally are demonstrated to have limitations in obtaining features across layers and long-range features from the medical image. In this study, we develop a local-long range hybrid features network (LLRHNet), which inherits the merits of the iterative aggregation mechanism and the transformer technology, as a medical image segmentation model. LLRHNet adopts encoder-decoder architecture as the backbone which iteratively aggregates the projection and up-sampling to fuse local low-high resolution features across isolated layers. The transformer adopts the multi-head self-attention mechanism to extract long-range features from the tokenized image patches and fuses these features with the local-range features extracted by down-sampling operation in the backbone network. These hybrid features are used to assist the cascaded up-sampling operations to local the position of the target tissues. LLRHNet is evaluated on two multiple lesions medical image data sets, including a public liver-related segmentation data set (3DIRCADb) and an in-house stroke and white matter hyperintensity (SWMH) segmentation data set. Experimental results denote that LLRHNet achieves state-of-the-art performance on both data sets.
Collapse
Affiliation(s)
- Liangliang Liu
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, China
| | - Ying Wang
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, China
| | - Jing Chang
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, China
| | - Pei Zhang
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, China
| | - Gongbo Liang
- Department of Computer Science, Eastern Kentucky University, Richmond, KY, United States
| | - Hui Zhang
- College of Information and Management Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
18
|
2.5D lightweight RIU-Net for automatic liver and tumor segmentation from CT. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Ahmad M, Qadri SF, Qadri S, Saeed IA, Zareen SS, Iqbal Z, Alabrah A, Alaghbari HM, Mizanur Rahman SM. A Lightweight Convolutional Neural Network Model for Liver Segmentation in Medical Diagnosis. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7954333. [PMID: 35755754 PMCID: PMC9225858 DOI: 10.1155/2022/7954333] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022]
Abstract
Liver segmentation and recognition from computed tomography (CT) images is a warm topic in image processing which is helpful for doctors and practitioners. Currently, many deep learning methods are used for liver segmentation that takes a long time to train the model which makes this task challenging and limited to larger hardware resources. In this research, we proposed a very lightweight convolutional neural network (CNN) to extract the liver region from CT scan images. The suggested CNN algorithm consists of 3 convolutional and 2 fully connected layers, where softmax is used to discriminate the liver from background. Random Gaussian distribution is used for weight initialization which achieved a distance-preserving-embedding of the information. The proposed network is known as Ga-CNN (Gaussian-weight initialization of CNN). General experiments are performed on three benchmark datasets including MICCAI SLiver'07, 3Dircadb01, and LiTS17. Experimental results show that the proposed method performed well on each benchmark dataset.
Collapse
Affiliation(s)
- Mubashir Ahmad
- Department of Computer Science and IT, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Syed Furqan Qadri
- College of Computer Science and Software Engineering, Computer Vision Institute, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Salman Qadri
- Computer Science Department, MNS-University of Agriculture, Multan 60650, Pakistan
| | - Iftikhar Ahmed Saeed
- Department of Computer Science and IT, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Syeda Shamaila Zareen
- Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Zafar Iqbal
- Department of Computer Science, Ibadat International University, Islamabad 44000, Pakistan
| | - Amerah Alabrah
- Department of Information Systems, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
| | | | - Sk. Md. Mizanur Rahman
- Information and Communication Engineering Technology, School of Engineering Technology and Applied Science, Centennial College, Toronto, Canada
| |
Collapse
|
20
|
Chen Y, Hu F, Wang Y, Zheng C. Hybrid-attention densely connected U-Net with GAP for extracting livers from CT volumes. Med Phys 2022; 49:1015-1033. [PMID: 35015305 DOI: 10.1002/mp.15435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Liver segmentation is an important step in the clinical treatment of liver cancer, and accurate and automatic liver segmentation methods are extremely important. U-Net has been used as the benchmark for many medical segmentation networks, but it cannot fully utilize low-resolution information and global contextual information. To solve these problems, we propose a new network architecture named the hybrid-attention densely connected U-Net (HDU-Net). METHODS The proposed HDU-Net has three main changes relative to U-Net, as follows: (1) It uses a densely connected structure and dilated convolution to achieve feature reuse and avoid information loss. (2) A global average pooling block is proposed to further augment the receptive field and improve the segmentation accuracy of the network for small or disconnected liver regions. (3) By combining the spatial attention and channel attention mechanisms, a hybrid attention structure is proposed to replace the skip connection component to filter and integrate low-resolution information. RESULTS Experiments conducted on the LITS2017, 3Dircadb and Sliver07 datasets show that the proposed model can segment the liver accurately and effectively. Dice scores reach 96.5%, 96.18%, and 97.57% on these datasets, respectively, constituting results that are superior to many previously proposed methods. CONCLUSIONS The experimental liver segmentation results have demonstrated that our proposed network provides improved segmentation performance in comparison with other networks. The experimental results without postprocessing confirmed that our network solves the oversegmentation and undersegmentation problems to some extent. The proposed model is effective, robust, and efficient in terms of liver segmentation without requiring extensive training time or a very large dataset.
Collapse
Affiliation(s)
- Ying Chen
- School of Software, Nanchang Hangkong University, Nanchang, China
| | - Fei Hu
- School of Software, Nanchang Hangkong University, Nanchang, China
| | - Yerong Wang
- School of Software, Nanchang Hangkong University, Nanchang, China
| | - Cheng Zheng
- School of Software, Nanchang Hangkong University, Nanchang, China
| |
Collapse
|
21
|
Lei T, Wang R, Zhang Y, Wan Y, Liu C, Nandi AK. DefED-Net: Deformable Encoder-Decoder Network for Liver and Liver Tumor Segmentation. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3059780] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
|
23
|
RMS-UNet: Residual multi-scale UNet for liver and lesion segmentation. Artif Intell Med 2022; 124:102231. [DOI: 10.1016/j.artmed.2021.102231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
|
24
|
Seo H, Yu L, Ren H, Li X, Shen L, Xing L. Deep Neural Network With Consistency Regularization of Multi-Output Channels for Improved Tumor Detection and Delineation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3369-3378. [PMID: 34048339 PMCID: PMC8692166 DOI: 10.1109/tmi.2021.3084748] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Deep learning is becoming an indispensable tool for imaging applications, such as image segmentation, classification, and detection. In this work, we reformulate a standard deep learning problem into a new neural network architecture with multi-output channels, which reflects different facets of the objective, and apply the deep neural network to improve the performance of image segmentation. By adding one or more interrelated auxiliary-output channels, we impose an effective consistency regularization for the main task of pixelated classification (i.e., image segmentation). Specifically, multi-output-channel consistency regularization is realized by residual learning via additive paths that connect main-output channel and auxiliary-output channels in the network. The method is evaluated on the detection and delineation of lung and liver tumors with public data. The results clearly show that multi-output-channel consistency implemented by residual learning improves the standard deep neural network. The proposed framework is quite broad and should find widespread applications in various deep learning problems.
Collapse
|
25
|
He B, Yin D, Chen X, Luo H, Xiao D, He M, Wang G, Fang C, Liu L, Jia F. A study of generalization and compatibility performance of 3D U-Net segmentation on multiple heterogeneous liver CT datasets. BMC Med Imaging 2021; 21:178. [PMID: 34819022 PMCID: PMC8611902 DOI: 10.1186/s12880-021-00708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Most existing algorithms have been focused on the segmentation from several public Liver CT datasets scanned regularly (no pneumoperitoneum and horizontal supine position). This study primarily segmented datasets with unconventional liver shapes and intensities deduced by contrast phases, irregular scanning conditions, different scanning objects of pigs and patients with large pathological tumors, which formed the multiple heterogeneity of datasets used in this study. METHODS The multiple heterogeneous datasets used in this paper includes: (1) One public contrast-enhanced CT dataset and one public non-contrast CT dataset; (2) A contrast-enhanced dataset that has abnormal liver shape with very long left liver lobes and large-sized liver tumors with abnormal presets deduced by microvascular invasion; (3) One artificial pneumoperitoneum dataset under the pneumoperitoneum and three scanning profiles (horizontal/left/right recumbent position); (4) Two porcine datasets of Bama type and domestic type that contains pneumoperitoneum cases but with large anatomy discrepancy with humans. The study aimed to investigate the segmentation performances of 3D U-Net in: (1) generalization ability between multiple heterogeneous datasets by cross-testing experiments; (2) the compatibility when hybrid training all datasets in different sampling and encoder layer sharing schema. We further investigated the compatibility of encoder level by setting separate level for each dataset (i.e., dataset-wise convolutions) while sharing the decoder. RESULTS Model trained on different datasets has different segmentation performance. The prediction accuracy between LiTS dataset and Zhujiang dataset was about 0.955 and 0.958 which shows their good generalization ability due to that they were all contrast-enhanced clinical patient datasets scanned regularly. For the datasets scanned under pneumoperitoneum, their corresponding datasets scanned without pneumoperitoneum showed good generalization ability. Dataset-wise convolution module in high-level can improve the dataset unbalance problem. The experimental results will facilitate researchers making solutions when segmenting those special datasets. CONCLUSIONS (1) Regularly scanned datasets is well generalized to irregularly ones. (2) The hybrid training is beneficial but the dataset imbalance problem always exits due to the multi-domain homogeneity. The higher levels encoded more domain specific information than lower levels and thus were less compatible in terms of our datasets.
Collapse
Affiliation(s)
- Baochun He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Xiaoxia Chen
- Department of Radiology, The Third Medical Center, General Hospital of PLA, Beijing, China
| | - Huoling Luo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Deqiang Xiao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Mu He
- First Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Guisheng Wang
- Department of Radiology, The Third Medical Center, General Hospital of PLA, Beijing, China
| | - Chihua Fang
- First Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, University of Science and Technology of China, Hefei, China.
| | - Fucang Jia
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China.
- Pazhou Lab, Guangzhou, China.
| |
Collapse
|
26
|
Yao S, Ye Z, Wei Y, Jiang HY, Song B. Radiomics in hepatocellular carcinoma: A state-of-the-art review. World J Gastrointest Oncol 2021; 13:1599-1615. [PMID: 34853638 PMCID: PMC8603458 DOI: 10.4251/wjgo.v13.i11.1599] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/22/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common cancer and the second major contributor to cancer-related mortality. Radiomics, a burgeoning technology that can provide invisible high-dimensional quantitative and mineable data derived from routine-acquired images, has enormous potential for HCC management from diagnosis to prognosis as well as providing contributions to the rapidly developing deep learning methodology. This article aims to review the radiomics approach and its current state-of-the-art clinical application scenario in HCC. The limitations, challenges, and thoughts on future directions are also summarized.
Collapse
Affiliation(s)
- Shan Yao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Han-Yu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
27
|
Multi-Resolution Image Segmentation Based on a Cascaded U-ADenseNet for the Liver and Tumors. J Pers Med 2021; 11:jpm11101044. [PMID: 34683185 PMCID: PMC8541015 DOI: 10.3390/jpm11101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
The liver is an irreplaceable organ in the human body, maintaining life activities and metabolism. Malignant tumors of the liver have a high mortality rate at present. Computer-aided segmentation of the liver and tumors has significant effects on clinical diagnosis and treatment. There are still many challenges in the segmentation of the liver and liver tumors simultaneously, such as, on the one hand, that convolutional kernels with fixed geometric structures do not match complex, irregularly shaped targets; on the other, pooling during convolution results in a loss of spatial contextual information of images. In this work, we designed a cascaded U-ADenseNet with coarse-to-fine processing for addressing the above issues of fully automatic segmentation. This work contributes multi-resolution input images and multi-layered channel attention combined with atrous spatial pyramid pooling densely connected in the fine segmentation. The proposed model was evaluated by a public dataset of the Liver Tumor Segmentation Challenge (LiTS). Our approach attained competitive liver and tumor segmentation scores that exceeded other methods across a wide range of metrics.
Collapse
|
28
|
Zhou L, Deng X, Li W, Zheng S, Lei B. A contour-aware feature-merged network for liver segmentation based on shape prior knowledge. Neurocomputing 2021; 457:389-399. [DOI: 10.1016/j.neucom.2021.04.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Chen C, Zhou K, Zha M, Qu X, Guo X, Chen H, Wang Z, Xiao R. An Effective Deep Neural Network for Lung Lesions Segmentation From COVID-19 CT Images. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2021; 17:6528-6538. [PMID: 37981911 PMCID: PMC8545014 DOI: 10.1109/tii.2021.3059023] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/10/2021] [Accepted: 01/30/2021] [Indexed: 11/15/2023]
Abstract
Automatic segmentation of lung lesions from COVID-19 computed tomography (CT) images can help to establish a quantitative model for diagnosis and treatment. For this reason, this article provides a new segmentation method to meet the needs of CT images processing under COVID-19 epidemic. The main steps are as follows: First, the proposed region of interest extraction implements patch mechanism strategy to satisfy the applicability of 3-D network and remove irrelevant background. Second, 3-D network is established to extract spatial features, where 3-D attention model promotes network to enhance target area. Then, to improve the convergence of network, a combination loss function is introduced to lead gradient optimization and training direction. Finally, data augmentation and conditional random field are applied to realize data resampling and binary segmentation. This method was assessed with some comparative experiment. By comparison, the proposed method reached the highest performance. Therefore, it has potential clinical applications.
Collapse
Affiliation(s)
- Cheng Chen
- School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Kangneng Zhou
- School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Muxi Zha
- School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Xiangyan Qu
- School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Xiaoyu Guo
- School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Hongyu Chen
- School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Zhiliang Wang
- School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing100083China
| | - Ruoxiu Xiao
- School of Computer and Communication EngineeringUniversity of Science and Technology BeijingBeijing100083China
- Institute of Artificial IntelligenceUniversity of Science and Technology BeijingBeijing100083China
| |
Collapse
|
30
|
COVID-19 Lesion Segmentation Using Lung CT Scan Images: Comparative Study Based on Active Contour Models. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pneumonia is a lung infection that threatens all age groups. In this paper, we use CT scans to investigate the effectiveness of active contour models (ACMs) for segmentation of pneumonia caused by the Coronavirus disease (COVID-19) as one of the successful methods for image segmentation. A comparison has been made between the performances of the state-of-the-art methods performed based on a database of lung CT scan images. This review helps the reader to identify starting points for research in the field of active contour models on COVID-19, which is a high priority for researchers and practitioners. Finally, the experimental results indicate that active contour methods achieve promising results when there are not enough images to use deep learning-based methods as one of the powerful tools for image segmentation.
Collapse
|
31
|
Alirr OI, Rahni AAA. Survey on Liver Tumour Resection Planning System: Steps, Techniques, and Parameters. J Digit Imaging 2021; 33:304-323. [PMID: 31428898 DOI: 10.1007/s10278-019-00262-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Preoperative planning for liver surgical treatments is an essential planning tool that aids in reducing the risks of surgical resection. Based on the computed tomography (CT) images, the resection can be planned before the actual tumour resection surgery. The computer-aided system provides an overview of the spatial relationships of the liver organ and its internal structures, tumours, and vasculature. It also allows for an accurate calculation of the remaining liver volume after resection. The aim of this paper was to review the main stages of the computer-aided system that helps to evaluate the risk of resection during liver cancer surgical treatments. The computer-aided system assists with surgical planning by enabling physicians to get volumetric measurements and visualise the liver, tumours, and surrounding vasculature. In this paper, it is concluded that for accurate planning of tumour resections, the liver organ and its internal structures should be segmented to understand the clear spatial relationship between them, thus allowing for a safer resection. This paper presents the main proposed segmentation techniques for each stage in the computer-aided system, namely the liver organ, tumours, and vessels. From the reviewed methods, it has been found that instead of relying on a single specific technique, a combination of a group of techniques would give more accurate segmentation results. The extracted masks from the segmentation algorithms are fused together to give the surgeons the 3D visualisation tool to study the spatial relationships of the liver and to calculate the required resection planning parameters.
Collapse
Affiliation(s)
- Omar Ibrahim Alirr
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Ashrani Aizzuddin Abd Rahni
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
32
|
Peng K, Fang B, Zhou M. Cascaded Deeply Supervised Convolutional Networks for Liver Lesion Segmentation. INT J PATTERN RECOGN 2021. [DOI: 10.1142/s0218001421520145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Liver lesion segmentation from abdomen computed tomography (CT) with deep neural networks remains challenging due to the small volume and the unclear boundary. To effectively tackle these problems, in this paper, we propose a cascaded deeply supervised convolutional networks (CDS-Net). The cascaded deep supervision (CDS) mechanism uses auxiliary losses to construct a cascaded segmentation method in a single network, focusing the network attention on pixels that are more difficult to classify, so that the network can segment the lesion more effectively. CDS mechanism can be easily integrated into standard CNN models and it helps to increase the model sensitivity and prediction accuracy. Based on CDS mechanism, we propose a cascaded deep supervised ResUNet, which is an end-to-end liver lesion segmentation network. We conduct experiments on LiTS and 3DIRCADb dataset. Our method has achieved competitive results compared with other state-of-the-art ones.
Collapse
Affiliation(s)
- Kaiyi Peng
- College of Computer Science, Chongqing University, Chongqing 400044, P. R. China
| | - Bin Fang
- College of Computer Science, Chongqing University, Chongqing 400044, P. R. China
| | - Mingliang Zhou
- College of Computer Science, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
33
|
Zhang G, Yang Z, Huo B, Chai S, Jiang S. Multiorgan segmentation from partially labeled datasets with conditional nnU-Net. Comput Biol Med 2021; 136:104658. [PMID: 34311262 DOI: 10.1016/j.compbiomed.2021.104658] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022]
Abstract
Accurate and robust multiorgan abdominal CT segmentation plays a significant role in numerous clinical applications, such as therapy treatment planning and treatment delivery. Almost all existing segmentation networks rely on fully annotated data with strong supervision. However, annotating fully annotated multiorgan data in CT images is both laborious and time-consuming. In comparison, massive partially labeled datasets are usually easily accessible. In this paper, we propose conditional nnU-Net trained on the union of partially labeled datasets for multiorgan segmentation. The deep model employs the state-of-the-art nnU-Net as the backbone and introduces a conditioning strategy by feeding auxiliary information into the decoder architecture as an additional input layer. This model leverages the prior conditional information to identify the organ class at the pixel-wise level and encourages organs' spatial information recovery. Furthermore, we adopt a deep supervision mechanism to refine the outputs at different scales and apply the combination of Dice loss and Focal loss to optimize the training model. Our proposed method is evaluated on seven publicly available datasets of the liver, pancreas, spleen and kidney, in which promising segmentation performance has been achieved. The proposed conditional nnU-Net breaks down the barriers between nonoverlapping labeled datasets and further alleviates the problem of data hunger in multiorgan segmentation.
Collapse
Affiliation(s)
- Guobin Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhiyong Yang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Bin Huo
- Department of Oncology, Tianjin Medical University Second Hospital, Tianjin, 300211, China
| | - Shude Chai
- Department of Oncology, Tianjin Medical University Second Hospital, Tianjin, 300211, China
| | - Shan Jiang
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
34
|
Nazir A, Cheema MN, Sheng B, Li P, Kim J, Lee TY. Living Donor-Recipient Pair Matching for Liver Transplant via Ternary Tree Representation With Cascade Incremental Learning. IEEE Trans Biomed Eng 2021; 68:2540-2551. [PMID: 33417536 DOI: 10.1109/tbme.2021.3050310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Visual understanding of liver vessels anatomy between the living donor-recipient (LDR) pair can assist surgeons to optimize transplant planning by avoiding non-targeted arteries which can cause severe complications. We propose to visually analyze the anatomical variants of the liver vessels anatomy to maximize similarity for finding a suitable Living Donor-Recipient (LDR) pair. Liver vessels are segmented from computed tomography angiography (CTA) volumes by employing a cascade incremental learning (CIL) model. Our CIL architecture is able to find optimal solutions, which we use to update the model with liver vessel CTA images. A novel ternary tree based algorithm is proposed to map all the possible liver vessel variants into their respective tree topologies. The tree topologies of the recipient's and donor's liver vessels are then used for an appropriate matching. The proposed algorithm utilizes a set of defined vessel tree variants which are updated to maintain the maximum matching options by leveraging the accurate segmentation results of the vessels derived from the incremental learning ability of the CIL. We introduce a novel concept of in-order digital string based comparison to match the geometry of two anatomically varied trees. Experiments through visual illustrations and quantitative analysis demonstrated the effectiveness of our approach compared to state-of-the-art.
Collapse
|
35
|
Shi C, Xian M, Zhou X, Wang H, Cheng HD. Multi-slice low-rank tensor decomposition based multi-atlas segmentation: Application to automatic pathological liver CT segmentation. Med Image Anal 2021; 73:102152. [PMID: 34280669 DOI: 10.1016/j.media.2021.102152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/02/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
Liver segmentation from abdominal CT images is an essential step for liver cancer computer-aided diagnosis and surgical planning. However, both the accuracy and robustness of existing liver segmentation methods cannot meet the requirements of clinical applications. In particular, for the common clinical cases where the liver tissue contains major pathology, current segmentation methods show poor performance. In this paper, we propose a novel low-rank tensor decomposition (LRTD) based multi-atlas segmentation (MAS) framework that achieves accurate and robust pathological liver segmentation of CT images. Firstly, we propose a multi-slice LRTD scheme to recover the underlying low-rank structure embedded in 3D medical images. It performs the LRTD on small image segments consisting of multiple consecutive image slices. Then, we present an LRTD-based atlas construction method to generate tumor-free liver atlases that mitigates the performance degradation of liver segmentation due to the presence of tumors. Finally, we introduce an LRTD-based MAS algorithm to derive patient-specific liver atlases for each test image, and to achieve accurate pairwise image registration and label propagation. Extensive experiments on three public databases of pathological liver cases validate the effectiveness of the proposed method. Both qualitative and quantitative results demonstrate that, in the presence of major pathology, the proposed method is more accurate and robust than state-of-the-art methods.
Collapse
Affiliation(s)
- Changfa Shi
- Mobile E-business Collaborative Innovation Center of Hunan Province, Hunan University of Technology and Business, Changsha 410205, China; Department of Computer Science, Utah State University, Logan, UT 84322, USA
| | - Min Xian
- Department of Computer Science, University of Idaho, Idaho Falls, ID 83402, USA.
| | - Xiancheng Zhou
- Mobile E-business Collaborative Innovation Center of Hunan Province, Hunan University of Technology and Business, Changsha 410205, China
| | - Haotian Wang
- Department of Computer Science, University of Idaho, Idaho Falls, ID 83402, USA
| | - Heng-Da Cheng
- Department of Computer Science, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
36
|
Boundary Loss-Based 2.5D Fully Convolutional Neural Networks Approach for Segmentation: A Case Study of the Liver and Tumor on Computed Tomography. ALGORITHMS 2021. [DOI: 10.3390/a14050144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Image segmentation plays an important role in the field of image processing, helping to understand images and recognize objects. However, most existing methods are often unable to effectively explore the spatial information in 3D image segmentation, and they neglect the information from the contours and boundaries of the observed objects. In addition, shape boundaries can help to locate the positions of the observed objects, but most of the existing loss functions neglect the information from the boundaries. To overcome these shortcomings, this paper presents a new cascaded 2.5D fully convolutional networks (FCNs) learning framework to segment 3D medical images. A new boundary loss that incorporates distance, area, and boundary information is also proposed for the cascaded FCNs to learning more boundary and contour features from the 3D medical images. Moreover, an effective post-processing method is developed to further improve the segmentation accuracy. We verified the proposed method on LITS and 3DIRCADb datasets that include the liver and tumors. The experimental results show that the performance of the proposed method is better than existing methods with a Dice Per Case score of 74.5% for tumor segmentation, indicating the effectiveness of the proposed method.
Collapse
|
37
|
Sahu P, Zhao Y, Bhatia P, Bogoni L, Jerebko A, Qin H. Structure Correction for Robust Volume Segmentation in Presence of Tumors. IEEE J Biomed Health Inform 2021; 25:1151-1162. [PMID: 32750948 DOI: 10.1109/jbhi.2020.3004296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
CNN based lung segmentation models in absence of diverse training dataset fail to segment lung volumes in presence of severe pathologies such as large masses, scars, and tumors. To rectify this problem, we propose a multi-stage algorithm for lung volume segmentation from CT scans. The algorithm uses a 3D CNN in the first stage to obtain a coarse segmentation of the left and right lungs. In the second stage, shape correction is performed on the segmentation mask using a 3D structure correction CNN. A novel data augmentation strategy is adopted to train a 3D CNN which helps in incorporating global shape prior. Finally, the shape corrected segmentation mask is up-sampled and refined using a parallel flood-fill operation. The proposed multi-stage algorithm is robust in the presence of large nodules/tumors and does not require labeled segmentation masks for entire pathological lung volume for training. Through extensive experiments conducted on publicly available datasets such as NSCLC, LUNA, and LOLA11 we demonstrate that the proposed approach improves the recall of large juxtapleural tumor voxels by at least 15% over state-of-the-art models without sacrificing segmentation accuracy in case of normal lungs. The proposed method also meets the requirement of CAD software by performing segmentation within 5 seconds which is significantly faster than present methods.
Collapse
|
38
|
Le DC, Chinnasarn K, Chansangrat J, Keeratibharat N, Horkaew P. Semi-automatic liver segmentation based on probabilistic models and anatomical constraints. Sci Rep 2021; 11:6106. [PMID: 33731736 PMCID: PMC7969941 DOI: 10.1038/s41598-021-85436-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Segmenting a liver and its peripherals from abdominal computed tomography is a crucial step toward computer aided diagnosis and therapeutic intervention. Despite the recent advances in computing methods, faithfully segmenting the liver has remained a challenging task, due to indefinite boundary, intensity inhomogeneity, and anatomical variations across subjects. In this paper, a semi-automatic segmentation method based on multivariable normal distribution of liver tissues and graph-cut sub-division is presented. Although it is not fully automated, the method minimally involves human interactions. Specifically, it consists of three main stages. Firstly, a subject specific probabilistic model was built from an interior patch, surrounding a seed point specified by the user. Secondly, an iterative assignment of pixel labels was applied to gradually update the probabilistic map of the tissues based on spatio-contextual information. Finally, the graph-cut model was optimized to extract the 3D liver from the image. During post-processing, overly segmented nodal regions due to fuzzy tissue separation were removed, maintaining its correct anatomy by using robust bottleneck detection with adjacent contour constraint. The proposed system was implemented and validated on the MICCAI SLIVER07 dataset. The experimental results were benchmarked against the state-of-the-art methods, based on major clinically relevant metrics. Both visual and numerical assessments reported herein indicated that the proposed system could improve the accuracy and reliability of asymptomatic liver segmentation.
Collapse
Affiliation(s)
- Doan Cong Le
- School of Computer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Krisana Chinnasarn
- Department of Computer Science, Faculty of Informatics, Burapha University, Chon Buri, Thailand
| | - Jirapa Chansangrat
- School of Radiology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Nattawut Keeratibharat
- School of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Paramate Horkaew
- School of Computer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand.
| |
Collapse
|
39
|
Tan M, Wu F, Kong D, Mao X. Automatic liver segmentation using 3D convolutional neural networks with a hybrid loss function. Med Phys 2021; 48:1707-1719. [PMID: 33496971 DOI: 10.1002/mp.14732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Automatic liver segmentation from abdominal computed tomography (CT) images is a fundamental task in computer-assisted liver surgery programs. Many liver segmentation algorithms are very sensitive to fuzzy boundaries and heterogeneous pathologies, especially when the data are scarce. To solve these problems, we propose an automatic liver segmentation framework based on three-dimensional (3D) convolutional neural networks with a hybrid loss function. METHODS Two networks are incorporated in our method with the first being a liver shape autoencoder that is trained to obtain compressed codes of liver shapes, and the second being a liver segmentation network that is trained with a hybrid loss function. The design of the hybrid loss function is comprised of three parts. The first part is an adaptively weighted cross-entropy loss, which pays more attention to misclassified pixels. The second part is an edge-preserving smoothness loss, which guarantees that the adjacent pixels with the same label have similar outputs, while dissimilar for pixels with different labels. The third part of the loss is a shape constraint to model high-level structural differences based on the learned shape codes. Both networks use 3D operations for data processing. In our experiments, data augmentation is performed at both the training and the test stage. RESULTS We extensively evaluated our method on two datasets: the Segmentation of the Liver Competition 2007 (Sliver07), and the Combined (CT-MR) Healthy Abdominal Organ Segmentation (CHAOS) Challenge. Finally, with only 20 training scans, we achieved the best score of 82.55 on the Sliver07 challenge, and a score of 83.02 on the CHAOS challenge. CONCLUSIONS In this study, we proposed a novel hybrid loss to overcome the difficulties in liver segmentation. The quantitative and qualitative results demonstrate that our method is highly suited for pathological liver segmentation, even when trained with a small dataset.
Collapse
Affiliation(s)
- Man Tan
- The School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Fa Wu
- The School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Dexing Kong
- The School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiongwei Mao
- The Radiology Department, The Hospital of Zhejiang University, Hangzhou, Zhejiang, 310058, China.,The Radiology Department, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
40
|
Ren S, Zhan L, Chen S, Dai H, Ruan G, Li S, Liu L, Lin R, Chen H. Segmentation and Registration of the Liver in Dynamic Contrast-Enhanced Computed Tomography Images. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2021. [DOI: 10.1166/jmihi.2021.3327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dynamic contrast-enhanced computed tomography (DCE-CT) is the main auxiliary diagnostic tool for liver diseases. Liver segmentation and registration in all stages of DCE-CT images are the key technology for big data analysis of liver disease diagnosis. The change of imaging conditions
in different stages of DCE-CT brings enormous challenges to the segmentation of liver CT images. This study proposes an automatic model for liver segmentation from abdominal CT images in different stages of DCE on the basis of U-Net. The skip connection in U-Net can improve the ability of
complex feature recognition. A total of 4863 CT slices from 16 patients with hepatocellular carcinoma (HCC) were selected as the training set, and 1754 CT slices from 6 patients with HCC were selected as the test set. The training and test sets included plain scan, hepatic arterial-dominant
phase, and portal venous-dominant phase CT scans. Results showed that the Dice value of the proposed method was significantly higher than those of the full convolutional network and region-growing method. Then, 3D reconstruction and registration were performed on the segmentation results of
the liver region of DCE-CT images. The proposed method obtained the best performance, which can provide technical support for the big data analysis of liver diseases.
Collapse
Affiliation(s)
- Shuai Ren
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Ling Zhan
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Shuchao Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Haitao Dai
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Guangying Ruan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Sai Li
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Lizhi Liu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Run Lin
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Hongbo Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
41
|
He Q, Shao J, Pu J, Zhou M, M M, Xiang S, Su W. FRFCM clustering segmentation method for medical MR image feature diagnosis. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021; 40:2871-2879. [DOI: 10.3233/jifs-189327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Medical image recognition is affected by characteristics such as blur and noise, which cause medical image features that cannot be effectively identified and directly affects clinical diagnostics. In order to improve the diagnostic effect of medical MR image features, based on the FRFCM clustering segmentation method, this study combines the medical MR image feature reality, collects data for traditional clustering method analysis, and sorts out the shortcomings of traditional clustering methods. Simultaneously, this study improves the traditional clustering method by combining medical image feature diagnosis requirements. In addition, this study carried out image data processing through simulation, and designed comparative experiments to analyze the performance of the algorithm. The research shows that the FRFCM combined with the intuitionistic fuzzy set proposed in this paper has greatly improved the noise immunity and segmentation performance compared with the FCM based fuzzy set.
Collapse
Affiliation(s)
- Qian He
- Department of Radiology, The Second People’s Hospital of Yunnan Province, Kunming, PR China
| | - Juwei Shao
- Department of Radiology, The Second People’s Hospital of Yunnan Province, Kunming, PR China
| | - Jian Pu
- Department of Radiology, The Second People’s Hospital of Yunnan Province, Kunming, PR China
| | - Minjie Zhou
- Department of Radiology, The Second People’s Hospital of Yunnan Province, Kunming, PR China
| | - M. M
- Department of Radiology, The Second People’s Hospital of Yunnan Province, Kunming, PR China
| | - Shutian Xiang
- Department of Radiology, The Second People’s Hospital of Yunnan Province, Kunming, PR China
| | - Wei Su
- Department of Radiology, The Second People’s Hospital of Yunnan Province, Kunming, PR China
| |
Collapse
|
42
|
Akhtar Y, Dakua SP, Abdalla A, Aboumarzouk OM, Ansari MY, Abinahed J, Elakkad MSM, Al-Ansari A. Risk Assessment of Computer-aided Diagnostic Software for Hepatic Resection. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2021.3071148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yusuf Akhtar
- Electronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata, India
| | | | | | | | | | - Julien Abinahed
- Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | | |
Collapse
|
43
|
Liu L, Wu FX, Wang YP, Wang J. Multi-Receptive-Field CNN for Semantic Segmentation of Medical Images. IEEE J Biomed Health Inform 2020; 24:3215-3225. [DOI: 10.1109/jbhi.2020.3016306] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Li Y, Zhao YQ, Zhang F, Liao M, Yu LL, Chen BF, Wang YJ. Liver segmentation from abdominal CT volumes based on level set and sparse shape composition. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 195:105533. [PMID: 32502932 DOI: 10.1016/j.cmpb.2020.105533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Liver segmentation from abdominal CT volumes is a primary step for computer-aided surgery and liver disease diagnosis. However, accurate liver segmentation remains a challenging task for intensity inhomogeneity and serious pathologies occurring in liver CT volume. This paper presents a novel framework for accurate liver segmentation from CT images. METHODS Firstly, a novel level set integrated with intensity bias and position constraint is applied, and for normal liver, the generated liver regions are regarded as the final results. Then, for pathological liver, a sparse shape composition (SSC)-based method is presented to refine liver shapes, followed by an improved graph cut to further optimize segmentation results. The level set-based method is capable of overcoming intensity inhomogeneity in object regions, and the SSC- and graph cut-based strategy has outstanding power to address under-segmentation appearing in pathological livers. RESULTS The experiments conducted on public databases SLIVER07 and 3Dircadb show that the proposed method can segment both healthy and pathological liver effectively. The segmentation performance in terms of mean ASD, RMSD, MSD, VOE and RVD on SLIVER07 are 0.9mm, 1.8mm, 19.4mm, 5.1% and 0.1%, respectively, and on 3Dircadb are 1.6mm, 3.1mm, 27.2mm, 9.2% and 0.5%, respectively, which outperforms many existing methods. CONCLUSIONS The proposed method does not require complex training procedure on numerous liver samples, and has satisfying and robust segmentation performance on both normal and pathological liver in various shapes.
Collapse
Affiliation(s)
- Yang Li
- School of Automation, Central South University, Changsha 410083, China; School of Computer Science and Engineering, Changsha 410083, China; Hunan Engineering Research Center of High Strength Fastener Intelligent Manufacturing, Changde 415701, China
| | - Yu-Qian Zhao
- School of Automation, Central South University, Changsha 410083, China; School of Computer Science and Engineering, Changsha 410083, China; Hunan Engineering Research Center of High Strength Fastener Intelligent Manufacturing, Changde 415701, China; DeepBlue Technology (Shanghai) Co., Ltd, Shanghai, 200042.
| | - Fan Zhang
- School of Automation, Central South University, Changsha 410083, China; Hunan Engineering Research Center of High Strength Fastener Intelligent Manufacturing, Changde 415701, China
| | - Miao Liao
- School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Ling-Li Yu
- School of Automation, Central South University, Changsha 410083, China; Hunan Engineering Research Center of High Strength Fastener Intelligent Manufacturing, Changde 415701, China
| | - Bai-Fan Chen
- School of Automation, Central South University, Changsha 410083, China
| | - Yan-Jin Wang
- School of Xiangya Hospital, Central South University, Changsha 410075, China.
| |
Collapse
|
45
|
Winther H, Hundt C, Ringe KI, Wacker FK, Schmidt B, Jürgens J, Haimerl M, Beyer LP, Stroszczynski C, Wiggermann P, Verloh N. A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI. ROFO-FORTSCHR RONTG 2020; 193:305-314. [PMID: 32882724 DOI: 10.1055/a-1238-2887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE To create a fully automated, reliable, and fast segmentation tool for Gd-EOB-DTPA-enhanced MRI scans using deep learning. MATERIALS AND METHODS Datasets of Gd-EOB-DTPA-enhanced liver MR images of 100 patients were assembled. Ground truth segmentation of the hepatobiliary phase images was performed manually. Automatic image segmentation was achieved with a deep convolutional neural network. RESULTS Our neural network achieves an intraclass correlation coefficient (ICC) of 0.987, a Sørensen-Dice coefficient of 96.7 ± 1.9 % (mean ± std), an overlap of 92 ± 3.5 %, and a Hausdorff distance of 24.9 ± 14.7 mm compared with two expert readers who corresponded to an ICC of 0.973, a Sørensen-Dice coefficient of 95.2 ± 2.8 %, and an overlap of 90.9 ± 4.9 %. A second human reader achieved a Sørensen-Dice coefficient of 95 % on a subset of the test set. CONCLUSION Our study introduces a fully automated liver volumetry scheme for Gd-EOB-DTPA-enhanced MR imaging. The neural network achieves competitive concordance with the ground truth regarding ICC, Sørensen-Dice, and overlap compared with manual segmentation. The neural network performs the task in just 60 seconds. KEY POINTS · The proposed neural network helps to segment the liver accurately, providing detailed information about patient-specific liver anatomy and volume.. · With the help of a deep learning-based neural network, fully automatic segmentation of the liver on MRI scans can be performed in seconds.. · A fully automatic segmentation scheme makes liver segmentation on MRI a valuable tool for treatment planning.. CITATION FORMAT · Winther H, Hundt C, Ringe KI et al. A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI. Fortschr Röntgenstr 2021; 193: 305 - 314.
Collapse
Affiliation(s)
- Hinrich Winther
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Christian Hundt
- Institute for Computer Science, Johannes Gutenberg University, Mainz, Germany
| | - Kristina Imeen Ringe
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Frank K Wacker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Bertil Schmidt
- Institute for Computer Science, Johannes Gutenberg University, Mainz, Germany
| | - Julian Jürgens
- Department of Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Lukas Philipp Beyer
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | | | - Philipp Wiggermann
- Department of Radiology and Nuclear Medicine, Hospital Braunschweig, Germany
| | - Niklas Verloh
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
46
|
Seo H, Huang C, Bassenne M, Xiao R, Xing L. Modified U-Net (mU-Net) With Incorporation of Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in CT Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1316-1325. [PMID: 31634827 PMCID: PMC8095064 DOI: 10.1109/tmi.2019.2948320] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Segmentation of livers and liver tumors is one of the most important steps in radiation therapy of hepatocellular carcinoma. The segmentation task is often done manually, making it tedious, labor intensive, and subject to intra-/inter- operator variations. While various algorithms for delineating organ-at-risks (OARs) and tumor targets have been proposed, automatic segmentation of livers and liver tumors remains intractable due to their low tissue contrast with respect to the surrounding organs and their deformable shape in CT images. The U-Net has gained increasing popularity recently for image analysis tasks and has shown promising results. Conventional U-Net architectures, however, suffer from three major drawbacks. First, skip connections allow for the duplicated transfer of low resolution information in feature maps to improve efficiency in learning, but this often leads to blurring of extracted image features. Secondly, high level features extracted by the network often do not contain enough high resolution edge information of the input, leading to greater uncertainty where high resolution edge dominantly affects the network's decisions such as liver and liver-tumor segmentation. Thirdly, it is generally difficult to optimize the number of pooling operations in order to extract high level global features, since the number of pooling operations used depends on the object size. To cope with these problems, we added a residual path with deconvolution and activation operations to the skip connection of the U-Net to avoid duplication of low resolution information of features. In the case of small object inputs, features in the skip connection are not incorporated with features in the residual path. Furthermore, the proposed architecture has additional convolution layers in the skip connection in order to extract high level global features of small object inputs as well as high level features of high resolution edge information of large object inputs. Efficacy of the modified U-Net (mU-Net) was demonstrated using the public dataset of Liver tumor segmentation (LiTS) challenge 2017. For liver-tumor segmentation, Dice similarity coefficient (DSC) of 89.72 %, volume of error (VOE) of 21.93 %, and relative volume difference (RVD) of - 0.49 % were obtained. For liver segmentation, DSC of 98.51 %, VOE of 3.07 %, and RVD of 0.26 % were calculated. For the public 3D Image Reconstruction for Comparison of Algorithm Database (3Dircadb), DSCs were 96.01 % for the liver and 68.14 % for liver-tumor segmentations, respectively. The proposed mU-Net outperformed existing state-of-art networks.
Collapse
|
47
|
Tang W, Zou D, Yang S, Shi J, Dan J, Song G. A two-stage approach for automatic liver segmentation with Faster R-CNN and DeepLab. Neural Comput Appl 2020. [DOI: 10.1007/s00521-019-04700-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
48
|
Zhang Y, Zheng X, Xue Q. A Deep Neural Network Based Glottal Flow Model for Predicting Fluid-Structure Interactions during Voice Production. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:705. [PMID: 34306737 DOI: 10.3390/app10113794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This paper proposes a machine-learning based reduced-order model that can provide fast and accurate prediction of the glottal flow during voice production. The model is based on the Bernoulli equation with a viscous loss term predicted by a deep neural network (DNN) model. The training data of the DNN model is a Navier-Stokes (N-S) equation-based three-dimensional simulation of glottal flows in various glottal shapes generated by a synthetic shape function, which can be obtained by superimposing the instantaneous modal displacements during vibration on the prephonatory geometry of the glottal shape. The input parameters of the DNN model are the geometric and flow parameters extracted from discretized cross sections of the glottal shapes and the output target is the corresponding flow resistance coefficient. With this trained DNN-Bernoulli model, the flow resistance coefficient as well as the flow rate and pressure distribution in any given glottal shape generated by the synthetic shape function can be predicted. The model is further coupled with a finite-element method based solid dynamics solver for simulating fluid-structure interactions (FSI). The prediction performance of the model for both static shape and FSI simulations is evaluated by comparing the solutions to those obtained by the Bernoulli and N-S model. The model shows a good prediction performance in accuracy and efficiency, suggesting a promise for future clinical use.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Mechanical Engineering, University of Maine, Orono, ME 04469, USA
| | - Xudong Zheng
- Department of Mechanical Engineering, University of Maine, Orono, ME 04469, USA
| | - Qian Xue
- Department of Mechanical Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
49
|
Budak Ü, Guo Y, Tanyildizi E, Şengür A. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation. Med Hypotheses 2020; 134:109431. [DOI: 10.1016/j.mehy.2019.109431] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 01/19/2023]
|
50
|
Ning Q, Yu X, Gao Q, Xie J, Yao C, Zhou K, Ye J. An accurate interactive segmentation and volume calculation of orbital soft tissue for orbital reconstruction after enucleation. BMC Ophthalmol 2019; 19:256. [PMID: 31842802 PMCID: PMC6916112 DOI: 10.1186/s12886-019-1260-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Background Accurate measurement and reconstruction of orbital soft tissue is important to diagnosis and treatment of orbital diseases. This study applied an interactive graph cut method to orbital soft tissue precise segmentation and calculation in computerized tomography (CT) images, and to estimate its application in orbital reconstruction. Methods The interactive graph cut method was introduced to segment extraocular muscle and intraorbital fat in CT images. Intra- and inter-observer variability of tissue volume measured by graph cut segmentation was validated. Accuracy and reliability of the method was accessed by comparing with manual delineation and commercial medical image software. Intraorbital structure of 10 patients after enucleation surgery was reconstructed based on graph cut segmentation and soft tissue volume were compared within two different surgical techniques. Results Both muscle and fat tissue segmentation results of graph cut method showed good consistency with ground truth in phantom data. There were no significant differences in muscle calculations between observers or segmental methods (p > 0.05). Graph cut results of fat tissue had coincidental variable trend with ground truth which could identify 0.1cm3 variation. The mean performance time of graph cut segmentation was significantly shorter than manual delineation and commercial software (p < 0.001). Jaccard similarity and Dice coefficient of graph cut method were 0.767 ± 0.045 and 0.836 ± 0.032 for human normal extraocular muscle segmentation. The measurements of fat tissue were significantly better in graph cut than those in commercial software (p < 0.05). Orbital soft tissue volume was decreased in post-enucleation orbit than that in normal orbit (p < 0.05). Conclusion The graph cut method was validated to have good accuracy, reliability and efficiency in orbit soft tissue segmentation. It could discern minor volume changes of soft tissue. The interactive segmenting technique would be a valuable tool for dynamic analysis and prediction of therapeutic effect and orbital reconstruction.
Collapse
Affiliation(s)
- Qingyao Ning
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China
| | - Xiaoyao Yu
- State Key Lab of CAD & CG, Zhejiang University, No. 886 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Qi Gao
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China
| | - Jiajun Xie
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China
| | - Chunlei Yao
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China
| | - Kun Zhou
- State Key Lab of CAD & CG, Zhejiang University, No. 886 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.
| | - Juan Ye
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|