1
|
Li M, Fu Y, Zhang T, Wen G. Supervise-Assisted Self-Supervised Deep-Learning Method for Hyperspectral Image Restoration. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:7331-7344. [PMID: 38722728 DOI: 10.1109/tnnls.2024.3386809] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Hyperspectral image (HSI) restoration is a challenging research area, covering a variety of inverse problems. Previous works have shown the great success of deep learning in HSI restoration. However, facing the problem of distribution gaps between training HSIs and target HSI, those data-driven methods falter in delivering satisfactory outcomes for the target HSIs. In addition, the degradation process of HSIs is usually disturbed by noise, which is not well taken into account in existing restoration methods. The existence of noise further exacerbates the dissimilarities within the data, rendering it challenging to attain desirable results without an appropriate learning approach. To track these issues, in this article, we propose a supervise-assisted self-supervised deep-learning method to restore noisy degraded HSIs. Initially, we facilitate the restoration network to acquire a generalized prior through supervised learning from extensive training datasets. Then, the self-supervised learning stage is employed and utilizes the specific prior of the target HSI. Particularly, to restore clean HSIs during the self-supervised learning stage from noisy degraded HSIs, we introduce a noise-adaptive loss function that leverages inner statistics of noisy degraded HSIs for restoration. The proposed noise-adaptive loss consists of Stein's unbiased risk estimator (SURE) and total variation (TV) regularizer and fine-tunes the network with the presence of noise. We demonstrate through experiments on different HSI tasks, including denoising, compressive sensing, super-resolution, and inpainting, that our method outperforms state-of-the-art methods on benchmarks under quantitative metrics and visual quality. The code is available at https://github.com/ying-fu/SSDL-HSI.
Collapse
|
2
|
Li M, Fu Y, Zhang T, Liu J, Dou D, Yan C, Zhang Y. Latent Diffusion Enhanced Rectangle Transformer for Hyperspectral Image Restoration. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2025; 47:549-564. [PMID: 39383081 DOI: 10.1109/tpami.2024.3475249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
The restoration of hyperspectral image (HSI) plays a pivotal role in subsequent hyperspectral image applications. Despite the remarkable capabilities of deep learning, current HSI restoration methods face challenges in effectively exploring the spatial non-local self-similarity and spectral low-rank property inherently embedded with HSIs. This paper addresses these challenges by introducing a latent diffusion enhanced rectangle Transformer for HSI restoration, tackling the non-local spatial similarity and HSI-specific latent diffusion low-rank property. In order to effectively capture non-local spatial similarity, we propose the multi-shape spatial rectangle self-attention module in both horizontal and vertical directions, enabling the model to utilize informative spatial regions for HSI restoration. Meanwhile, we propose a spectral latent diffusion enhancement module that generates the image-specific latent dictionary based on the content of HSI for low-rank vector extraction and representation. This module utilizes a diffusion model to generatively obtain representations of global low-rank vectors, thereby aligning more closely with the desired HSI. A series of comprehensive experiments were carried out on four common hyperspectral image restoration tasks, including HSI denoising, HSI super-resolution, HSI reconstruction, and HSI inpainting. The results of these experiments highlight the effectiveness of our proposed method, as demonstrated by improvements in both objective metrics and subjective visual quality.
Collapse
|
3
|
Tian X, Li K, Zhang W, Wang Z, Ma J. Interpretable Model-Driven Deep Network for Hyperspectral, Multispectral, and Panchromatic Image Fusion. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:14382-14395. [PMID: 37256810 DOI: 10.1109/tnnls.2023.3278928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Simultaneously fusing hyperspectral (HS), multispectral (MS), and panchromatic (PAN) images brings a new paradigm to generate a high-resolution HS (HRHS) image. In this study, we propose an interpretable model-driven deep network for HS, MS, and PAN image fusion, called HMPNet. We first propose a new fusion model that utilizes a deep before describing the complicated relationship between the HRHS and PAN images owing to their large resolution difference. Consequently, the difficulty of traditional model-based approaches in designing suitable hand-crafted priors can be alleviated because this deep prior is learned from data. We further solve the optimization problem of this fusion model based on the proximal gradient descent (PGD) algorithm, achieved by a series of iterative steps. By unrolling these iterative steps into several network modules, we finally obtain the HMPNet. Therefore, all parameters besides the deep prior are learned in the deep network, simplifying the selection of optimal parameters in the fusion and achieving a favorable equilibrium between the spatial and spectral qualities. Meanwhile, all modules contained in the HMPNet have explainable physical meanings, which can improve its generalization capability. In the experiment, we exhibit the advantages of the HMPNet over other state-of-the-art methods from the aspects of visual comparison and quantitative analysis, where a series of simulated as well as real datasets are utilized for validation.
Collapse
|
4
|
Yu Z, Xie K, Wen C, He J, Zhang W. A Lightweight Image Super-Resolution Reconstruction Algorithm Based on the Residual Feature Distillation Mechanism. SENSORS (BASEL, SWITZERLAND) 2024; 24:1049. [PMID: 38400207 PMCID: PMC10892053 DOI: 10.3390/s24041049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024]
Abstract
In recent years, the development of image super-resolution (SR) has explored the capabilities of convolutional neural networks (CNNs). The current research tends to use deeper CNNs to improve performance. However, blindly increasing the depth of the network does not effectively enhance its performance. Moreover, as the network depth increases, more issues arise during the training process, requiring additional training techniques. In this paper, we propose a lightweight image super-resolution reconstruction algorithm (SISR-RFDM) based on the residual feature distillation mechanism (RFDM). Building upon residual blocks, we introduce spatial attention (SA) modules to provide more informative cues for recovering high-frequency details such as image edges and textures. Additionally, the output of each residual block is utilized as hierarchical features for global feature fusion (GFF), enhancing inter-layer information flow and feature reuse. Finally, all these features are fed into the reconstruction module to restore high-quality images. Experimental results demonstrate that our proposed algorithm outperforms other comparative algorithms in terms of both subjective visual effects and objective evaluation quality. The peak signal-to-noise ratio (PSNR) is improved by 0.23 dB, and the structural similarity index (SSIM) reaches 0.9607.
Collapse
Affiliation(s)
- Zihan Yu
- School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China;
| | - Kai Xie
- School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou 434023, China;
| | - Chang Wen
- School of Computer Science, Yangtze University, Jingzhou 434023, China;
| | - Jianbiao He
- School of Computer Science, Central South University, Changsha 410083, China;
| | - Wei Zhang
- School of Electronic Information, Central South University, Changsha 410083, China;
| |
Collapse
|
5
|
Zhao X, Zhang M, Tao R, Li W, Liao W, Tian L, Philips W. Fractional Fourier Image Transformer for Multimodal Remote Sensing Data Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:2314-2326. [PMID: 35839200 DOI: 10.1109/tnnls.2022.3189994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the recent development of the joint classification of hyperspectral image (HSI) and light detection and ranging (LiDAR) data, deep learning methods have achieved promising performance owing to their locally sematic feature extracting ability. Nonetheless, the limited receptive field restricted the convolutional neural networks (CNNs) to represent global contextual and sequential attributes, while visual image transformers (VITs) lose local semantic information. Focusing on these issues, we propose a fractional Fourier image transformer (FrIT) as a backbone network to extract both global and local contexts effectively. In the proposed FrIT framework, HSI and LiDAR data are first fused at the pixel level, and both multisource feature and HSI feature extractors are utilized to capture local contexts. Then, a plug-and-play image transformer FrIT is explored for global contextual and sequential feature extraction. Unlike the attention-based representations in classic VIT, FrIT is capable of speeding up the transformer architectures massively and learning valuable contextual information effectively and efficiently. More significantly, to reduce redundancy and loss of information from shallow to deep layers, FrIT is devised to connect contextual features in multiple fractional domains. Five HSI and LiDAR scenes including one newly labeled benchmark are utilized for extensive experiments, showing improvement over both CNNs and VITs.
Collapse
|
6
|
He C, Wei Y, Guo K, Han H. Removal of Mixed Noise in Hyperspectral Images Based on Subspace Representation and Nonlocal Low-Rank Tensor Decomposition. SENSORS (BASEL, SWITZERLAND) 2024; 24:327. [PMID: 38257420 PMCID: PMC11154510 DOI: 10.3390/s24020327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/24/2024]
Abstract
Hyperspectral images (HSIs) contain abundant spectral and spatial structural information, but they are inevitably contaminated by a variety of noises during data reception and transmission, leading to image quality degradation and subsequent application hindrance. Hence, removing mixed noise from hyperspectral images is an important step in improving the performance of subsequent image processing. It is a well-established fact that the data information of hyperspectral images can be effectively represented by a global spectral low-rank subspace due to the high redundancy and correlation (RAC) in the spatial and spectral domains. Taking advantage of this property, a new algorithm based on subspace representation and nonlocal low-rank tensor decomposition is proposed to filter the mixed noise of hyperspectral images. The algorithm first obtains the subspace representation of the hyperspectral image by utilizing the spectral low-rank property and obtains the orthogonal basis and representation coefficient image (RCI). Then, the representation coefficient image is grouped and denoised using tensor decomposition and wavelet decomposition, respectively, according to the spatial nonlocal self-similarity. Afterward, the orthogonal basis and denoised representation coefficient image are optimized using the alternating direction method of multipliers (ADMM). Finally, iterative regularization is used to update the image to obtain the final denoised hyperspectral image. Experiments on both simulated and real datasets demonstrate that the algorithm proposed in this paper is superior to related mainstream methods in both quantitative metrics and intuitive vision. Because it is denoising for image subspace, the time complexity is greatly reduced and is lower than related denoising algorithms in terms of computational cost.
Collapse
Affiliation(s)
- Chun He
- College of Geophysics, Chengdu University of Technology, Chengdu 610059, China;
- Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China;
- Education and Information Technology Center, China West Normal University, Nanchong 637009, China
| | - Youhua Wei
- Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China;
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Ke Guo
- Geomathematics Key Laboratory of Sichuan Province, Chengdu University of Technology, Chengdu 610059, China;
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Hongwei Han
- Engineering and Technical College, Chengdu University of Technology, Leshan 614000, China;
| |
Collapse
|
7
|
Ye F, Wu Z, Jia X, Chanussot J, Xu Y, Wei Z. Bayesian Nonlocal Patch Tensor Factorization for Hyperspectral Image Super-Resolution. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:5877-5892. [PMID: 37889806 DOI: 10.1109/tip.2023.3326687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The synthesis of high-resolution (HR) hyperspectral image (HSI) by fusing a low-resolution HSI with a corresponding HR multispectral image has emerged as a prevalent HSI super-resolution (HSR) scheme. Recent researches have revealed that tensor analysis is an emerging tool for HSR. However, most off-the-shelf tensor-based HSR algorithms tend to encounter challenges in rank determination and modeling capacity. To address these issues, we construct nonlocal patch tensors (NPTs) and characterize low-rank structures with coupled Bayesian tensor factorization. It is worth emphasizing that the intrinsic global spectral correlation and nonlocal spatial similarity can be simultaneously explored under the proposed model. Moreover, benefiting from the technique of automatic relevance determination, we propose a hierarchical probabilistic framework based on Canonical Polyadic (CP) factorization, which incorporates a sparsity-inducing prior over the underlying factor matrices. We further develop an effective expectation-maximization-type optimization scheme for framework estimation. In contrast to existing works, the proposed model can infer the latent CP rank of NPT adaptively without tuning parameters. Extensive experiments on synthesized and real datasets illustrate the intrinsic capability of our model in rank determination as well as its superiority in fusion performance.
Collapse
|
8
|
Qu Q, Pan B, Xu X, Li T, Shi Z. Unmixing Guided Unsupervised Network for RGB Spectral Super-Resolution. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:4856-4867. [PMID: 37527312 DOI: 10.1109/tip.2023.3299197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Spectral super-resolution has attracted research attention recently, which aims to generate hyperspectral images from RGB images. However, most of the existing spectral super-resolution algorithms work in a supervised manner, requiring pairwise data for training, which is difficult to obtain. In this paper, we propose an Unmixing Guided Unsupervised Network (UnGUN), which does not require pairwise imagery to achieve unsupervised spectral super-resolution. In addition, UnGUN utilizes arbitrary other hyperspectral imagery as the guidance image to guide the reconstruction of spectral information. The UnGUN mainly includes three branches: two unmixing branches and a reconstruction branch. Hyperspectral unmixing branch and RGB unmixing branch decompose the guidance and RGB images into corresponding endmembers and abundances respectively, from which the spectral and spatial priors are extracted. Meanwhile, the reconstruction branch integrates the above spectral-spatial priors to generate a coarse hyperspectral image and then refined it. Besides, we design a discriminator to ensure that the distribution of generated image is close to the guidance hyperspectral imagery, so that the reconstructed image follows the characteristics of a real hyperspectral image. The major contribution is that we develop an unsupervised framework based on spectral unmixing, which realizes spectral super-resolution without paired hyperspectral-RGB images. Experiments demonstrate the superiority of UnGUN when compared with some SOTA methods.
Collapse
|
9
|
Yang J, Wu C, You T, Wang D, Li Y, Shang C, Shen Q. Hierarchical spatio-spectral fusion for hyperspectral image super resolution via sparse representation and pre-trained deep model. Knowl Based Syst 2022. [DOI: 10.1016/j.knosys.2022.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Hou J, Zhu Z, Hou J, Zeng H, Wu J, Zhou J. Deep Posterior Distribution-Based Embedding for Hyperspectral Image Super-Resolution. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:5720-5732. [PMID: 36040941 DOI: 10.1109/tip.2022.3201478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper, we investigate the problem of hyperspectral (HS) image spatial super-resolution via deep learning. Particularly, we focus on how to embed the high-dimensional spatial-spectral information of HS images efficiently and effectively. Specifically, in contrast to existing methods adopting empirically-designed network modules, we formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events, including layer-wise spatial-spectral feature extraction and network-level feature aggregation. Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable, producing PDE-Net, in which high-resolution (HR) HS images are iteratively refined from the residuals between input low-resolution (LR) HS images and pseudo-LR-HS images degenerated from reconstructed HR-HS images via probability-inspired HS embedding. Extensive experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods. Besides, the probabilistic characteristic of this kind of networks can provide the epistemic uncertainty of the network outputs, which may bring additional benefits when used for other HS image-based applications. The code will be publicly available at https://github.com/jinnh/PDE-Net.
Collapse
|
11
|
Luo YS, Zhao XL, Jiang TX, Chang Y, Ng MK, Li C. Self-Supervised Nonlinear Transform-Based Tensor Nuclear Norm for Multi-Dimensional Image Recovery. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:3793-3808. [PMID: 35609097 DOI: 10.1109/tip.2022.3176220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, transform-based tensor nuclear norm (TNN) minimization methods have received increasing attention for recovering third-order tensors in multi-dimensional imaging problems. The main idea of these methods is to perform the linear transform along the third mode of third-order tensors and then minimize the nuclear norm of frontal slices of the transformed tensor. The main aim of this paper is to propose a nonlinear multilayer neural network to learn a nonlinear transform by solely using the observed tensor in a self-supervised manner. The proposed network makes use of the low-rank representation of the transformed tensor and data-fitting between the observed tensor and the reconstructed tensor to learn the nonlinear transform. Extensive experimental results on different data and different tasks including tensor completion, background subtraction, robust tensor completion, and snapshot compressive imaging demonstrate the superior performance of the proposed method over state-of-the-art methods.
Collapse
|
12
|
Hyperspectral Image Super-Resolution Method Based on Spectral Smoothing Prior and Tensor Tubal Row-Sparse Representation. REMOTE SENSING 2022. [DOI: 10.3390/rs14092142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Due to the limited hardware conditions, hyperspectral image (HSI) has a low spatial resolution, while multispectral image (MSI) can gain higher spatial resolution. Therefore, derived from the idea of fusion, we reconstructed HSI with high spatial resolution and spectral resolution from HSI and MSI and put forward an HSI Super-Resolution model based on Spectral Smoothing prior and Tensor tubal row-sparse representation, termed SSTSR. Foremost, nonlocal priors are applied to refine the super-resolution task into reconstructing each nonlocal clustering tensor. Then per nonlocal cluster tensor is decomposed into two sub tensors under the tensor t-prodcut framework, one sub-tensor is called tersor dictionary and the other is called tensor coefficient. Meanwhile, in the process of dictionary learning and sparse coding, spectral smoothing constraint is imposed on the tensor dictionary, and L1,1,2 norm based tubal row-sparse regularizer is enforced on the tensor coefficient to enhance the structured sparsity. With this model, the spatial similarity and spectral similarity of the nonlocal cluster tensor are fully utilized. Finally, the alternating direction method of multipliers (ADMM) was employed to optimize the solution of our method. Experiments on three simulated datasets and one real dataset show that our approach is superior to many advanced HSI super-resolution methods.
Collapse
|
13
|
|
14
|
|
15
|
Hang R, Liu Q, Li Z. Spectral Super-Resolution Network Guided by Intrinsic Properties of Hyperspectral Imagery. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:7256-7265. [PMID: 34403340 DOI: 10.1109/tip.2021.3104177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hyperspectral imagery (HSI) contains rich spectral information, which is beneficial to many tasks. However, acquiring HSI is difficult because of the limitations of current imaging technology. As an alternative method, spectral super-resolution aims at reconstructing HSI from its corresponding RGB image. Recently, deep learning has shown its power to this task, but most of the used networks are transferred from other domains, such as spatial super-resolution. In this paper, we attempt to design a spectral super-resolution network by taking advantage of two intrinsic properties of HSI. The first one is the spectral correlation. Based on this property, a decomposition subnetwork is designed to reconstruct HSI. The other one is the projection property, i.e., RGB image can be regarded as a three-dimensional projection of HSI. Inspired from it, a self-supervised subnetwork is constructed as a constraint to the decomposition subnetwork. These two subnetworks constitute our end-to-end super-resolution network. In order to test the effectiveness of it, we conduct experiments on three widely used HSI datasets (i.e., CAVE, NUS, and NTIRE2018). Experimental results show that our proposed network can achieve competitive reconstruction performance in comparison with several state-of-the-art networks.
Collapse
|
16
|
Wang H, Wu C, Chi J, Yu X, Hu Q, Wu H. Image super-resolution using multi-granularity perception and pyramid attention networks. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Variational Low-Rank Matrix Factorization with Multi-Patch Collaborative Learning for Hyperspectral Imagery Mixed Denoising. REMOTE SENSING 2021. [DOI: 10.3390/rs13061101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, multi-patch collaborative learning is introduced into variational low-rank matrix factorization to suppress mixed noise in hyperspectral images (HSIs). Firstly, based on the spatial consistency and nonlocal self-similarities, the HSI is partitioned into overlapping patches with a full band. The similarity metric with fusing features is exploited to select the most similar patches and construct the corresponding collaborative patches. Secondly, considering that the latent clean HSI holds the low-rank property across the spectra, whereas the noise component does not, variational low-rank matrix factorization is proposed in the Bayesian framework for each collaborative patch. Using Gaussian distribution adaptively adjusted by a gamma distribution, the noise-free data can be learned by exploring low-rank properties of collaborative patches in the spatial/spectral domain. Additionally, the Dirichlet process Gaussian mixture model is utilized to approximate the statistical characteristics of mixed noises, which is constructed by exploiting the Gaussian distribution, the inverse Wishart distribution, and the Dirichlet process. Finally, variational inference is utilized to estimate all variables and solve the proposed model using closed-form equations. Widely used datasets with different settings are adopted to conduct experiments. The quantitative and qualitative results indicate the effectiveness and superiority of the proposed method in reducing mixed noises in HSIs.
Collapse
|
18
|
Xue J, Zhao YQ, Bu Y, Liao W, Chan JCW, Philips W. Spatial-Spectral Structured Sparse Low-Rank Representation for Hyperspectral Image Super-Resolution. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:3084-3097. [PMID: 33596175 DOI: 10.1109/tip.2021.3058590] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hyperspectral image super-resolution by fusing high-resolution multispectral image (HR-MSI) and low-resolution hyperspectral image (LR-HSI) aims at reconstructing high resolution spatial-spectral information of the scene. Existing methods mostly based on spectral unmixing and sparse representation are often developed from a low-level vision task perspective, they cannot sufficiently make use of the spatial and spectral priors available from higher-level analysis. To this issue, this paper proposes a novel HSI super-resolution method that fully considers the spatial/spectral subspace low-rank relationships between available HR-MSI/LR-HSI and latent HSI. Specifically, it relies on a new subspace clustering method named "structured sparse low-rank representation" (SSLRR), to represent the data samples as linear combinations of the bases in a given dictionary, where the sparse structure is induced by low-rank factorization for the affinity matrix. Then we exploit the proposed SSLRR model to learn the SSLRR along spatial/spectral domain from the MSI/HSI inputs. By using the learned spatial and spectral low-rank structures, we formulate the proposed HSI super-resolution model as a variational optimization problem, which can be readily solved by the ADMM algorithm. Compared with state-of-the-art hyperspectral super-resolution methods, the proposed method shows better performance on three benchmark datasets in terms of both visual and quantitative evaluation.
Collapse
|
19
|
Xie W, Lei J, Cui Y, Li Y, Du Q. Hyperspectral Pansharpening With Deep Priors. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:1529-1543. [PMID: 31265415 DOI: 10.1109/tnnls.2019.2920857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hyperspectral (HS) image can describe subtle differences in the spectral signatures of materials, but it has low spatial resolution limited by the existing technical and budget constraints. In this paper, we propose a promising HS pansharpening method with deep priors (HPDP) to fuse a low-resolution (LR) HS image with a high-resolution (HR) panchromatic (PAN) image. Different from the existing methods, we redefine the spectral response function (SRF) based on the larger eigenvalue of structure tensor (ST) matrix for the first time that is more in line with the characteristics of HS imaging. Then, we introduce HFNet to capture deep residual mapping of high frequency across the upsampled HS image and the PAN image in a band-by-band manner. Specifically, the learned residual mapping of high frequency is injected into the structural transformed HS images, which are the extracted deep priors served as additional constraint in a Sylvester equation to estimate the final HR HS image. Comparative analyses validate that the proposed HPDP method presents the superior pansharpening performance by ensuring higher quality both in spatial and spectral domains for all types of data sets. In addition, the HFNet is trained in the high-frequency domain based on multispectral (MS) images, which overcomes the sensitivity of deep neural network (DNN) to data sets acquired by different sensors and the difficulty of insufficient training samples for HS pansharpening.
Collapse
|
20
|
A New Architecture of Densely Connected Convolutional Networks for Pan-Sharpening. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2020. [DOI: 10.3390/ijgi9040242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, we propose a new architecture of densely connected convolutional networks for pan-sharpening (DCCNP). Since the traditional convolution neural network (CNN) has difficulty handling the lack of a training sample set in the field of remote sensing image fusion, it easily leads to overfitting and the vanishing gradient problem. Therefore, we employed an effective two-dense-block architecture to solve these problems. Meanwhile, to reduce the network architecture complexity, the batch normalization (BN) layer was removed in the design architecture of DenseNet. A new architecture of DenseNet for pan-sharpening, called DCCNP, is proposed, which uses a bottleneck layer and compression factors to narrow the network and reduce the network parameters, effectively suppressing overfitting. The experimental results show that the proposed method can yield a higher performance compared with other state-of-the-art pan-sharpening methods. The proposed method not only improves the spatial resolution of multi-spectral images, but also maintains the spectral information well.
Collapse
|
21
|
Hong D, Yokoya N, Chanussot J, Xu J, Zhu XX. Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING : OFFICIAL PUBLICATION OF THE INTERNATIONAL SOCIETY FOR PHOTOGRAMMETRY AND REMOTE SENSING (ISPRS) 2019; 158:35-49. [PMID: 31853165 PMCID: PMC6894308 DOI: 10.1016/j.isprsjprs.2019.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 05/30/2023]
Abstract
Hyperspectral dimensionality reduction (HDR), an important preprocessing step prior to high-level data analysis, has been garnering growing attention in the remote sensing community. Although a variety of methods, both unsupervised and supervised models, have been proposed for this task, yet the discriminative ability in feature representation still remains limited due to the lack of a powerful tool that effectively exploits the labeled and unlabeled data in the HDR process. A semi-supervised HDR approach, called iterative multitask regression (IMR), is proposed in this paper to address this need. IMR aims at learning a low-dimensional subspace by jointly considering the labeled and unlabeled data, and also bridging the learned subspace with two regression tasks: labels and pseudo-labels initialized by a given classifier. More significantly, IMR dynamically propagates the labels on a learnable graph and progressively refines pseudo-labels, yielding a well-conditioned feedback system. Experiments conducted on three widely-used hyperspectral image datasets demonstrate that the dimension-reduced features learned by the proposed IMR framework with respect to classification or recognition accuracy are superior to those of related state-of-the-art HDR approaches.
Collapse
Affiliation(s)
- Danfeng Hong
- Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Wessling, Germany
- Signal Processing in Earth Observation (SiPEO), Technical University of Munich (TUM), Munich, Germany
| | - Naoto Yokoya
- Geoinformatics Unit, RIKEN Center for Advanced Intelligence Project (AIP), RIKEN, Tokyo, Japan
| | | | - Jian Xu
- Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Wessling, Germany
| | - Xiao Xiang Zhu
- Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Wessling, Germany
- Signal Processing in Earth Observation (SiPEO), Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
22
|
Hyperspectral Anomaly Detection via Spatial Density Background Purification. REMOTE SENSING 2019. [DOI: 10.3390/rs11222618] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the research of anomaly detection methods, obtaining a pure background without abnormal pixels can effectively improve the detection performance and reduce the false-alarm rate. Therefore, this paper proposes a spatial density background purification (SDBP) method for hyperspectral anomaly detection. First, a density peak clustering (DP) algorithm is used to calculate the local density of pixels within a single window. Then, the local densities are sorted into descending order and the m pixels that have the highest local density are selected from high to low. Therefore, the potential abnormal pixels in the background can be effectively removed, and a purer background set can be obtained. Finally, the collaborative representation detector (CRD) is employed for anomaly detection. Considering that the neighboring area of each pixel will have homogeneous material pixels, we adopt the double window strategy to improve the above method. The local densities of the pixels between the large window and the small window are calculated, while all pixels are removed from the small window. This makes the background estimation more accurate, reduces the false-alarm rate, and improves the detection performance. Experimental results on three real hyperspectral datasets such as Airport, Beach, and Urban scenes indicate that the detection accuracy of this method outperforms other commonly used anomaly detection methods.
Collapse
|
23
|
Multiscale Spatial-Spectral Convolutional Network with Image-Based Framework for Hyperspectral Imagery Classification. REMOTE SENSING 2019. [DOI: 10.3390/rs11192220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Jointly using spatial and spectral information has been widely applied to hyperspectral image (HSI) classification. Especially, convolutional neural networks (CNN) have gained attention in recent years due to their detailed representation of features. However, most of CNN-based HSI classification methods mainly use patches as input classifier. This limits the range of use for spatial neighbor information and reduces processing efficiency in training and testing. To overcome this problem, we propose an image-based classification framework that is efficient and straightforward. Based on this framework, we propose a multiscale spatial-spectral CNN for HSIs (HyMSCN) to integrate both multiple receptive fields fused features and multiscale spatial features at different levels. The fused features are exploited using a lightweight block called the multiple receptive field feature block (MRFF), which contains various types of dilation convolution. By fusing multiple receptive field features and multiscale spatial features, the HyMSCN has comprehensive feature representation for classification. Experimental results from three real hyperspectral images prove the efficiency of the proposed framework. The proposed method also achieves superior performance for HSI classification.
Collapse
|
24
|
Tensor Discriminant Analysis via Compact Feature Representation for Hyperspectral Images Dimensionality Reduction. REMOTE SENSING 2019. [DOI: 10.3390/rs11151822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dimensionality reduction is of great importance which aims at reducing the spectral dimensionality while keeping the desirable intrinsic structure information of hyperspectral images. Tensor analysis which can retain both spatial and spectral information of hyperspectral images has caused more and more concern in the field of hyperspectral images processing. In general, a desirable low dimensionality feature representation should be discriminative and compact. To achieve this, a tensor discriminant analysis model via compact feature representation (TDA-CFR) was proposed in this paper. In TDA-CFR, the traditional linear discriminant analysis was extended to tensor space to make the resulting feature representation more informative and discriminative. Furthermore, TDA-CFR redefines the feature representation of each spectral band by employing the tensor low rank decomposition framework which leads to a more compact representation.
Collapse
|
25
|
Dian R, Li S. Hyperspectral Image Super-resolution via Subspace-Based Low Tensor Multi-Rank Regularization. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 28:5135-5146. [PMID: 31107646 DOI: 10.1109/tip.2019.2916734] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, combining a low spatial resolution hyperspectral image (LR-HSI) with a high spatial resolution multispectral image (HR-MSI) into an HR-HSI has become a popular scheme to enhance the spatial resolution of HSI. We propose a novel subspace-based low tensor multi-rank regularization method for the fusion, which fully exploits the spectral correlations and non-local similarities in the HR-HSI. To make use of high spectral correlations, the HR-HSI is approximated by spectral subspace and coefficients. We first learn the spectral subspace from the LR-HSI via singular value decomposition, and then estimate the coefficients via the low tensor multi-rank prior. More specifically, based on the learned cluster structure in the HR-MSI, the patches in coefficients are grouped. We collect the coefficients in the same cluster into a three-dimensional tensor and impose the low tensor multi-rank prior on these collected tensors, which fully model the non-local self-similarities in the HR-HSI. The coefficients optimization is solved by the alternating direction method of multipliers. Experiments on two public HSI datasets demonstrate the advantages of tour method.
Collapse
|