1
|
Yuan H, Zhu M, Yang R, Liu H, Li I, Hong C. Rethinking Domain-Specific Pretraining by Supervised or Self-Supervised Learning for Chest Radiograph Classification: A Comparative Study Against ImageNet Counterparts in Cold-Start Active Learning. HEALTH CARE SCIENCE 2025; 4:110-143. [PMID: 40241982 PMCID: PMC11997468 DOI: 10.1002/hcs2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/05/2025] [Accepted: 01/26/2025] [Indexed: 04/18/2025]
Abstract
Objective Deep learning (DL) has become the prevailing method in chest radiograph analysis, yet its performance heavily depends on large quantities of annotated images. To mitigate the cost, cold-start active learning (AL), comprising an initialization followed by subsequent learning, selects a small subset of informative data points for labeling. Recent advancements in pretrained models by supervised or self-supervised learning tailored to chest radiograph have shown broad applicability to diverse downstream tasks. However, their potential in cold-start AL remains unexplored. Methods To validate the efficacy of domain-specific pretraining, we compared two foundation models: supervised TXRV and self-supervised REMEDIS with their general domain counterparts pretrained on ImageNet. Model performance was evaluated at both initialization and subsequent learning stages on two diagnostic tasks: psychiatric pneumonia and COVID-19. For initialization, we assessed their integration with three strategies: diversity, uncertainty, and hybrid sampling. For subsequent learning, we focused on uncertainty sampling powered by different pretrained models. We also conducted statistical tests to compare the foundation models with ImageNet counterparts, investigate the relationship between initialization and subsequent learning, examine the performance of one-shot initialization against the full AL process, and investigate the influence of class balance in initialization samples on initialization and subsequent learning. Results First, domain-specific foundation models failed to outperform ImageNet counterparts in six out of eight experiments on informative sample selection. Both domain-specific and general pretrained models were unable to generate representations that could substitute for the original images as model inputs in seven of the eight scenarios. However, pretrained model-based initialization surpassed random sampling, the default approach in cold-start AL. Second, initialization performance was positively correlated with subsequent learning performance, highlighting the importance of initialization strategies. Third, one-shot initialization performed comparably to the full AL process, demonstrating the potential of reducing experts' repeated waiting during AL iterations. Last, a U-shaped correlation was observed between the class balance of initialization samples and model performance, suggesting that the class balance is more strongly associated with performance at middle budget levels than at low or high budgets. Conclusions In this study, we highlighted the limitations of medical pretraining compared to general pretraining in the context of cold-start AL. We also identified promising outcomes related to cold-start AL, including initialization based on pretrained models, the positive influence of initialization on subsequent learning, the potential for one-shot initialization, and the influence of class balance on middle-budget AL. Researchers are encouraged to improve medical pretraining for versatile DL foundations and explore novel AL methods.
Collapse
Affiliation(s)
- Han Yuan
- Duke‐NUS Medical School, Centre for Quantitative MedicineSingaporeSingapore
| | - Mingcheng Zhu
- Duke‐NUS Medical School, Centre for Quantitative MedicineSingaporeSingapore
- Department of Engineering ScienceUniversity of OxfordOxfordUK
| | - Rui Yang
- Duke‐NUS Medical School, Centre for Quantitative MedicineSingaporeSingapore
| | - Han Liu
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Irene Li
- Information Technology CenterUniversity of TokyoBunkyo‐kuJapan
| | - Chuan Hong
- Department of Biostatistics and BioinformaticsDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
2
|
Urrea C, Vélez M. Advances in Deep Learning for Semantic Segmentation of Low-Contrast Images: A Systematic Review of Methods, Challenges, and Future Directions. SENSORS (BASEL, SWITZERLAND) 2025; 25:2043. [PMID: 40218556 PMCID: PMC11991162 DOI: 10.3390/s25072043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025]
Abstract
The semantic segmentation (SS) of low-contrast images (LCIs) remains a significant challenge in computer vision, particularly for sensor-driven applications like medical imaging, autonomous navigation, and industrial defect detection, where accurate object delineation is critical. This systematic review develops a comprehensive evaluation of state-of-the-art deep learning (DL) techniques to improve segmentation accuracy in LCI scenarios by addressing key challenges such as diffuse boundaries and regions with similar pixel intensities. It tackles primary challenges, such as diffuse boundaries and regions with similar pixel intensities, which limit conventional methods. Key advancements include attention mechanisms, multi-scale feature extraction, and hybrid architectures combining Convolutional Neural Networks (CNNs) with Vision Transformers (ViTs), which expand the Effective Receptive Field (ERF), improve feature representation, and optimize information flow. We compare the performance of 25 models, evaluating accuracy (e.g., mean Intersection over Union (mIoU), Dice Similarity Coefficient (DSC)), computational efficiency, and robustness across benchmark datasets relevant to automation and robotics. This review identifies limitations, including the scarcity of diverse, annotated LCI datasets and the high computational demands of transformer-based models. Future opportunities emphasize lightweight architectures, advanced data augmentation, integration with multimodal sensor data (e.g., LiDAR, thermal imaging), and ethically transparent AI to build trust in automation systems. This work contributes a practical guide for enhancing LCI segmentation, improving mean accuracy metrics like mIoU by up to 15% in sensor-based applications, as evidenced by benchmark comparisons. It serves as a concise, comprehensive guide for researchers and practitioners advancing DL-based LCI segmentation in real-world sensor applications.
Collapse
Affiliation(s)
- Claudio Urrea
- Electrical Engineering Department, Faculty of Engineering, University of Santiago of Chile, Las Sophoras 165, Estación Central, Santiago 9170124, Chile;
| | | |
Collapse
|
3
|
Yucheng L, Lingyun Q, Kainan S, Yongshi J, Wenming Z, Jieni D, Weijun C. Development and validation of a deep reinforcement learning algorithm for auto-delineation of organs at risk in cervical cancer radiotherapy. Sci Rep 2025; 15:6800. [PMID: 40000766 PMCID: PMC11861648 DOI: 10.1038/s41598-025-91362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025] Open
Abstract
This study was conducted to develop and validate a novel deep reinforcement learning (DRL) algorithm incorporating the segment anything model (SAM) to enhance the accuracy of automatic contouring organs at risk during radiotherapy for cervical cancer patients. CT images were collected from 150 cervical cancer patients treated at our hospital between 2021 and 2023. Among these images, 122 CT images were used as a training set for the algorithm training of the DRL model based on the SAM model, and 28 CT images were used for the test set. The model's performance was evaluated by comparing its segmentation results with the ground truth (manual contouring) obtained through manual contouring by expert clinicians. The test results were compared with the contouring results of commercial automatic contouring software based on the deep learning (DL) algorithm model. The Dice similarity coefficient (DSC), 95th percentile Hausdorff distance, average symmetric surface distance (ASSD), and relative absolute volume difference (RAVD) were used to quantitatively assess the contouring accuracy from different perspectives, enabling the contouring results to be comprehensively and objectively evaluated. The DRL model outperformed the DL model across all evaluated metrics. DRL achieved higher median DSC values, such as 0.97 versus 0.96 for the left kidney (P < 0.001), and demonstrated better boundary accuracy with lower HD95 values, e.g., 14.30 mm versus 17.24 mm for the rectum (P < 0.001). Moreover, DRL exhibited superior spatial agreement (median ASSD: 1.55 mm vs. 1.80 mm for the rectum, P < 0.001) and volume prediction accuracy (median RAVD: 10.25 vs. 10.64 for the duodenum, P < 0.001). These findings indicate that integrating SAM with RL (reinforcement learning) enhances segmentation accuracy and consistency compared to conventional DL methods. The proposed approach introduces a novel training strategy that improves performance without increasing model complexity, demonstrating its potential applicability in clinical practice.
Collapse
Affiliation(s)
- Li Yucheng
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiu Lingyun
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shao Kainan
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jia Yongshi
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhan Wenming
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ding Jieni
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Weijun
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Yang S, Zhang X, He Y, Chen Y, Zhou Y. TBE-Net: A Deep Network Based on Tree-Like Branch Encoder for Medical Image Segmentation. IEEE J Biomed Health Inform 2025; 29:521-534. [PMID: 39374271 DOI: 10.1109/jbhi.2024.3468904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In recent years, encoder-decoder-based network structures have been widely used in designing medical image segmentation models. However, these methods still face some limitations: 1) The network's feature extraction capability is limited, primarily due to insufficient attention to the encoder, resulting in a failure to extract rich and effective features. 2) Unidirectional stepwise decoding of smaller-sized feature maps restricts segmentation performance. To address the above limitations, we propose an innovative Tree-like Branch Encoder Network (TBE-Net), which adopts a tree-like branch encoder to better perform feature extraction and preserve feature information. Additionally, we introduce the Depth and Width Expansion (DWE) module to expand the network depth and width at low parameter cost, thereby enhancing network performance. Furthermore, we design a Deep Aggregation Module (DAM) to better aggregate and process encoder features. Subsequently, we directly decode the aggregated features to generate the segmentation map. The experimental results show that, compared to other advanced algorithms, our method, with the lowest parameter cost, achieved improvements in the IoU metric on the TNBC, PH2, CHASE-DB1, STARE, and COVID-19-CT-Seg datasets by 1.6%, 0.46%, 0.81%, 1.96%, and 0.86%, respectively.
Collapse
|
5
|
Wang S, Liu L, Wang J, Peng X, Liu B. MSR-UNet: enhancing multi-scale and long-range dependencies in medical image segmentation. PeerJ Comput Sci 2024; 10:e2563. [PMID: 39650414 PMCID: PMC11623095 DOI: 10.7717/peerj-cs.2563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 12/11/2024]
Abstract
Transformer-based technology has attracted widespread attention in medical image segmentation. Due to the diversity of organs, effective modelling of multi-scale information and establishing long-range dependencies between pixels are crucial for successful medical image segmentation. However, most studies rely on a fixed single-scale window for modeling, which ignores the potential impact of window size on performance. This limitation can hinder window-based models' ability to fully explore multi-scale and long-range relationships within medical images. To address this issue, we propose a multi-scale reconfiguration self-attention (MSR-SA) module that accurately models multi-scale information and long-range dependencies in medical images. The MSR-SA module first divides the attention heads into multiple groups, each assigned an ascending dilation rate. These groups are then uniformly split into several non-overlapping local windows. Using dilated sampling, we gather the same number of keys to obtain both long-range and multi-scale information. Finally, dynamic information fusion is achieved by integrating features from the sampling points at corresponding positions across different windows. Based on the MSR-SA module, we propose a multi-scale reconfiguration U-Net (MSR-UNet) framework for medical image segmentation. Experiments on the Synapse and automated cardiac diagnosis challenge (ACDC) datasets show that MSR-UNet can achieve satisfactory segmentation results. The code is available at https://github.com/davidsmithwj/MSR-UNet (DOI: 10.5281/zenodo.13969855).
Collapse
Affiliation(s)
- Shuai Wang
- School of Computer Science and Technology, Huaibei Normal University, Huaibei, China
| | - Lei Liu
- School of Computer Science and Technology, Huaibei Normal University, Huaibei, China
- Huaibei Key Laboratory of Digital Multimedia Intelligent Information Processing, Huaibei, China
| | - Jun Wang
- College of Electronic and Information Engineering, Hebei University, Baoding, China
| | - Xinyue Peng
- School of Computer Science and Technology, Huaibei Normal University, Huaibei, China
| | - Baosen Liu
- Huaibei People’s Hospital, Huaibei, China
| |
Collapse
|
6
|
Zhou B, Xin G, Liang H, Ding C. SEY‐Net: Semantic edge Y‐shaped network for pancreas segmentation. IET IMAGE PROCESSING 2024; 18:3950-3960. [DOI: 10.1049/ipr2.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/24/2024] [Indexed: 01/23/2025]
Abstract
AbstractPancreas segmentation has great significance in computer‐aided diagnosis of pancreatic diseases. The small size of the pancreas, high variability in shape, and blurred edges make the task of pancreas segmentation challenging. A new model called SEY‐Net is proposed to solve the above problems, which is a one‐stage model with multi‐inputs. SEY‐Net is composed of three main components. Firstly, the edge information extraction (EIE) module is designed to improve the segmentation accuracy of the pancreas boundary. Then, the SE_ResNet50 is selected as the encoder's backbone to fit the size of the pancreas. Finally, the dual cross‐attention is integrated into the skip connection to better focus on the variable shape of the pancreas. The experimental results shows that the proposed method has better performance and outperforms the other existing state‐of‐the‐art pancreas segmentation methods.
Collapse
Affiliation(s)
- Bangyuan Zhou
- School of Informatics Hunan University of Chinese Medicine Changsha China
| | - Guojiang Xin
- School of Informatics Hunan University of Chinese Medicine Changsha China
| | - Hao Liang
- School of Chinese Medicine Hunan University of Chinese Medicine Changsha China
| | - Changsong Ding
- School of Informatics Hunan University of Chinese Medicine Changsha China
| |
Collapse
|
7
|
Xu C, Zhang T, Zhang D, Zhang D, Han J. Deep Generative Adversarial Reinforcement Learning for Semi-Supervised Segmentation of Low-Contrast and Small Objects in Medical Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3072-3084. [PMID: 38557623 DOI: 10.1109/tmi.2024.3383716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Deep reinforcement learning (DRL) has demonstrated impressive performance in medical image segmentation, particularly for low-contrast and small medical objects. However, current DRL-based segmentation methods face limitations due to the optimization of error propagation in two separate stages and the need for a significant amount of labeled data. In this paper, we propose a novel deep generative adversarial reinforcement learning (DGARL) approach that, for the first time, enables end-to-end semi-supervised medical image segmentation in the DRL domain. DGARL ingeniously establishes a pipeline that integrates DRL and generative adversarial networks (GANs) to optimize both detection and segmentation tasks holistically while mutually enhancing each other. Specifically, DGARL introduces two innovative components to facilitate this integration in semi-supervised settings. First, a task-joint GAN with two discriminators links the detection results to the GAN's segmentation performance evaluation, allowing simultaneous joint evaluation and feedback. This ensures that DRL and GAN can be directly optimized based on each other's results. Second, a bidirectional exploration DRL integrates backward exploration and forward exploration to ensure the DRL agent explores the correct direction when forward exploration is disabled due to lack of explicit rewards. This mitigates the issue of unlabeled data being unable to provide rewards and rendering DRL unexplorable. Comprehensive experiments on three generalization datasets, comprising a total of 640 patients, demonstrate that our novel DGARL achieves 85.02% Dice and improves at least 1.91% for brain tumors, achieves 73.18% Dice and improves at least 4.28% for liver tumors, and achieves 70.85% Dice and improves at least 2.73% for pancreas compared to the ten most recent advanced methods, our results attest to the superiority of DGARL. Code is available at GitHub.
Collapse
|
8
|
Liu H, Zhuang Y, Song E, Liao Y, Ye G, Yang F, Xu X, Xiao X, Hung CC. A 3D boundary-guided hybrid network with convolutions and Transformers for lung tumor segmentation in CT images. Comput Biol Med 2024; 180:109009. [PMID: 39137673 DOI: 10.1016/j.compbiomed.2024.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
-Accurate lung tumor segmentation from Computed Tomography (CT) scans is crucial for lung cancer diagnosis. Since the 2D methods lack the volumetric information of lung CT images, 3D convolution-based and Transformer-based methods have recently been applied in lung tumor segmentation tasks using CT imaging. However, most existing 3D methods cannot effectively collaborate the local patterns learned by convolutions with the global dependencies captured by Transformers, and widely ignore the important boundary information of lung tumors. To tackle these problems, we propose a 3D boundary-guided hybrid network using convolutions and Transformers for lung tumor segmentation, named BGHNet. In BGHNet, we first propose the Hybrid Local-Global Context Aggregation (HLGCA) module with parallel convolution and Transformer branches in the encoding phase. To aggregate local and global contexts in each branch of the HLGCA module, we not only design the Volumetric Cross-Stripe Window Transformer (VCSwin-Transformer) to build the Transformer branch with local inductive biases and large receptive fields, but also design the Volumetric Pyramid Convolution with transformer-based extensions (VPConvNeXt) to build the convolution branch with multi-scale global information. Then, we present a Boundary-Guided Feature Refinement (BGFR) module in the decoding phase, which explicitly leverages the boundary information to refine multi-stage decoding features for better performance. Extensive experiments were conducted on two lung tumor segmentation datasets, including a private dataset (HUST-Lung) and a public benchmark dataset (MSD-Lung). Results show that BGHNet outperforms other state-of-the-art 2D or 3D methods in our experiments, and it exhibits superior generalization performance in both non-contrast and contrast-enhanced CT scans.
Collapse
Affiliation(s)
- Hong Liu
- Center for Biomedical Imaging and Bioinformatics, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yuzhou Zhuang
- Center for Biomedical Imaging and Bioinformatics, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Enmin Song
- Center for Biomedical Imaging and Bioinformatics, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yongde Liao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Guanchao Ye
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xiangyang Xu
- Center for Biomedical Imaging and Bioinformatics, School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xvhao Xiao
- Research Institute of High-Tech, Xi'an, 710025, Shaanxi, China.
| | - Chih-Cheng Hung
- Center for Machine Vision and Security Research, Kennesaw State University, Marietta, MA, 30060, USA.
| |
Collapse
|
9
|
Meng X, Yu C, Zhang Z, Zhang X, Wang M. TG-Net: Using text prompts for improved skin lesion segmentation. Comput Biol Med 2024; 179:108819. [PMID: 38964245 DOI: 10.1016/j.compbiomed.2024.108819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/26/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Automatic skin segmentation is an efficient method for the early diagnosis of skin cancer, which can minimize the missed detection rate and treat early skin cancer in time. However, significant variations in texture, size, shape, the position of lesions, and obscure boundaries in dermoscopy images make it extremely challenging to accurately locate and segment lesions. To address these challenges, we propose a novel framework named TG-Net, which exploits textual diagnostic information to guide the segmentation of dermoscopic images. Specifically, TG-Net adopts a dual-stream encoder-decoder architecture. The dual-stream encoder comprises Res2Net for extracting image features and our proposed text attention (TA) block for extracting textual features. Through hierarchical guidance, textual features are embedded into the process of image feature extraction. Additionally, we devise a multi-level fusion (MLF) module to merge higher-level features and generate a global feature map as guidance for subsequent steps. In the decoding stage of the network, local features and the global feature map are utilized in three multi-scale reverse attention modules (MSRA) to produce the final segmentation results. We conduct extensive experiments on three publicly accessible datasets, namely ISIC 2017, HAM10000, and PH2. Experimental results demonstrate that TG-Net outperforms state-of-the-art methods, validating the reliability of our method. Source code is available at https://github.com/ukeLin/TG-Net.
Collapse
Affiliation(s)
- Xiangfu Meng
- School of Electronics and Information Engineering, Liaoning Technical University, Huludao, China
| | - Chunlin Yu
- School of Electronics and Information Engineering, Liaoning Technical University, Huludao, China.
| | - Zhichao Zhang
- School of Electronics and Information Engineering, Liaoning Technical University, Huludao, China
| | - Xiaoyan Zhang
- School of Electronics and Information Engineering, Liaoning Technical University, Huludao, China
| | - Meng Wang
- School of Electronics and Information Engineering, Liaoning Technical University, Huludao, China
| |
Collapse
|
10
|
Iqbal S, Khan TM, Naqvi SS, Naveed A, Usman M, Khan HA, Razzak I. LDMRes-Net: A Lightweight Neural Network for Efficient Medical Image Segmentation on IoT and Edge Devices. IEEE J Biomed Health Inform 2024; 28:3860-3871. [PMID: 37938951 DOI: 10.1109/jbhi.2023.3331278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
In this study, we propose LDMRes-Net, a lightweight dual-multiscale residual block-based convolutional neural network tailored for medical image segmentation on IoT and edge platforms. Conventional U-Net-based models face challenges in meeting the speed and efficiency demands of real-time clinical applications, such as disease monitoring, radiation therapy, and image-guided surgery. In this study, we present the Lightweight Dual Multiscale Residual Block-based Convolutional Neural Network (LDMRes-Net), which is specifically designed to overcome these difficulties. LDMRes-Net overcomes these limitations with its remarkably low number of learnable parameters (0.072 M), making it highly suitable for resource-constrained devices. The model's key innovation lies in its dual multiscale residual block architecture, which enables the extraction of refined features on multiple scales, enhancing overall segmentation performance. To further optimize efficiency, the number of filters is carefully selected to prevent overlap, reduce training time, and improve computational efficiency. The study includes comprehensive evaluations, focusing on the segmentation of the retinal image of vessels and hard exudates crucial for the diagnosis and treatment of ophthalmology. The results demonstrate the robustness, generalizability, and high segmentation accuracy of LDMRes-Net, positioning it as an efficient tool for accurate and rapid medical image segmentation in diverse clinical applications, particularly on IoT and edge platforms. Such advances hold significant promise for improving healthcare outcomes and enabling real-time medical image analysis in resource-limited settings.
Collapse
|
11
|
Gong L, Tu W, Zhou S, Zhao L, Liu Z, Liu X. Deep Fusion Clustering Network With Reliable Structure Preservation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7792-7803. [PMID: 36395139 DOI: 10.1109/tnnls.2022.3220914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Deep clustering, which can elegantly exploit data representation to seek a partition of the samples, has attracted intensive attention. Recently, combining auto-encoder (AE) with graph neural networks (GNNs) has accomplished excellent performance by introducing structural information implied among data in clustering tasks. However, we observe that there are some limitations of most existing works: 1) in practical graph datasets, there exist some noisy or inaccurate connections among nodes, which would confuse network learning and cause biased representations, thus leading to unsatisfied clustering performance; 2) lacking dynamic information fusion module to carefully combine and refine the node attributes and the graph structural information to learn more consistent representations; and 3) failing to exploit the two separated views' information for generating a more robust target distribution. To solve these problems, we propose a novel method termed deep fusion clustering network with reliable structure preservation (DFCN-RSP). Specifically, the random walk mechanism is introduced to boost the reliability of the original graph structure by measuring localized structure similarities among nodes. It can simultaneously filter out noisy connections and supplement reliable connections in the original graph. Moreover, we provide a transformer-based graph auto-encoder (TGAE) that can use a self-attention mechanism with the localized structure similarity information to fine-tune the fused topology structure among nodes layer by layer. Furthermore, we provide a dynamic cross-modality fusion strategy to combine the representations learned from both TGAE and AE. Also, we design a triplet self-supervision strategy and a target distribution generation measure to explore the cross-modality information. The experimental results on five public benchmark datasets reflect that DFCN-RSP is more competitive than the state-of-the-art deep clustering algorithms. The corresponding code is available at https://github.com/gongleii/DFCN-RSP.
Collapse
|
12
|
Wang G, Zhou M, Ning X, Tiwari P, Zhu H, Yang G, Yap CH. US2Mask: Image-to-mask generation learning via a conditional GAN for cardiac ultrasound image segmentation. Comput Biol Med 2024; 172:108282. [PMID: 38503085 DOI: 10.1016/j.compbiomed.2024.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Cardiac ultrasound (US) image segmentation is vital for evaluating clinical indices, but it often demands a large dataset and expert annotations, resulting in high costs for deep learning algorithms. To address this, our study presents a framework utilizing artificial intelligence generation technology to produce multi-class RGB masks for cardiac US image segmentation. The proposed approach directly performs semantic segmentation of the heart's main structures in US images from various scanning modes. Additionally, we introduce a novel learning approach based on conditional generative adversarial networks (CGAN) for cardiac US image segmentation, incorporating a conditional input and paired RGB masks. Experimental results from three cardiac US image datasets with diverse scan modes demonstrate that our approach outperforms several state-of-the-art models, showcasing improvements in five commonly used segmentation metrics, with lower noise sensitivity. Source code is available at https://github.com/energy588/US2mask.
Collapse
Affiliation(s)
- Gang Wang
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, Chongqing; Department of Bioengineering, Imperial College London, London, UK
| | - Mingliang Zhou
- School of Computer Science, Chongqing University, Chongqing, Chongqing.
| | - Xin Ning
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
| | - Prayag Tiwari
- School of Information Technology, Halmstad University, Halmstad, Sweden
| | | | - Guang Yang
- Department of Bioengineering, Imperial College London, London, UK; Cardiovascular Research Centre, Royal Brompton Hospital, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
13
|
Zhan W, Yang Q, Chen S, Liu S, Liu Y, Li H, Li S, Gong Q, Liu L, Chen H. Semi-automatic fine delineation scheme for pancreatic cancer. Med Phys 2024; 51:1860-1871. [PMID: 37665772 DOI: 10.1002/mp.16718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/18/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer fine delineation in medical images by physicians is a major challenge due to the vast volume of medical images and the variability of patients. PURPOSE A semi-automatic fine delineation scheme was designed to assist doctors in accurately and quickly delineating the cancer target region to improve the delineation accuracy of pancreatic cancer in computed tomography (CT) images and effectively reduce the workload of doctors. METHODS A target delineation scheme in image blocks was also designed to provide more information for the deep learning delineation model. The start and end slices of the image block were manually delineated by physicians, and the cancer in the middle slices were accurately segmented using a three-dimensional Res U-Net model. Specifically, the input of the network is the CT image of the image block and the delineation of the cancer in the start and end slices, while the output of the network is the cancer area in the middle slices of the image block. Meanwhile, the model performance of pancreatic cancer delineation and the workload of doctors in different image block sizes were studied. RESULTS We used 37 3D CT volumes for training, 11 volumes for validating and 11 volumes for testing. The influence of different image block sizes on doctors' workload was compared quantitatively. Experimental results showed that the physician's workload was minimal when the image block size was 5, and all cancer could be accurately delineated. The Dice similarity coefficient was 0.894 ± 0.029, the 95% Hausdorff distance was 3.465 ± 0.710 mm, the normalized surface Dice was 0.969 ± 0.019. By completing the accurate delineation of all the CT images, the speed of the new method is 2.16 times faster than that of manual sketching. CONCLUSION Our proposed 3D semi-automatic delineative method based on the idea of block prediction could accurately delineate CT images of pancreatic cancer and effectively deal with the challenges of class imbalance, background distractions, and non-rigid geometrical features. This study had a significant advantage in reducing doctors' workload, and was expected to help doctors improve their work efficiency in clinical application.
Collapse
Affiliation(s)
- Weizong Zhan
- School of Life & Environmental Science, Guilin University of Electronic Technology, Guilin, China
| | - Qiuxia Yang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuchao Chen
- School of Life & Environmental Science, Guilin University of Electronic Technology, Guilin, China
| | - Shanshan Liu
- School of Life & Environmental Science, Guilin University of Electronic Technology, Guilin, China
| | - Yifei Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Haojiang Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Shuqi Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qiong Gong
- School of Life & Environmental Science, Guilin University of Electronic Technology, Guilin, China
- Guangxi Human Physiological Information NonInvasive Detection Engineering Technology Research Center, Guilin, China
- Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin, China
| | - Lizhi Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongbo Chen
- School of Life & Environmental Science, Guilin University of Electronic Technology, Guilin, China
- Guangxi Human Physiological Information NonInvasive Detection Engineering Technology Research Center, Guilin, China
- Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin, China
| |
Collapse
|
14
|
Fu Y, Liu J, Shi J. TSCA-Net: Transformer based spatial-channel attention segmentation network for medical images. Comput Biol Med 2024; 170:107938. [PMID: 38219644 DOI: 10.1016/j.compbiomed.2024.107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
Deep learning architectures based on convolutional neural network (CNN) and Transformer have achieved great success in medical image segmentation. Models based on the encoder-decoder framework like U-Net have been successfully employed in many realistic scenarios. However, due to the low contrast between object and background, various shapes and scales of objects, and complex background in medical images, it is difficult to locate targets and obtain better segmentation performance by extracting effective information from images. In this paper, an encoder-decoder architecture based on spatial and channel attention modules built by Transformer is proposed for medical image segmentation. Concretely, spatial and channel attention modules based on Transformer are utilized to extract spatial and channel global complementary information at different layers in U-shape network, which is beneficial to learn the detail features in different scales. To fuse better spatial and channel information from Transformer features, a spatial and channel feature fusion block is designed for the decoder. The proposed network inherits the advantages of both CNN and Transformer with the local feature representation and long-range dependency for medical images. Qualitative and quantitative experiments demonstrate that the proposed method outperforms against eight state-of-the-art segmentation methods on five publicly medical image datasets including different modalities, such as 80.23% and 93.56% Dice value, 67.13% and 88.94% Intersection over Union (IoU) value on the Multi-organ Nucleus Segmentation (MoNuSeg) and Combined Healthy Abdominal Organ Segmentation with Computed Tomography scans (CHAOS-CT) datasets.
Collapse
Affiliation(s)
- Yinghua Fu
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Junfeng Liu
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jun Shi
- School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
15
|
Shi J, Wang Z, Ruan S, Zhao M, Zhu Z, Kan H, An H, Xue X, Yan B. Rethinking automatic segmentation of gross target volume from a decoupling perspective. Comput Med Imaging Graph 2024; 112:102323. [PMID: 38171254 DOI: 10.1016/j.compmedimag.2023.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
Accurate and reliable segmentation of Gross Target Volume (GTV) is critical in cancer Radiation Therapy (RT) planning, but manual delineation is time-consuming and subject to inter-observer variations. Recently, deep learning methods have achieved remarkable success in medical image segmentation. However, due to the low image contrast and extreme pixel imbalance between GTV and adjacent tissues, most existing methods usually obtained limited performance on automatic GTV segmentation. In this paper, we propose a Heterogeneous Cascade Framework (HCF) from a decoupling perspective, which decomposes the GTV segmentation into independent recognition and segmentation subtasks. The former aims to screen out the abnormal slices containing GTV, while the latter performs pixel-wise segmentation of these slices. With the decoupled two-stage framework, we can efficiently filter normal slices to reduce false positives. To further improve the segmentation performance, we design a multi-level Spatial Alignment Network (SANet) based on the feature pyramid structure, which introduces a spatial alignment module into the decoder to compensate for the information loss caused by downsampling. Moreover, we propose a Combined Regularization (CR) loss and Balance-Sampling Strategy (BSS) to alleviate the pixel imbalance problem and improve network convergence. Extensive experiments on two public datasets of StructSeg2019 challenge demonstrate that our method outperforms state-of-the-art methods, especially with significant advantages in reducing false positives and accurately segmenting small objects. The code is available at https://github.com/shijun18/GTV_AutoSeg.
Collapse
Affiliation(s)
- Jun Shi
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Zhaohui Wang
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Shulan Ruan
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Minfan Zhao
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Ziqi Zhu
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Hongyu Kan
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Hong An
- School of Computer Science and Technology, University of Science and Technology of China, Hefei, 230026, China; Laoshan Laboratory Qingdao, Qindao, 266221, China.
| | - Xudong Xue
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bing Yan
- Department of radiation oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
16
|
Domadia SG, Thakkar FN, Ardeshana MA. Segmenting brain glioblastoma using dense-attentive 3D DAF 2. Phys Med 2024; 119:103304. [PMID: 38340694 DOI: 10.1016/j.ejmp.2024.103304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/18/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Precise delineation of brain glioblastoma or tumor through segmentation is pivotal in the diagnosis, formulating treatment strategies, and evaluating therapeutic progress in patients. Precisely identifying brain glioblastoma within multimodal MRI scans poses a significant challenge in the field of medical image analysis as different intensity profiles are observed across the sub-regions, reflecting diverse tumor biological properties. For segmenting glioblastoma areas, convolutional neural networks have displayed astounding performance in recent years. This paper introduces an innovative methodology for brain glioblastoma segmentation by combining the Dense-Attention 3D U-Net network with a fusion strategy and the focal tversky loss function. By fusing information from multiple resolution segmentation maps, our model enhances its ability to discern intricate tumor boundaries. Incorporating the focal tversky loss function, we effectively emphasize critical regions and mitigate class imbalance. Recursive Convolution Block 2 is proposed after fusion to ensure efficient utilization of all accessible features while maintaining rapid convergence. The network's effectiveness is assessed using diverse datasets BraTS 2020 and BraTS 2021. Results show comparable dice similarity coefficient compared to other methods with increased efficiency and segmentation performance. Additionally, the architecture achieved an average dice similarity coefficient of 82.4% and an average hausdorff distance (HD95) of 10.426, which demonstrated consistent performance improvement compared to baseline models like U-Net, Attention U-Net, V-Net and Res U-Net and indicating the effectiveness of proposed architecture.
Collapse
|
17
|
Cheng T, Sun L, Zhang J, Wang J, Wei Z. A start-stop points CenterNet for wideband signals detection and time-frequency localization in spectrum sensing. Neural Netw 2024; 170:325-336. [PMID: 38006735 DOI: 10.1016/j.neunet.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
Recently, deep learning (DL) based object detection methods have attracted significant attention for wideband multisignal detection, which has been viewed as an essential part in the field of cognitive radio spectrum sensing. However, the existing DL methods are difficult or very likely fail to detect discontinuous burst signals, not to mention the signals with wide, instantaneous, dynamic bandwidth, and multiple channels. To solve this problem, the present study proposes a scheme that combines the start-stop point signal features for wideband multi-signal detection, namely the Fast Spectrum-Size Self-Training network (FSSNet). Considering the horizontal rectangle form of a wideband signal in the time-frequency domain, we innovatively utilize the start-stop points of the two-dimensional (2D) Box to build the signal model. Specifically, We propose a fast Start-stop HeatMap where the proposed LPS-YXE simultaneously labels and divides the start-stop points positions in the X-Y axis of a single HeatMap. We attribute the method's success in discontinuous signal detection to the multidimensional space transformation of HeatMap, which is used to locate the start-stop points and extract features separated from the signal regions of start-stop points. Furthermore, FSSNet can realize the 2D Box estimation of the wideband signal by regressing only a single variable, and thus with satisfactory detection speed. Simulation results verify the effectiveness and superiority of the proposed start-stop based wideband signal detection scheme with practical received signals. All our models and code are available athttps://github.com/jn-z/SSNet2.
Collapse
Affiliation(s)
- Teng Cheng
- School of Automotive and Transportation Engineering, Hefei University of Technology, China; Engineering Research Center for Intelligent Transportation and Cooperative Vehicle-Infrastructure of Anhui Province, Hefei, 230000, China.
| | - Lei Sun
- School of Automotive and Transportation Engineering, Hefei University of Technology, China; Engineering Research Center for Intelligent Transportation and Cooperative Vehicle-Infrastructure of Anhui Province, Hefei, 230000, China
| | - Junning Zhang
- College of electronic countermeasures, National University of Defense Technology, Hefei, 230000, China.
| | - Jinling Wang
- College of electronic countermeasures, National University of Defense Technology, Hefei, 230000, China
| | - Zhanyang Wei
- College of electronic countermeasures, National University of Defense Technology, Hefei, 230000, China
| |
Collapse
|
18
|
Yang X, Hu X, Zhou S, Liu X, Zhu E. Interpolation-Based Contrastive Learning for Few-Label Semi-Supervised Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:2054-2065. [PMID: 35797319 DOI: 10.1109/tnnls.2022.3186512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Semi-supervised learning (SSL) has long been proved to be an effective technique to construct powerful models with limited labels. In the existing literature, consistency regularization-based methods, which force the perturbed samples to have similar predictions with the original ones have attracted much attention for their promising accuracy. However, we observe that the performance of such methods decreases drastically when the labels get extremely limited, e.g., 2 or 3 labels for each category. Our empirical study finds that the main problem lies with the drift of semantic information in the procedure of data augmentation. The problem can be alleviated when enough supervision is provided. However, when little guidance is available, the incorrect regularization would mislead the network and undermine the performance of the algorithm. To tackle the problem, we: 1) propose an interpolation-based method to construct more reliable positive sample pairs and 2) design a novel contrastive loss to guide the embedding of the learned network to change linearly between samples so as to improve the discriminative capability of the network by enlarging the margin decision boundaries. Since no destructive regularization is introduced, the performance of our proposed algorithm is largely improved. Specifically, the proposed algorithm outperforms the second best algorithm (Comatch) with 5.3% by achieving 88.73% classification accuracy when only two labels are available for each class on the CIFAR-10 dataset. Moreover, we further prove the generality of the proposed method by improving the performance of the existing state-of-the-art algorithms considerably with our proposed strategy. The corresponding code is available at https://github.com/xihongyang1999/ICL_SSL.
Collapse
|
19
|
Qiu Z, Hu Y, Chen X, Zeng D, Hu Q, Liu J. Rethinking Dual-Stream Super-Resolution Semantic Learning in Medical Image Segmentation. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:451-464. [PMID: 37812562 DOI: 10.1109/tpami.2023.3322735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Image segmentation is fundamental task for medical image analysis, whose accuracy is improved by the development of neural networks. However, the existing algorithms that achieve high-resolution performance require high-resolution input, resulting in substantial computational expenses and limiting their applicability in the medical field. Several studies have proposed dual-stream learning frameworks incorporating a super-resolution task as auxiliary. In this paper, we rethink these frameworks and reveal that the feature similarity between tasks is insufficient to constrain vessels or lesion segmentation in the medical field, due to their small proportion in the image. To address this issue, we propose a DS2F (Dual-Stream Shared Feature) framework, including a Shared Feature Extraction Module (SFEM). Specifically, we present Multi-Scale Cross Gate (MSCG) utilizing multi-scale features as a novel example of SFEM. Then we define a proxy task and proxy loss to enable the features focus on the targets based on the assumption that a limited set of shared features between tasks is helpful for their performance. Extensive experiments on six publicly available datasets across three different scenarios are conducted to verify the effectiveness of our framework. Furthermore, various ablation studies are conducted to demonstrate the significance of our DS2F.
Collapse
|
20
|
Wu S, Cao Y, Li X, Liu Q, Ye Y, Liu X, Zeng L, Tian M. Attention-guided multi-scale context aggregation network for multi-modal brain glioma segmentation. Med Phys 2023; 50:7629-7640. [PMID: 37151131 DOI: 10.1002/mp.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Accurate segmentation of brain glioma is a critical prerequisite for clinical diagnosis, surgical planning and treatment evaluation. In current clinical workflow, physicians typically perform delineation of brain tumor subregions slice-by-slice, which is more susceptible to variabilities in raters and also time-consuming. Besides, even though convolutional neural networks (CNNs) are driving progress, the performance of standard models still have some room for further improvement. PURPOSE To deal with these issues, this paper proposes an attention-guided multi-scale context aggregation network (AMCA-Net) for the accurate segmentation of brain glioma in the magnetic resonance imaging (MRI) images with multi-modalities. METHODS AMCA-Net extracts the multi-scale features from the MRI images and fuses the extracted discriminative features via a self-attention mechanism for brain glioma segmentation. The extraction is performed via a series of down-sampling, convolution layers, and the global context information guidance (GCIG) modules are developed to fuse the features extracted for contextual features. At the end of the down-sampling, a multi-scale fusion (MSF) module is designed to exploit and combine all the extracted multi-scale features. Each of the GCIG and MSF modules contain a channel attention (CA) module that can adaptively calibrate feature responses and emphasize the most relevant features. Finally, multiple predictions with different resolutions are fused through different weightings given by a multi-resolution adaptation (MRA) module instead of the use of averaging or max-pooling to improve the final segmentation results. RESULTS Datasets used in this paper are publicly accessible, that is, the Multimodal Brain Tumor Segmentation Challenges 2018 (BraTS2018) and 2019 (BraTS2019). BraTS2018 contains 285 patient cases and BraTS2019 contains 335 cases. Simulations show that the AMCA-Net has better or comparable performance against that of the other state-of-the-art models. In terms of the Dice score and Hausdorff 95 for the BraTS2018 dataset, 90.4% and 10.2 mm for the whole tumor region (WT), 83.9% and 7.4 mm for the tumor core region (TC), 80.2% and 4.3 mm for the enhancing tumor region (ET), whereas the Dice score and Hausdorff 95 for the BraTS2019 dataset, 91.0% and 10.7 mm for the WT, 84.2% and 8.4 mm for the TC, 80.1% and 4.8 mm for the ET. CONCLUSIONS The proposed AMCA-Net performs comparably well in comparison to several state-of-the-art neural net models in identifying the areas involving the peritumoral edema, enhancing tumor, and necrotic and non-enhancing tumor core of brain glioma, which has great potential for clinical practice. In future research, we will further explore the feasibility of applying AMCA-Net to other similar segmentation tasks.
Collapse
Affiliation(s)
- Shaozhi Wu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunjian Cao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Xinke Li
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qiyu Liu
- Radiology Department, Mianyang Central Hospital, Mianyang, China
| | - Yuyun Ye
- Department of Electrical and Computer Engineering, University of Tulsa, Tulsa, Oklahoma, USA
| | - Xingang Liu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Liaoyuan Zeng
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Tian
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
21
|
Ke J, Liu K, Sun Y, Xue Y, Huang J, Lu Y, Dai J, Chen Y, Han X, Shen Y, Shen D. Artifact Detection and Restoration in Histology Images With Stain-Style and Structural Preservation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3487-3500. [PMID: 37352087 DOI: 10.1109/tmi.2023.3288940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
The artifacts in histology images may encumber the accurate interpretation of medical information and cause misdiagnosis. Accordingly, prepending manual quality control of artifacts considerably decreases the degree of automation. To close this gap, we propose a methodical pre-processing framework to detect and restore artifacts, which minimizes their impact on downstream AI diagnostic tasks. First, the artifact recognition network AR-Classifier first differentiates common artifacts from normal tissues, e.g., tissue folds, marking dye, tattoo pigment, spot, and out-of-focus, and also catalogs artifact patches by their restorability. Then, the succeeding artifact restoration network AR-CycleGAN performs de-artifact processing where stain styles and tissue structures can be maximally retained. We construct a benchmark for performance evaluation, curated from both clinically collected WSIs and public datasets of colorectal and breast cancer. The functional structures are compared with state-of-the-art methods, and also comprehensively evaluated by multiple metrics across multiple tasks, including artifact classification, artifact restoration, downstream diagnostic tasks of tumor classification and nuclei segmentation. The proposed system allows full automation of deep learning based histology image analysis without human intervention. Moreover, the structure-independent characteristic enables its processing with various artifact subtypes. The source code and data in this research are available at https://github.com/yunboer/AR-classifier-and-AR-CycleGAN.
Collapse
|
22
|
Li Y, Zhou T, He K, Zhou Y, Shen D. Multi-Scale Transformer Network With Edge-Aware Pre-Training for Cross-Modality MR Image Synthesis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3395-3407. [PMID: 37339020 DOI: 10.1109/tmi.2023.3288001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Cross-modality magnetic resonance (MR) image synthesis can be used to generate missing modalities from given ones. Existing (supervised learning) methods often require a large number of paired multi-modal data to train an effective synthesis model. However, it is often challenging to obtain sufficient paired data for supervised training. In reality, we often have a small number of paired data while a large number of unpaired data. To take advantage of both paired and unpaired data, in this paper, we propose a Multi-scale Transformer Network (MT-Net) with edge-aware pre-training for cross-modality MR image synthesis. Specifically, an Edge-preserving Masked AutoEncoder (Edge-MAE) is first pre-trained in a self-supervised manner to simultaneously perform 1) image imputation for randomly masked patches in each image and 2) whole edge map estimation, which effectively learns both contextual and structural information. Besides, a novel patch-wise loss is proposed to enhance the performance of Edge-MAE by treating different masked patches differently according to the difficulties of their respective imputations. Based on this proposed pre-training, in the subsequent fine-tuning stage, a Dual-scale Selective Fusion (DSF) module is designed (in our MT-Net) to synthesize missing-modality images by integrating multi-scale features extracted from the encoder of the pre-trained Edge-MAE. Furthermore, this pre-trained encoder is also employed to extract high-level features from the synthesized image and corresponding ground-truth image, which are required to be similar (consistent) in the training. Experimental results show that our MT-Net achieves comparable performance to the competing methods even using 70% of all available paired data. Our code will be released at https://github.com/lyhkevin/MT-Net.
Collapse
|
23
|
Balaji K. Image Augmentation based on Variational Autoencoder for Breast Tumor Segmentation. Acad Radiol 2023; 30 Suppl 2:S172-S183. [PMID: 36804294 DOI: 10.1016/j.acra.2022.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 02/18/2023]
Abstract
RATIONALE AND OBJECTIVES Breast tumor segmentation based on Dynamic Contrast-Enhanced Magnetic Resonance Imaging is significant step for computable radiomics analysis of breast cancer. Manual tumor annotation is time-consuming process and involves medical acquaintance, biased, inclined to error, and inter-user discrepancy. A number of modern trainings have revealed the capability of deep learning representations in image segmentation. MATERIALS AND METHODS Here, we describe a 3D Connected-UNets for tumor segmentation from 3D Magnetic Resonance Imagings based on encoder-decoder architecture. Due to a restricted training dataset size, a variational auto-encoder outlet is supplementary to renovate the input image itself in order to identify the shared decoder and execute additional controls on its layers. Based on initial segmentation of Connected-UNets, fully connected 3D provisional unsystematic domain is used to enhance segmentation outcomes by discovering 2D neighbor areas and 3D volume statistics. Moreover, 3D connected modules evaluation is used to endure around large modules and decrease segmentation noise. RESULTS The proposed method has been assessed on two widely offered datasets, explicitly INbreast and the curated breast imaging subset of digital database for screening mammography The proposed model has also been estimated using a private dataset. CONCLUSION The experimental results show that the proposed model outperforms the state-of-the-art methods for breast tumor segmentation.
Collapse
Affiliation(s)
- K Balaji
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, 632014 India.
| |
Collapse
|
24
|
Lal S. TC-SegNet: robust deep learning network for fully automatic two-chamber segmentation of two-dimensional echocardiography. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-19. [PMID: 37362663 PMCID: PMC10238771 DOI: 10.1007/s11042-023-15524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/03/2022] [Accepted: 04/19/2023] [Indexed: 06/28/2023]
Abstract
Heart chamber quantification is an essential clinical task to analyze heart abnormalities by evaluating the heart volume estimated through the endocardial border of the chambers. A precise heart chamber segmentation algorithm using echocardiography is essential for improving the diagnosis of cardiac disease. This paper proposes a robust two chamber segmentation network (TC-SegNet) for echocardiography which follows a U-Net architecture and effectively incorporates the proposed modified skip connection, Atrous Spatial Pyramid Pooling (ASPP) modules and squeeze and excitation modules. The TC-SegNet is evaluated on the open-source fully annotated dataset of cardiac acquisitions for multi-structure ultrasound segmentation (CAMUS). The proposed TC-SegNet obtained an average value of F1-score of 0.91, an average Dice score of 0.9284 and an IoU score of 0.8322 which are higher than the reference models used here for comparison. Further, Pixel error (PE) of 1.5109 which are significantly less than the comparison models. The segmentation results and metrics show that the proposed model outperforms the state-of-the-art segmentation methods.
Collapse
Affiliation(s)
- Shyam Lal
- Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru, 575025 Karnataka India
| |
Collapse
|
25
|
Wang J, Li S, Yu L, Qu A, Wang Q, Liu J, Wu Q. SDPN: A Slight Dual-Path Network With Local-Global Attention Guided for Medical Image Segmentation. IEEE J Biomed Health Inform 2023; 27:2956-2967. [PMID: 37030687 DOI: 10.1109/jbhi.2023.3260026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Accurate identification of lesions is a key step in surgical planning. However, this task mainly exists two challenges: 1) Due to the complex anatomical shapes of different lesions, most segmentation methods only achieve outstanding performance for a specific structure, rather than other lesions with location differences. 2) The huge number of parameters limits existing transformer-based segmentation models. To overcome these problems, we propose a novel slight dual-path network (SDPN) to segment variable location lesions or organs with significant differences accurately. First, we design a dual-path module to integrate local with global features without obvious memory consumption. Second, a novel Multi-spectrum attention module is proposed to pay further attention to detailed information, which can automatically adapt to the variable segmentation target. Then, the compression module based on tensor ring decomposition is designed to compress convolutional and transformer structures. In the experiment, four datasets, including three benchmark datasets and a clinical dataset, are used to evaluate SDPN. Results of the experiments show that SDPN performs better than other start-of-the-art methods for brain tumor, liver tumor, endometrial tumor and cardiac segmentation. To ensure the generalizability, we train the network on Kvasir-SEG and test on CVC-ClinicDB which collected from a different institution. The quantitative analysis shows that the clinical evaluation results are consistent with the experts. Therefore, this model may be a potential candidate for the segmentation of lesions and organs segmentation with variable locations in clinical applications.
Collapse
|
26
|
Song Z, Kang X, Wei X, Liu H, Dian R, Li S. FSNet: Focus Scanning Network for Camouflaged Object Detection. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:2267-2278. [PMID: 37067971 DOI: 10.1109/tip.2023.3266659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Camouflaged object detection (COD) aims to discover objects that blend in with the background due to similar colors or textures, etc. Existing deep learning methods do not systematically illustrate the key tasks in COD, which seriously hinders the improvement of its performance. In this paper, we introduce the concept of focus areas that represent some regions containing discernable colors or textures, and develop a two-stage focus scanning network for camouflaged object detection. Specifically, a novel encoder-decoder module is first designed to determine a region where the focus areas may appear. In this process, a multi-layer Swin transformer is deployed to encode global context information between the object and the background, and a novel cross-connection decoder is proposed to fuse cross-layer textures or semantics. Then, we utilize the multi-scale dilated convolution to obtain discriminative features with different scales in focus areas. Meanwhile, the dynamic difficulty aware loss is designed to guide the network paying more attention to structural details. Extensive experimental results on the benchmarks, including CAMO, CHAMELEON, COD10K, and NC4K, illustrate that the proposed method performs favorably against other state-of-the-art methods.
Collapse
|
27
|
Wei X, Ye F, Wan H, Xu J, Min W. TANet: Triple Attention Network for medical image segmentation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
28
|
An Improved Co-Training and Generative Adversarial Network (Diff-CoGAN) for Semi-Supervised Medical Image Segmentation. INFORMATION 2023. [DOI: 10.3390/info14030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Semi-supervised learning is a technique that utilizes a limited set of labeled data and a large amount of unlabeled data to overcome the challenges of obtaining a perfect dataset in deep learning, especially in medical image segmentation. The accuracy of the predicted labels for the unlabeled data is a critical factor that affects the training performance, thus reducing the accuracy of segmentation. To address this issue, a semi-supervised learning method based on the Diff-CoGAN framework was proposed, which incorporates co-training and generative adversarial network (GAN) strategies. The proposed Diff-CoGAN framework employs two generators and one discriminator. The generators work together by providing mutual information guidance to produce predicted maps that are more accurate and closer to the ground truth. To further improve segmentation accuracy, the predicted maps are subjected to an intersection operation to identify a high-confidence region of interest, which reduces boundary segmentation errors. The predicted maps are then fed into the discriminator, and the iterative process of adversarial training enhances the generators’ ability to generate more precise maps, while also improving the discriminator’s ability to distinguish between the predicted maps and the ground truth. This study conducted experiments on the Hippocampus and Spleen images from the Medical Segmentation Decathlon (MSD) dataset using three semi-supervised methods: co-training, semi-GAN, and Diff-CoGAN. The experimental results demonstrated that the proposed Diff-CoGAN approach significantly enhanced segmentation accuracy compared to the other two methods by benefiting on the mutual guidance of the two generators and the adversarial training between the generators and discriminator. The introduction of the intersection operation prior to the discriminator also further reduced boundary segmentation errors.
Collapse
|
29
|
GLAN: GAN Assisted Lightweight Attention Network for Biomedical Imaging Based Diagnostics. Cognit Comput 2023. [DOI: 10.1007/s12559-023-10131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
30
|
Xu Q, Ma Z, He N, Duan W. DCSAU-Net: A deeper and more compact split-attention U-Net for medical image segmentation. Comput Biol Med 2023; 154:106626. [PMID: 36736096 DOI: 10.1016/j.compbiomed.2023.106626] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Deep learning architecture with convolutional neural network achieves outstanding success in the field of computer vision. Where U-Net has made a great breakthrough in biomedical image segmentation and has been widely applied in a wide range of practical scenarios. However, the equal design of every downsampling layer in the encoder part and simply stacked convolutions do not allow U-Net to extract sufficient information of features from different depths. The increasing complexity of medical images brings new challenges to the existing methods. In this paper, we propose a deeper and more compact split-attention u-shape network, which efficiently utilises low-level and high-level semantic information based on two frameworks: primary feature conservation and compact split-attention block. We evaluate the proposed model on CVC-ClinicDB, 2018 Data Science Bowl, ISIC-2018, SegPC-2021 and BraTS-2021 datasets. As a result, our proposed model displays better performance than other state-of-the-art methods in terms of the mean intersection over union and dice coefficient. More significantly, the proposed model demonstrates excellent segmentation performance on challenging images. The code for our work and more technical details can be found at https://github.com/xq141839/DCSAU-Net.
Collapse
Affiliation(s)
- Qing Xu
- The School of Computer Science, University of Lincoln, Lincolnshire, LN6 7TS, United Kingdom.
| | - Zhicheng Ma
- The College of Computer Science and Technology, Zhejiang Gongshang University, Zhejiang, 310018, China
| | - Na He
- The Sino-German Institute of Design and Communication, Zhejiang Wanli University, Zhejiang, 315100, China
| | - Wenting Duan
- The School of Computer Science, University of Lincoln, Lincolnshire, LN6 7TS, United Kingdom
| |
Collapse
|
31
|
Mahesh Kumar G, Parthasarathy E. Development of an enhanced U-Net model for brain tumor segmentation with optimized architecture. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
32
|
Zhou T, Ruan S, Hu H. A literature survey of MR-based brain tumor segmentation with missing modalities. Comput Med Imaging Graph 2023; 104:102167. [PMID: 36584536 DOI: 10.1016/j.compmedimag.2022.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/01/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Multimodal MR brain tumor segmentation is one of the hottest issues in the community of medical image processing. However, acquiring the complete set of MR modalities is not always possible in clinical practice, due to the acquisition protocols, image corruption, scanner availability, scanning cost or allergies to certain contrast materials. The missing information can cause some restraints to brain tumor diagnosis, monitoring, treatment planning and prognosis. Thus, it is highly desirable to develop brain tumor segmentation methods to address the missing modalities problem. Based on the recent advancements, in this review, we provide a detailed analysis of the missing modality issue in MR-based brain tumor segmentation. First, we briefly introduce the biomedical background concerning brain tumor, MR imaging techniques, and the current challenges in brain tumor segmentation. Then, we provide a taxonomy of the state-of-the-art methods with five categories, namely, image synthesis-based method, latent feature space-based model, multi-source correlation-based method, knowledge distillation-based method, and domain adaptation-based method. In addition, the principles, architectures, benefits and limitations are elaborated in each method. Following that, the corresponding datasets and widely used evaluation metrics are described. Finally, we analyze the current challenges and provide a prospect for future development trends. This review aims to provide readers with a thorough knowledge of the recent contributions in the field of brain tumor segmentation with missing modalities and suggest potential future directions.
Collapse
Affiliation(s)
- Tongxue Zhou
- School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China
| | - Su Ruan
- Université de Rouen Normandie, LITIS - QuantIF, Rouen 76183, France
| | - Haigen Hu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China; Key Laboratory of Visual Media Intelligent Processing Technology of Zhejiang Province, Hangzhou 310023, China.
| |
Collapse
|
33
|
Chen S, Ding C, Liu M, Cheng J, Tao D. CPP-Net: Context-Aware Polygon Proposal Network for Nucleus Segmentation. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2023; 32:980-994. [PMID: 37022023 DOI: 10.1109/tip.2023.3237013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Nucleus segmentation is a challenging task due to the crowded distribution and blurry boundaries of nuclei. Recent approaches represent nuclei by means of polygons to differentiate between touching and overlapping nuclei and have accordingly achieved promising performance. Each polygon is represented by a set of centroid-to-boundary distances, which are in turn predicted by features of the centroid pixel for a single nucleus. However, using the centroid pixel alone does not provide sufficient contextual information for robust prediction and thus degrades the segmentation accuracy. To handle this problem, we propose a Context-aware Polygon Proposal Network (CPP-Net) for nucleus segmentation. First, we sample a point set rather than one single pixel within each cell for distance prediction. This strategy substantially enhances contextual information and thereby improves the robustness of the prediction. Second, we propose a Confidence-based Weighting Module, which adaptively fuses the predictions from the sampled point set. Third, we introduce a novel Shape-Aware Perceptual (SAP) loss that constrains the shape of the predicted polygons. Here, the SAP loss is based on an additional network that is pre-trained by means of mapping the centroid probability map and the pixel-to-boundary distance maps to a different nucleus representation. Extensive experiments justify the effectiveness of each component in the proposed CPP-Net. Finally, CPP-Net is found to achieve state-of-the-art performance on three publicly available databases, namely DSB2018, BBBC06, and PanNuke. Code of this paper is available at https://github.com/csccsccsccsc/cpp-net.
Collapse
|
34
|
Wang X, Wang S, Zhang Z, Yin X, Wang T, Li N. CPAD-Net: Contextual parallel attention and dilated network for liver tumor segmentation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
CRCNet: Few-Shot Segmentation with Cross-Reference and Region–Global Conditional Networks. Int J Comput Vis 2022. [DOI: 10.1007/s11263-022-01677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Yu Q, Qi L, Gao Y, Wang W, Shi Y. Crosslink-Net: Double-Branch Encoder Network via Fusing Vertical and Horizontal Convolutions for Medical Image Segmentation. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2022; 31:5893-5908. [PMID: 36074869 DOI: 10.1109/tip.2022.3203223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Accurate image segmentation plays a crucial role in medical image analysis, yet it faces great challenges caused by various shapes, diverse sizes, and blurry boundaries. To address these difficulties, square kernel-based encoder-decoder architectures have been proposed and widely used, but their performance remains unsatisfactory. To further address these challenges, we present a novel double-branch encoder architecture. Our architecture is inspired by two observations. (1) Since the discrimination of the features learned via square convolutional kernels needs to be further improved, we propose utilizing nonsquare vertical and horizontal convolutional kernels in a double-branch encoder so that the features learned by both branches can be expected to complement each other. (2) Considering that spatial attention can help models to better focus on the target region in a large-sized image, we develop an attention loss to further emphasize the segmentation of small-sized targets. With the above two schemes, we develop a novel double-branch encoder-based segmentation framework for medical image segmentation, namely, Crosslink-Net, and validate its effectiveness on five datasets with experiments. The code is released at https://github.com/Qianyu1226/Crosslink-Net.
Collapse
|
37
|
Zhou S, Nie D, Adeli E, Wei Q, Ren X, Liu X, Zhu E, Yin J, Wang Q, Shen D. Semantic instance segmentation with discriminative deep supervision for medical images. Med Image Anal 2022; 82:102626. [DOI: 10.1016/j.media.2022.102626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 08/21/2022] [Accepted: 09/10/2022] [Indexed: 10/31/2022]
|
38
|
Yu Y, Tao Y, Guan H, Xiao S, Li F, Yu C, Liu Z, Li J. A multi-branch hierarchical attention network for medical target segmentation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Hu X, Tang C, Chen H, Li X, Li J, Zhang Z. Improving Image Segmentation with Boundary Patch Refinement. Int J Comput Vis 2022. [DOI: 10.1007/s11263-022-01662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Khaled A, Han JJ, Ghaleb TA. Learning to detect boundary information for brain image segmentation. BMC Bioinformatics 2022; 23:332. [PMID: 35953776 PMCID: PMC9367147 DOI: 10.1186/s12859-022-04882-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
MRI brain images are always of low contrast, which makes it difficult to identify to which area the information at the boundary of brain images belongs. This can make the extraction of features at the boundary more challenging, since those features can be misleading as they might mix properties of different brain regions. Hence, to alleviate such a problem, image boundary detection plays a vital role in medical image segmentation, and brain segmentation in particular, as unclear boundaries can worsen brain segmentation results. Yet, given the low quality of brain images, boundary detection in the context of brain image segmentation remains challenging. Despite the research invested to improve boundary detection and brain segmentation, these two problems were addressed independently, i.e., little attention was paid to applying boundary detection to brain segmentation tasks. Therefore, in this paper, we propose a boundary detection-based model for brain image segmentation. To this end, we first design a boundary segmentation network for detecting and segmenting images brain tissues. Then, we design a boundary information module (BIM) to distinguish boundaries from the three different brain tissues. After that, we add a boundary attention gate (BAG) to the encoder output layers of our transformer to capture more informative local details. We evaluate our proposed model on two datasets of brain tissue images, including infant and adult brains. The extensive evaluation experiments of our model show better performance (a Dice Coefficient (DC) accuracy of up to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$5.3\%$$\end{document}5.3% compared to the state-of-the-art models) in detecting and segmenting brain tissue images.
Collapse
Affiliation(s)
- Afifa Khaled
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Jian-Jun Han
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Taher A Ghaleb
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
| |
Collapse
|
41
|
Ajala S, Muraleedharan Jalajamony H, Nair M, Marimuthu P, Fernandez RE. Comparing machine learning and deep learning regression frameworks for accurate prediction of dielectrophoretic force. Sci Rep 2022; 12:11971. [PMID: 35831342 PMCID: PMC9279499 DOI: 10.1038/s41598-022-16114-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
An intelligent sensing framework using Machine Learning (ML) and Deep Learning (DL) architectures to precisely quantify dielectrophoretic force invoked on microparticles in a textile electrode-based DEP sensing device is reported. The prediction accuracy and generalization ability of the framework was validated using experimental results. Images of pearl chain alignment at varying input voltages were used to build deep regression models using modified ML and CNN architectures that can correlate pearl chain alignment patterns of Saccharomyces cerevisiae(yeast) cells and polystyrene microbeads to DEP force. Various ML models such as K-Nearest Neighbor, Support Vector Machine, Random Forest, Neural Networks, and Linear Regression along with DL models such as Convolutional Neural Network (CNN) architectures of AlexNet, ResNet-50, MobileNetV2, and GoogLeNet have been analyzed in order to build an effective regression framework to estimate the force induced on yeast cells and microbeads. The efficiencies of the models were evaluated using Mean Absolute Error, Mean Absolute Relative, Mean Squared Error, R-squared, and Root Mean Square Error (RMSE) as evaluation metrics. ResNet-50 with RMSPROP gave the best performance, with a validation RMSE of 0.0918 on yeast cells while AlexNet with ADAM optimizer gave the best performance, with a validation RMSE of 0.1745 on microbeads. This provides a baseline for further studies in the application of deep learning in DEP aided Lab-on-Chip devices.
Collapse
Affiliation(s)
- Sunday Ajala
- Department of Engineering, Norfolk State University, Norfolk, USA
| | | | - Midhun Nair
- APJ Abdul Kalam Technological University, Thiruvananthapuram, India
| | - Pradeep Marimuthu
- Rajeev Gandhi College of Engineering and Technology, Puducherry, India
| | | |
Collapse
|
42
|
Wan J, Yue S, Ma J, Ma X. A coarse-to-fine full attention guided capsule network for medical image segmentation. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Ribeiro RF, Gomes-Fonseca J, Torres HR, Oliveira B, Vilhena E, Morais P, Vilaca JL. Deep learning methods for lesion detection on mammography images: a comparative analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3526-3529. [PMID: 36086472 DOI: 10.1109/embc48229.2022.9871452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Automatic lesion segmentation in mammography images assists in the diagnosis of breast cancer, which is the most common type of cancer especially among women. The robust segmentation of mammography images has been considered a backbreaking task due to: i) the low contrast of the lesion boundaries; ii) the extremely variable lesions' sizes and shapes; and iii) some extremely small lesions on the mammogram image. To overcome these drawbacks, Deep Learning methods have been implemented and have shown impressive results when applied to medical image segmentation. This work presents a benchmark for breast lesion segmentation in mammography images, where six state-of-the-art methods were evaluated on 1692 mammograms from a public dataset (CBIS-DDSM), and compared considering the following six metrics: i) Dice coefficient; ii) Jaccard index; iii) accuracy; iv) recall; v) specificity; and vi) precision. The base U-Net, UNETR, DynUNet, SegResNetVAE, RF-Net, MDA-Net architectures were trained with a combination of the cross-entropy and Dice loss functions. Although the networks presented Dice scores superior to 86%, two of them managed to distinguish themselves. In general, the results demonstrate the efficiency of the MDA-Net and DynUnet with Dice scores of 90.25% and 89.67%, and accuracy of 93.48% and 93.03%, respectively. Clinical Relevance--- The presented comparative study allowed to identify the current performance of deep learning strategies on the segmentation of breast lesions.
Collapse
|
44
|
Semantic Image Segmentation Using Scant Pixel Annotations. MACHINE LEARNING AND KNOWLEDGE EXTRACTION 2022. [DOI: 10.3390/make4030029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The success of deep networks for the semantic segmentation of images is limited by the availability of annotated training data. The manual annotation of images for segmentation is a tedious and time-consuming task that often requires sophisticated users with significant domain expertise to create high-quality annotations over hundreds of images. In this paper, we propose the segmentation with scant pixel annotations (SSPA) approach to generate high-performing segmentation models using a scant set of expert annotated images. The models are generated by training them on images with automatically generated pseudo-labels along with a scant set of expert annotated images selected using an entropy-based algorithm. For each chosen image, experts are directed to assign labels to a particular group of pixels, while a set of replacement rules that leverage the patterns learned by the model is used to automatically assign labels to the remaining pixels. The SSPA approach integrates active learning and semi-supervised learning with pseudo-labels, where expert annotations are not essential but generated on demand. Extensive experiments on bio-medical and biofilm datasets show that the SSPA approach achieves state-of-the-art performance with less than 5% cumulative annotation of the pixels of the training data by the experts.
Collapse
|
45
|
An Intelligent Solution for Automatic Garment Measurement Using Image Recognition Technologies. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Global digitization trends and the application of high technology in the garment market are still too slow to integrate, despite the increasing demand for automated solutions. The main challenge is related to the extraction of garment information-general clothing descriptions and automatic dimensional extraction. In this paper, we propose the garment measurement solution based on image processing technologies, which is divided into two phases, garment segmentation and key points extraction. UNet as a backbone network has been used for mask retrieval. Separate algorithms have been developed to identify both general and specific garment key points from which the dimensions of the garment can be calculated by determining the distances between them. Using this approach, we have resulted in an average 1.27 cm measurement error for the prediction of the basic measurements of blazers, 0.747 cm for dresses and 1.012 cm for skirts.
Collapse
|
46
|
Lu F, Fu C, Zhang G, Shi J. Adaptive multi-scale feature fusion based U-net for fracture segmentation in coal rock images. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-211968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accurate segmentation of fractures in coal rock CT images is important for the development of coalbed methane. However, due to the large variation of fracture scale and the similarity of gray values between weak fractures and the surrounding matrix, it remains a challenging task. And there is no published dataset of coal rock, which make the task even harder. In this paper, a novel adaptive multi-scale feature fusion method based on U-net (AMSFF-U-net) is proposed for fracture segmentation in coal rock CT images. Specifically, encoder and decoder path consist of residual blocks (ReBlock), respectively. The attention skip concatenation (ASC) module is proposed to capture more representative and distinguishing features by combining the high-level and low-level features of adjacent layers. The adaptive multi-scale feature fusion (AMSFF) module is presented to adaptively fuse different scale feature maps of encoder path; it can effectively capture rich multi-scale features. In response to the lack of coal rock fractures training data, we applied a set of comprehensive data augmentation operations to increase the diversity of training samples. These extensive experiments are conducted via seven state-of-the-art methods (i.e., FCEM, U-net, Res-Unet, Unet++, MSN-Net, WRAU-Net and ours). The experiment results demonstrate that the proposed AMSFF-U-net can achieve better segmentation performance in our works, particularly for weak fractures and tiny scale fractures.
Collapse
Affiliation(s)
- Fengli Lu
- School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing, China
| | - Chengcai Fu
- School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing, China
| | - Guoying Zhang
- School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing, China
| | - Jie Shi
- School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing, China
| |
Collapse
|
47
|
Qin J, Wang C, Ran X, Yang S, Chen B. A robust framework combined saliency detection and image recognition for garbage classification. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 140:193-203. [PMID: 34836728 DOI: 10.1016/j.wasman.2021.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/09/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Using deep learning to solve garbage classification has become a hot topic in computer version. The most widely used garbage dataset Trashnet only has garbage images with a white board as background. Previous studies based on Trashnet focus on using different networks to achieve a higher classification accuracy without considering the complex backgrounds which might encounter in practical applications. To solve this problem, we propose a framework that combines saliency detection and image classification to improve the generalization performance and robustness. A saliency network Salinet is adopted to obtain the garbage target area. Then, a smallest rectangle containing this area is created and used to segment the garbage. A classification network Inception V3 is used to identify the segmented garbage image. Images of the original Trashnet are fused with complex backgrounds of the other saliency detection datasets. The fused and original Trashnet are used together for training to improve the robustness to noises and complex backgrounds. Compared with the image classification networks and classic target detection algorithms, the proposed framework improves the accuracy of 0.50% - 15.79% on the testing sets fused with complex backgrounds. In addition, the proposed framework achieves the best performance with a gain of 4.80% in accuracy on the collected actual dataset. The comparisons prove that our framework is more robust to garbage classification in complex backgrounds. This method can be applied to smart trash cans to achieve automatic garbage classification.
Collapse
Affiliation(s)
- Jiongming Qin
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China
| | - Cong Wang
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China
| | - Xu Ran
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China
| | - Shaohua Yang
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China
| | - Bin Chen
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
48
|
Chanchal AK, Lal S, Kini J. Deep structured residual encoder-decoder network with a novel loss function for nuclei segmentation of kidney and breast histopathology images. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 81:9201-9224. [PMID: 35125928 PMCID: PMC8809220 DOI: 10.1007/s11042-021-11873-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
To improve the process of diagnosis and treatment of cancer disease, automatic segmentation of haematoxylin and eosin (H & E) stained cell nuclei from histopathology images is the first step in digital pathology. The proposed deep structured residual encoder-decoder network (DSREDN) focuses on two aspects: first, it effectively utilized residual connections throughout the network and provides a wide and deep encoder-decoder path, which results to capture relevant context and more localized features. Second, vanished boundary of detected nuclei is addressed by proposing an efficient loss function that better train our proposed model and reduces the false prediction which is undesirable especially in healthcare applications. The proposed architecture experimented on three different publicly available H&E stained histopathological datasets namely: (I) Kidney (RCC) (II) Triple Negative Breast Cancer (TNBC) (III) MoNuSeg-2018. We have considered F1-score, Aggregated Jaccard Index (AJI), the total number of parameters, and FLOPs (Floating point operations), which are mostly preferred performance measure metrics for comparison of nuclei segmentation. The evaluated score of nuclei segmentation indicated that the proposed architecture achieved a considerable margin over five state-of-the-art deep learning models on three different histopathology datasets. Visual segmentation results show that the proposed DSREDN model accurately segment the nuclear regions than those of the state-of-the-art methods.
Collapse
Affiliation(s)
- Amit Kumar Chanchal
- Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru-575025 Karnataka India
| | - Shyam Lal
- Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru-575025 Karnataka India
| | - Jyoti Kini
- Department of Pathology, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
49
|
Connected-UNets: a deep learning architecture for breast mass segmentation. NPJ Breast Cancer 2021; 7:151. [PMID: 34857755 PMCID: PMC8640011 DOI: 10.1038/s41523-021-00358-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022] Open
Abstract
Breast cancer analysis implies that radiologists inspect mammograms to detect suspicious breast lesions and identify mass tumors. Artificial intelligence techniques offer automatic systems for breast mass segmentation to assist radiologists in their diagnosis. With the rapid development of deep learning and its application to medical imaging challenges, UNet and its variations is one of the state-of-the-art models for medical image segmentation that showed promising performance on mammography. In this paper, we propose an architecture, called Connected-UNets, which connects two UNets using additional modified skip connections. We integrate Atrous Spatial Pyramid Pooling (ASPP) in the two standard UNets to emphasize the contextual information within the encoder–decoder network architecture. We also apply the proposed architecture on the Attention UNet (AUNet) and the Residual UNet (ResUNet). We evaluated the proposed architectures on two publically available datasets, the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) and INbreast, and additionally on a private dataset. Experiments were also conducted using additional synthetic data using the cycle-consistent Generative Adversarial Network (CycleGAN) model between two unpaired datasets to augment and enhance the images. Qualitative and quantitative results show that the proposed architecture can achieve better automatic mass segmentation with a high Dice score of 89.52%, 95.28%, and 95.88% and Intersection over Union (IoU) score of 80.02%, 91.03%, and 92.27%, respectively, on CBIS-DDSM, INbreast, and the private dataset.
Collapse
|
50
|
Kalantar R, Lin G, Winfield JM, Messiou C, Lalondrelle S, Blackledge MD, Koh DM. Automatic Segmentation of Pelvic Cancers Using Deep Learning: State-of-the-Art Approaches and Challenges. Diagnostics (Basel) 2021; 11:1964. [PMID: 34829310 PMCID: PMC8625809 DOI: 10.3390/diagnostics11111964] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022] Open
Abstract
The recent rise of deep learning (DL) and its promising capabilities in capturing non-explicit detail from large datasets have attracted substantial research attention in the field of medical image processing. DL provides grounds for technological development of computer-aided diagnosis and segmentation in radiology and radiation oncology. Amongst the anatomical locations where recent auto-segmentation algorithms have been employed, the pelvis remains one of the most challenging due to large intra- and inter-patient soft-tissue variabilities. This review provides a comprehensive, non-systematic and clinically-oriented overview of 74 DL-based segmentation studies, published between January 2016 and December 2020, for bladder, prostate, cervical and rectal cancers on computed tomography (CT) and magnetic resonance imaging (MRI), highlighting the key findings, challenges and limitations.
Collapse
Affiliation(s)
- Reza Kalantar
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou and Chang Gung University, 5 Fuhsing St., Guishan, Taoyuan 333, Taiwan;
| | - Jessica M. Winfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Christina Messiou
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Susan Lalondrelle
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Matthew D. Blackledge
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
| | - Dow-Mu Koh
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK; (R.K.); (J.M.W.); (C.M.); (S.L.); (D.-M.K.)
- Department of Radiology, The Royal Marsden Hospital, London SW3 6JJ, UK
| |
Collapse
|