1
|
Rotundo S, Brizi D, Flori A, Giovannetti G, Menichetti L, Monorchio A. Shaping and Focusing Magnetic Field in the Human Body: State-of-the Art and Promising Technologies. SENSORS (BASEL, SWITZERLAND) 2022; 22:5132. [PMID: 35890812 PMCID: PMC9318684 DOI: 10.3390/s22145132] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the usage of radio frequency magnetic fields for biomedical applications has increased exponentially. Several diagnostic and therapeutic methodologies exploit this physical entity such as, for instance, magnetic resonance imaging, hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation. Within this framework, the magnetic field focusing and shaping, at different depths inside the tissue, emerges as one of the most important challenges from a technological point of view, since it is highly desirable for improving the effectiveness of clinical methodologies. In this review paper, we will first report some of the biomedical practices employing radio frequency magnetic fields, that appear most promising in clinical settings, explaining the underneath physical principles and operative procedures. Specifically, we direct the interest toward hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation, together with a brief mention of magnetic resonance imaging. Additionally, we deeply review the technological solutions that have appeared so far in the literature to shape and control the radio frequency magnetic field distribution within biological tissues, highlighting human applications. In particular, volume and surface coils, together with the recent raise of metamaterials and metasurfaces will be reported. The present review manuscript can be useful to fill the actual gap in the literature and to serve as a guide for the physicians and engineers working in these fields.
Collapse
Affiliation(s)
- Sabrina Rotundo
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy; (D.B.); (A.M.)
| | - Danilo Brizi
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy; (D.B.); (A.M.)
| | - Alessandra Flori
- Fondazione CNR-Regione Toscana G. Monasterio, 56124 Pisa, Italy;
| | | | - Luca Menichetti
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (G.G.); (L.M.)
| | - Agostino Monorchio
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy; (D.B.); (A.M.)
| |
Collapse
|
2
|
Bagherzadeh H, Meng Q, Deng ZD, Lu H, Hong E, Yang Y, Choa FS. Angle-tuned coils: attractive building blocks for TMS with improved depth-spread performance. J Neural Eng 2022; 19:10.1088/1741-2552/ac697c. [PMID: 35453132 PMCID: PMC10644970 DOI: 10.1088/1741-2552/ac697c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/21/2022] [Indexed: 11/12/2022]
Abstract
Objective.A novel angle-tuned ring coil is proposed for improving the depth-spread performance of transcranial magnetic stimulation (TMS) coils and serve as the building blocks for high-performance composite coils and multisite TMS systems.Approach.Improving depth-spread performance by reducing field divergence through creating a more elliptical emitted field distribution from the coil. To accomplish that, instead of enriching the Fourier components along the planarized (x-y) directions, which requires different arrays to occupy large brain surface areas, we worked along the radial (z) direction by using tilted coil angles and stacking coil numbers to reduce the divergence of the emitted near field without occupying large head surface areas. The emitted electric field distributions were theoretically simulated in spherical and real human head models to analyze the depth-spread performance of proposed coils and compare with existing figure-8 coils. The results were then experimentally validated with field probes andin-vivoanimal tests.Main results.The proposed 'angle-tuning' concept improves the depth-spread performance of individual coils with a significantly smaller footprint than existing and proposed coils. For composite structures, using the proposed coils as basic building blocks simplifies the design and manufacturing process and helps accomplish a leading depth-spread performance. In addition, the footprint of the proposed system is intrinsically small, making them suitable for multisite stimulations of inter and intra-hemispheric brain regions with an improved spread and less electric field divergence.Significance.Few brain functions are operated by isolated single brain regions but rather by coordinated networks involving multiple brain regions. Simultaneous or sequential multisite stimulations may provide tools for mechanistic studies of brain functions and the treatment of neuropsychiatric disorders. The proposed AT coil goes beyond the traditional depth-spread tradeoff rule of TMS coils, which provides the possibility of building new composite structures and new multisite TMS tools.
Collapse
Affiliation(s)
- Hedyeh Bagherzadeh
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore, MD, United States of America
- Co-first Author
| | - Qinglei Meng
- Magnetic Resonance Imaging and Spectroscopy, National Institute on Drug Abuse, Intramural Research Programs, National Institutes of Health, Baltimore, MD, United States of America
- Co-first Author
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States of America
| | - Hanbing Lu
- Magnetic Resonance Imaging and Spectroscopy, National Institute on Drug Abuse, Intramural Research Programs, National Institutes of Health, Baltimore, MD, United States of America
| | - Elliott Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Yihong Yang
- Magnetic Resonance Imaging and Spectroscopy, National Institute on Drug Abuse, Intramural Research Programs, National Institutes of Health, Baltimore, MD, United States of America
| | - Fow-Sen Choa
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore, MD, United States of America
| |
Collapse
|
3
|
Lu Q, Wu F, Jiao J, Xue L, Song R, Shi Y, Kong Y, Sun J, Gu N, Han MH, Zhang Z. Selective activation of ABCA1/ApoA1 signaling in the V1 by magnetoelectric stimulation ameliorates depression via regulation of synaptic plasticity. iScience 2022; 25:104201. [PMID: 35479414 PMCID: PMC9036135 DOI: 10.1016/j.isci.2022.104201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/18/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Emerging evidence suggests that dysfunction of the visual cortex may be involved in major depressive disorder (MDD). However, the underlying mechanisms remain unclear. We previously established that combined magnetic stimulation system treatment (c-MSST) resulted in an antidepressant effect in mice. In the present study, we found that V1-targeted c-MSST induced significant antidepressant effects in chronic unpredictable mild stress (CUMS)- and lipopolysaccharide (LPS)-treated mice. Proteomic screening investigation and repeatable validation revealed that expression of the V1 neuronal ATP-binding cassette transporter A1 (ABCA1) and apolipoprotein A-1 (ApoA1) was downregulated in CUMS mice, an effect that was normalized by c-MSST. Neuron-specific knockdown of ABCA1 in V1 blocked c-MSST’s antidepressant effects. Mechanistically, CUMS reduced dendritic spine density and long-term plasticity in V1, and these deficits were reversed by c-MSST. V1-targeted c-MSST was found to induce rapid antidepressant effects that are mediated by alterations in synaptic plasticity via the ABCA1/ApoA1 signaling pathway in V1. c-MSST targeting the primary visual cortex induced antidepressant effects ABCA1/ApoA1 signaling contributed to c-MSST-mediated antidepressant actions Magnetic stimulation of primary visual cortex enhanced synaptic plasticity Circulating levels of ApoA1 were lower in patients with depression
Collapse
|
4
|
Lu QB, Sun JF, Yang QY, Cai WW, Xia MQ, Wu FF, Gu N, Zhang ZJ. Magnetic brain stimulation using iron oxide nanoparticle-mediated selective treatment of the left prelimbic cortex as a novel strategy to rapidly improve depressive-like symptoms in mice. Zool Res 2020; 41:381-394. [PMID: 32400977 PMCID: PMC7340515 DOI: 10.24272/j.issn.2095-8137.2020.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Magnetic brain stimulation has greatly contributed to the advancement of neuroscience. However, challenges remain in the power of penetration and precision of magnetic stimulation, especially in small animals. Here, a novel combined magnetic stimulation system (c-MSS) was established for brain stimulation in mice. The c-MSS uses a mild magnetic pulse sequence and injection of superparamagnetic iron oxide (SPIO) nanodrugs to elevate local cortical susceptibility. After imaging of the SPIO nanoparticles in the left prelimbic (PrL) cortex in mice, we determined their safety and physical characteristics. Depressive-like behavior was established in mice using a chronic unpredictable mild stress (CUMS) model. SPIO nanodrugs were then delivered precisely to the left PrL cortex using in situ injection. A 0.1 T magnetic field (adjustable frequency) was used for magnetic stimulation (5 min/session, two sessions daily). Biomarkers representing therapeutic effects were measured before and after c-MSS intervention. Results showed that c-MSS rapidly improved depressive-like symptoms in CUMS mice after stimulation with a 10 Hz field for 5 d, combined with increased brain-derived neurotrophic factor (BDNF) and inactivation of hypothalamic-pituitary-adrenal (HPA) axis function, which enhanced neuronal activity due to SPIO nanoparticle-mediated effects. The c-MSS was safe and effective, representing a novel approach in the selective stimulation of arbitrary cortical targets in small animals, playing a bioelectric role in neural circuit regulation, including antidepressant effects in CUMS mice. This expands the potential applications of magnetic stimulation and progresses brain research towards clinical application.
Collapse
Affiliation(s)
- Qing-Bo Lu
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jian-Fei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210009, China. E-mail:
| | - Qu-Yang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210009, China
| | - Wen-Wen Cai
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Meng-Qin Xia
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Fang-Fang Wu
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210009, China. E-mail:
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China. E-mail:
| |
Collapse
|