• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4695741)   Today's Articles (6754)
For: Niemeijer M, van Ginneken B, Staal J, Suttorp-Schulten MSA, Abràmoff MD. Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging 2005;24:584-92. [PMID: 15889546 DOI: 10.1109/tmi.2005.843738] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Number Cited by Other Article(s)
1
Kim S, Chung H, Park SH, Chung ES, Yi K, Ye JC. Fundus Image Enhancement Through Direct Diffusion Bridges. IEEE J Biomed Health Inform 2024;28:7275-7286. [PMID: 39167517 DOI: 10.1109/jbhi.2024.3446866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
2
Steffi S, Sam Emmanuel WR. Resilient back-propagation machine learning-based classification on fundus images for retinal microaneurysm detection. Int Ophthalmol 2024;44:91. [PMID: 38367192 DOI: 10.1007/s10792-024-02982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/29/2023] [Indexed: 02/19/2024]
3
Dao QT, Trinh HQ, Nguyen VA. An effective and comprehensible method to detect and evaluate retinal damage due to diabetes complications. PeerJ Comput Sci 2023;9:e1585. [PMID: 37810367 PMCID: PMC10557496 DOI: 10.7717/peerj-cs.1585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/20/2023] [Indexed: 10/10/2023]
4
ExpACVO-Hybrid Deep learning: Exponential Anti Corona Virus Optimization enabled Hybrid Deep learning for tongue image segmentation towards diabetes mellitus detection. Biomed Signal Process Control 2023;83:104635. [PMID: 36741196 PMCID: PMC9886667 DOI: 10.1016/j.bspc.2023.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/26/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
5
Upadhyay K, Agrawal M, Vashist P. Characteristic patch-based deep and handcrafted feature learning for red lesion segmentation in fundus images. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
6
Soares I, Castelo-Branco M, Pinheiro A. Microaneurysms detection in retinal images using a multi-scale approach. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
7
Yang Y, Lv H, Chen N. A Survey on ensemble learning under the era of deep learning. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
8
Morya AK, Janti SS, Sisodiya P, Tejaswini A, Prasad R, Mali KR, Gurnani B. Everything real about unreal artificial intelligence in diabetic retinopathy and in ocular pathologies. World J Diabetes 2022;13:822-834. [PMID: 36311999 PMCID: PMC9606792 DOI: 10.4239/wjd.v13.i10.822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/11/2022] [Accepted: 09/09/2022] [Indexed: 02/05/2023]  Open
9
Detection of microaneurysms in color fundus images based on local Fourier transform. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
10
Xia H, Rao Z, Zhou Z. A multi-scale gated network for retinal hemorrhage detection. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
11
Huang S, Li J, Xiao Y, Shen N, Xu T. RTNet: Relation Transformer Network for Diabetic Retinopathy Multi-Lesion Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022;41:1596-1607. [PMID: 35041595 DOI: 10.1109/tmi.2022.3143833] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
12
Latha D, Bell TB, Sheela CJJ. Red lesion in fundus image with hexagonal pattern feature and two-level segmentation. MULTIMEDIA TOOLS AND APPLICATIONS 2022;81:26143-26161. [PMID: 35368859 PMCID: PMC8959564 DOI: 10.1007/s11042-022-12667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
13
Das D, Biswas SK, Bandyopadhyay S. A critical review on diagnosis of diabetic retinopathy using machine learning and deep learning. MULTIMEDIA TOOLS AND APPLICATIONS 2022;81:25613-25655. [PMID: 35342328 PMCID: PMC8940593 DOI: 10.1007/s11042-022-12642-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/29/2021] [Accepted: 02/09/2022] [Indexed: 06/12/2023]
14
Deep Red Lesion Classification for Early Screening of Diabetic Retinopathy. MATHEMATICS 2022. [DOI: 10.3390/math10050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
15
Yadav Y, Chand S, Sahoo RC, Sahoo BM, Kumar S. Comparative analysis of detection and classification of diabetic retinopathy by using transfer learning of CNN based models. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-212771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
16
Xu X, Li J, Guan Y, Zhao L, Zhao Q, Zhang L, Li L. GLA-Net: A global-local attention network for automatic cataract classification. J Biomed Inform 2021;124:103939. [PMID: 34752858 DOI: 10.1016/j.jbi.2021.103939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/02/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
17
Red-lesion extraction in retinal fundus images by directional intensity changes' analysis. Sci Rep 2021;11:18223. [PMID: 34521886 PMCID: PMC8440775 DOI: 10.1038/s41598-021-97649-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 08/18/2021] [Indexed: 12/31/2022]  Open
18
Xia H, Lan Y, Song S, Li H. A multi-scale segmentation-to-classification network for tiny microaneurysm detection in fundus images. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
19
Gegundez-Arias ME, Marin-Santos D, Perez-Borrero I, Vasallo-Vazquez MJ. A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021;205:106081. [PMID: 33882418 DOI: 10.1016/j.cmpb.2021.106081] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
20
Alam MN, Le D, Yao X. Differential artery-vein analysis in quantitative retinal imaging: a review. Quant Imaging Med Surg 2021;11:1102-1119. [PMID: 33654680 PMCID: PMC7829162 DOI: 10.21037/qims-20-557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/19/2020] [Indexed: 11/06/2022]
21
Gilbert MJ, Sun JK. Artificial Intelligence in the assessment of diabetic retinopathy from fundus photographs. Semin Ophthalmol 2021;35:325-332. [PMID: 33539253 DOI: 10.1080/08820538.2020.1855358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
22
Lessons learnt from harnessing deep learning for real-world clinical applications in ophthalmology: detecting diabetic retinopathy from retinal fundus photographs. Artif Intell Med 2021. [DOI: 10.1016/b978-0-12-821259-2.00013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
23
Romero-Oraá R, García M, Oraá-Pérez J, López-Gálvez MI, Hornero R. Effective Fundus Image Decomposition for the Detection of Red Lesions and Hard Exudates to Aid in the Diagnosis of Diabetic Retinopathy. SENSORS (BASEL, SWITZERLAND) 2020;20:E6549. [PMID: 33207825 PMCID: PMC7698181 DOI: 10.3390/s20226549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
24
Melo T, Mendonça AM, Campilho A. Microaneurysm detection in color eye fundus images for diabetic retinopathy screening. Comput Biol Med 2020;126:103995. [PMID: 33007620 DOI: 10.1016/j.compbiomed.2020.103995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 02/01/2023]
25
Automatic detection of non-perfusion areas in diabetic macular edema from fundus fluorescein angiography for decision making using deep learning. Sci Rep 2020;10:15138. [PMID: 32934283 PMCID: PMC7492239 DOI: 10.1038/s41598-020-71622-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023]  Open
26
Roy Chowdhury A, Banerjee S, Chatterjee T. A cybernetic systems approach to abnormality detection in retina images using case based reasoning. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3187-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]  Open
27
Wang H, Yuan G, Zhao X, Peng L, Wang Z, He Y, Qu C, Peng Z. Hard exudate detection based on deep model learned information and multi-feature joint representation for diabetic retinopathy screening. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020;191:105398. [PMID: 32092614 DOI: 10.1016/j.cmpb.2020.105398] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 01/18/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
28
Kingkosol P, Pooprasert P, Choopong P, Hunchangsith B, Laksanaphuk V, Tantibundhit C. Automated Cytomegalovirus Retinitis Screening in Fundus Images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020;2020:1996-2002. [PMID: 33018395 DOI: 10.1109/embc44109.2020.9175461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
29
Stolte S, Fang R. A survey on medical image analysis in diabetic retinopathy. Med Image Anal 2020;64:101742. [PMID: 32540699 DOI: 10.1016/j.media.2020.101742] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 02/03/2020] [Accepted: 05/28/2020] [Indexed: 01/12/2023]
30
Jiang H, Yang K, Gao M, Zhang D, Ma H, Qian W. An Interpretable Ensemble Deep Learning Model for Diabetic Retinopathy Disease Classification. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020;2019:2045-2048. [PMID: 31946303 DOI: 10.1109/embc.2019.8857160] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
31
Lim G, Bellemo V, Xie Y, Lee XQ, Yip MYT, Ting DSW. Different fundus imaging modalities and technical factors in AI screening for diabetic retinopathy: a review. EYE AND VISION (LONDON, ENGLAND) 2020;7:21. [PMID: 32313813 PMCID: PMC7155252 DOI: 10.1186/s40662-020-00182-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
32
He Y, Jiao W, Shi Y, Lian J, Zhao B, Zou W, Zhu Y, Zheng Y. Segmenting Diabetic Retinopathy Lesions in Multispectral Images Using Low-Dimensional Spatial-Spectral Matrix Representation. IEEE J Biomed Health Inform 2020;24:493-502. [DOI: 10.1109/jbhi.2019.2912668] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
33
Zhou Y, Li G, Li H. Automatic Cataract Classification Using Deep Neural Network With Discrete State Transition. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020;39:436-446. [PMID: 31295110 DOI: 10.1109/tmi.2019.2928229] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
34
Li Z, Guo C, Nie D, Lin D, Zhu Y, Chen C, Xiang Y, Xu F, Jin C, Zhang X, Yang Y, Zhang K, Zhao L, Zhang P, Han Y, Yun D, Wu X, Yan P, Lin H. Development and Evaluation of a Deep Learning System for Screening Retinal Hemorrhage Based on Ultra-Widefield Fundus Images. Transl Vis Sci Technol 2020;9:3. [PMID: 32518708 PMCID: PMC7255628 DOI: 10.1167/tvst.9.2.3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022]  Open
35
Srivastava V, Purwar RK. Classification of eye-fundus images with diabetic retinopathy using shape based features integrated into a convolutional neural network. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2020. [DOI: 10.1080/02522667.2020.1714186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
36
Accelerating Retinal Fundus Image Classification Using Artificial Neural Networks (ANNs) and Reconfigurable Hardware (FPGA). ELECTRONICS 2019. [DOI: 10.3390/electronics8121522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
37
Diabetic retinopathy detection using red lesion localization and convolutional neural networks. Comput Biol Med 2019;116:103537. [PMID: 31747632 DOI: 10.1016/j.compbiomed.2019.103537] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 11/21/2022]
38
Porwal P, Pachade S, Kokare M, Deshmukh G, Son J, Bae W, Liu L, Wang J, Liu X, Gao L, Wu T, Xiao J, Wang F, Yin B, Wang Y, Danala G, He L, Choi YH, Lee YC, Jung SH, Li Z, Sui X, Wu J, Li X, Zhou T, Toth J, Baran A, Kori A, Chennamsetty SS, Safwan M, Alex V, Lyu X, Cheng L, Chu Q, Li P, Ji X, Zhang S, Shen Y, Dai L, Saha O, Sathish R, Melo T, Araújo T, Harangi B, Sheng B, Fang R, Sheet D, Hajdu A, Zheng Y, Mendonça AM, Zhang S, Campilho A, Zheng B, Shen D, Giancardo L, Quellec G, Mériaudeau F. IDRiD: Diabetic Retinopathy - Segmentation and Grading Challenge. Med Image Anal 2019;59:101561. [PMID: 31671320 DOI: 10.1016/j.media.2019.101561] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
39
Playout C, Duval R, Cheriet F. A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019;38:2434-2444. [PMID: 30908197 DOI: 10.1109/tmi.2019.2906319] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
40
Manjaramkar A, Kokare M. Statistical Geometrical Features for Microaneurysm Detection. J Digit Imaging 2019;31:224-234. [PMID: 28785874 DOI: 10.1007/s10278-017-0008-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]  Open
41
Bellemo V, Lim G, Rim TH, Tan GSW, Cheung CY, Sadda S, He MG, Tufail A, Lee ML, Hsu W, Ting DSW. Artificial Intelligence Screening for Diabetic Retinopathy: the Real-World Emerging Application. Curr Diab Rep 2019;19:72. [PMID: 31367962 DOI: 10.1007/s11892-019-1189-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
42
Randive SN, Senapati RK, Rahulkar AD. A review on computer-aided recent developments for automatic detection of diabetic retinopathy. J Med Eng Technol 2019;43:87-99. [PMID: 31198073 DOI: 10.1080/03091902.2019.1576790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
43
Derwin DJ, Selvi ST, Singh OJ. Secondary Observer System for Detection of Microaneurysms in Fundus Images Using Texture Descriptors. J Digit Imaging 2019;33:159-167. [PMID: 31144148 DOI: 10.1007/s10278-019-00225-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]  Open
44
Eftekhari N, Pourreza HR, Masoudi M, Ghiasi-Shirazi K, Saeedi E. Microaneurysm detection in fundus images using a two-step convolutional neural network. Biomed Eng Online 2019;18:67. [PMID: 31142335 PMCID: PMC6542103 DOI: 10.1186/s12938-019-0675-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/30/2019] [Indexed: 11/29/2022]  Open
45
Detection of microaneurysms using ant colony algorithm in the early diagnosis of diabetic retinopathy. Med Hypotheses 2019;129:109242. [PMID: 31371092 DOI: 10.1016/j.mehy.2019.109242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/11/2019] [Accepted: 05/19/2019] [Indexed: 11/20/2022]
46
Joshi S, Karule PT. Mathematical morphology for microaneurysm detection in fundus images. Eur J Ophthalmol 2019;30:1135-1142. [DOI: 10.1177/1120672119843021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
47
Romero-Oraá R, Jiménez-García J, García M, López-Gálvez MI, Oraá-Pérez J, Hornero R. Entropy Rate Superpixel Classification for Automatic Red Lesion Detection in Fundus Images. ENTROPY 2019;21:e21040417. [PMID: 33267131 PMCID: PMC7514906 DOI: 10.3390/e21040417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/26/2022]
48
Hashemzadeh M, Adlpour Azar B. Retinal blood vessel extraction employing effective image features and combination of supervised and unsupervised machine learning methods. Artif Intell Med 2019;95:1-15. [PMID: 30904129 DOI: 10.1016/j.artmed.2019.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/08/2018] [Accepted: 03/01/2019] [Indexed: 11/30/2022]
49
Diagnosis of diabetic retinopathy based on holistic texture and local retinal features. Inf Sci (N Y) 2019. [DOI: 10.1016/j.ins.2018.09.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
50
Automated geographic atrophy segmentation for SD-OCT images based on two-stage learning model. Comput Biol Med 2019;105:102-111. [DOI: 10.1016/j.compbiomed.2018.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 01/19/2023]
PrevPage 1 of 4 1234Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA