1
|
Torres-Simon L, Del Cerro-León A, Yus M, Bruña R, Gil-Martinez L, Dolado AM, Maestú F, Arrazola-Garcia J, Cuesta P. Decoding the best automated segmentation tools for vascular white matter hyperintensities in the aging brain: a clinician's guide to precision and purpose. GeroScience 2024; 46:5485-5504. [PMID: 38869712 PMCID: PMC11493928 DOI: 10.1007/s11357-024-01238-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
White matter hyperintensities of vascular origin (WMH) are commonly found in individuals over 60 and increase in prevalence with age. The significance of WMH is well-documented, with strong associations with cognitive impairment, risk of stroke, mental health, and brain structure deterioration. Consequently, careful monitoring is crucial for the early identification and management of individuals at risk. Luckily, WMH are detectable and quantifiable on standard MRI through visual assessment scales, but it is time-consuming and has high rater variability. Addressing this issue, the main aim of our study is to decipher the utility of quantitative measures of WMH, assessed with automatic tools, in establishing risk profiles for cerebrovascular deterioration. For this purpose, first, we work to determine the most precise WMH segmentation open access tool compared to clinician manual segmentations (LST-LPA, LST-LGA, SAMSEG, and BIANCA), offering insights into methodology and usability to balance clinical precision with practical application. The results indicated that supervised algorithms (LST-LPA and BIANCA) were superior, particularly in detecting small WMH, and can improve their consistency when used in parallel with unsupervised tools (LST-LGA and SAMSEG). Additionally, to investigate the behavior and real clinical utility of these tools, we tested them in a real-world scenario (N = 300; age > 50 y.o. and MMSE > 26), proposing an imaging biomarker for moderate vascular damage. The results confirmed its capacity to effectively identify individuals at risk comparing the cognitive and brain structural profiles of cognitively healthy adults above and below the resulted threshold.
Collapse
Affiliation(s)
- Lucia Torres-Simon
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Alberto Del Cerro-León
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain.
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid (UCM), Madrid, Spain.
- Facultad de Psicología, Campus de Somosaguas, 28223, Pozuelo de Alarcón, Spain.
| | - Miguel Yus
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Department of Diagnostic Imaging, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Ricardo Bruña
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Department of Radiology, Complutense University of Madrid, 28040, Madrid, Spain
| | - Lidia Gil-Martinez
- Foundation for Biomedical Research at Hospital Clínico San Carlos (FIBHCSC), Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Alberto Marcos Dolado
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Department of Medicine, School of Medicine, Complutense University of Madrid, 28040, Madrid, Spain
- Department of Neurology, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Fernando Maestú
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
| | - Juan Arrazola-Garcia
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Department of Diagnostic Imaging, Hospital Clínico San Carlos, 28040, Madrid, Spain
- Department of Radiology, Rehabilitation and Radiation Therapy, School of Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - Pablo Cuesta
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040, Madrid, Spain
- Department of Radiology, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
2
|
Torres-Simon L, Del Cerro-León A, Yus M, Bruña R, Gil-Martinez L, Marcos Dolado A, Maestú F, Arrazola-Garcia J, Cuesta P. Decoding the Best Automated Segmentation Tools for Vascular White Matter Hyperintensities in the Aging Brain: A Clinician's Guide to Precision and Purpose. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.03.30.23287946. [PMID: 38798616 PMCID: PMC11118558 DOI: 10.1101/2023.03.30.23287946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cerebrovascular damage from small vessel disease (SVD) occurs in healthy and pathological aging. SVD markers, such as white matter hyperintensities (WMH), are commonly found in individuals over 60 and increase in prevalence with age. WMHs are detectable on standard MRI by adhering to the STRIVE criteria. Currently, visual assessment scales are used in clinical and research scenarios but is time-consuming and has rater variability, limiting its practicality. Addressing this issue, our study aimed to determine the most precise WMH segmentation software, offering insights into methodology and usability to balance clinical precision with practical application. This study employed a dataset comprising T1, FLAIR, and DWI images from 300 cognitively healthy older adults. WMHs in this cohort were evaluated using four automated neuroimaging tools: Lesion Prediction Algorithm (LPA) and Lesion Growth Algorithm (LGA) from Lesion Segmentation Tool (LST), Sequence Adaptive Multimodal Segmentation (SAMSEG), and Brain Intensity Abnormalities Classification Algorithm (BIANCA). Additionally, clinicians manually segmented WMHs in a subsample of 45 participants to establish a gold standard. The study assessed correlations with the Fazekas scale, algorithm performance, and the influence of WMH volume on reliability. Results indicated that supervised algorithms were superior, particularly in detecting small WMHs, and can improve their consistency when used in parallel with unsupervised tools. The research also proposed a biomarker for moderate vascular damage, derived from the top 95th percentile of WMH volume in healthy individuals aged 50 to 60. This biomarker effectively differentiated subgroups within the cohort, correlating with variations in brain structure and behavior.
Collapse
|
3
|
Bozsik B, Tóth E, Polyák I, Kerekes F, Szabó N, Bencsik K, Klivényi P, Kincses ZT. Reproducibility of Lesion Count in Various Subregions on MRI Scans in Multiple Sclerosis. Front Neurol 2022; 13:843377. [PMID: 35620784 PMCID: PMC9127199 DOI: 10.3389/fneur.2022.843377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 04/07/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Lesion number and burden can predict the long-term outcome of multiple sclerosis, while the localization of the lesions is also a good predictive marker of disease progression. These biomarkers are used in studies and in clinical practice, but the reproducibility of lesion count is not well-known. Methods In total, five raters evaluated T2 hyperintense lesions in 140 patients with multiple sclerosis in six localizations: periventricular, juxtacortical, deep white matter, infratentorial, spinal cord, and optic nerve. Black holes on T1-weighted images and brain atrophy were subjectively measured on a binary scale. Reproducibility was measured using the intraclass correlation coefficient (ICC). ICCs were also calculated for the four most accurate raters to see how one outlier can influence the results. Results Overall, moderate reproducibility (ICC 0.5-0.75) was shown, which did not improve considerably when the most divergent rater was excluded. The areas that produced the worst results were the optic nerve region (ICC: 0.118) and atrophy judgment (ICC: 0.364). Comparing high- and low-lesion burdens in each region revealed that the ICC is higher when the lesion count is in the mid-range. In the periventricular and deep white matter area, where lesions are common, higher ICC was found in patients who had a lower lesion count. On the other hand, juxtacortical lesions and black holes that are less common showed higher ICC when the subjects had more lesions. This difference was significant in the juxtacortical region when the most accurate raters compared patients with low (ICC: 0.406 CI: 0.273-0.546) and high (0.702 CI: 0.603-0.785) lesion loads. Conclusion Lesion classification showed high variability by location and overall moderate reproducibility. The excellent range was not achieved, owing to the fact that some areas showed poor performance. Hence, putting effort toward the development of artificial intelligence for the evaluation of lesion burden should be considered.
Collapse
Affiliation(s)
- Bence Bozsik
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Eszter Tóth
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Ilona Polyák
- Department of Radiology, University of Szeged, Szeged, Hungary
| | - Fanni Kerekes
- Department of Radiology, University of Szeged, Szeged, Hungary
| | - Nikoletta Szabó
- Department of Neurology, University of Szeged, Szeged, Hungary
| | | | - Péter Klivényi
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Zsigmond Tamás Kincses
- Department of Neurology, University of Szeged, Szeged, Hungary
- Department of Radiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
4
|
Alam MJ, Mydam J, Hossain MR, Islam SMS, Mollah MNH. Robust regression based genome-wide multi-trait QTL analysis. Mol Genet Genomics 2021; 296:1103-1119. [PMID: 34170407 DOI: 10.1007/s00438-021-01801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
In genome-wide quantitative trait locus (QTL) mapping studies, multiple quantitative traits are often measured along with the marker genotypes. Multi-trait QTL (MtQTL) analysis, which includes multiple quantitative traits together in a single model, is an efficient technique to increase the power of QTL identification. The two most widely used classical approaches for MtQTL mapping are Gaussian Mixture Model-based MtQTL (GMM-MtQTL) and Linear Regression Model-based MtQTL (LRM-MtQTL) analyses. There are two types of LRM-MtQTL approach known as least squares-based LRM-MtQTL (LS-LRM-MtQTL) and maximum likelihood-based LRM-MtQTL (ML-LRM-MtQTL). These three classical approaches are equivalent alternatives for QTL detection, but ML-LRM-MtQTL is computationally faster than GMM-MtQTL and LS-LRM-MtQTL. However, one major limitation common to all the above classical approaches is that they are very sensitive to outliers, which leads to misleading results. Therefore, in this study, we developed an LRM-based robust MtQTL approach, called LRM-RobMtQTL, for the backcross population based on the robust estimation of regression parameters by maximizing the β-likelihood function induced from the β-divergence with multivariate normal distribution. When β = 0, the proposed LRM-RobMtQTL method reduces to the classical ML-LRM-MtQTL approach. Simulation studies showed that both ML-LRM-MtQTL and LRM-RobMtQTL methods identified the same QTL positions in the absence of outliers. However, in the presence of outliers, only the proposed method was able to identify all the true QTL positions. Real data analysis results revealed that in the presence of outliers only our LRM-RobMtQTL approach can identify all the QTL positions as those identified in the absence of outliers by both methods. We conclude that our proposed LRM-RobMtQTL analysis approach outperforms the classical MtQTL analysis methods.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Janardhan Mydam
- Division of Neonatology, Department of Pediatrics, John H. Stroger, Jr. Hospital of Cook County, 1969 Ogden Avenue, Chicago, IL, 60612, USA
- Department of Pediatrics, Rush Medical Center, Chicago, USA
| | - Md Ripter Hossain
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - S M Shahinul Islam
- Institute of Biological Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
5
|
Gryska E, Schneiderman J, Björkman-Burtscher I, Heckemann RA. Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review. BMJ Open 2021; 11:e042660. [PMID: 33514580 PMCID: PMC7849889 DOI: 10.1136/bmjopen-2020-042660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Medical image analysis practices face challenges that can potentially be addressed with algorithm-based segmentation tools. In this study, we map the field of automatic MR brain lesion segmentation to understand the clinical applicability of prevalent methods and study designs, as well as challenges and limitations in the field. DESIGN Scoping review. SETTING Three databases (PubMed, IEEE Xplore and Scopus) were searched with tailored queries. Studies were included based on predefined criteria. Emerging themes during consecutive title, abstract, methods and whole-text screening were identified. The full-text analysis focused on materials, preprocessing, performance evaluation and comparison. RESULTS Out of 2990 unique articles identified through the search, 441 articles met the eligibility criteria, with an estimated growth rate of 10% per year. We present a general overview and trends in the field with regard to publication sources, segmentation principles used and types of lesions. Algorithms are predominantly evaluated by measuring the agreement of segmentation results with a trusted reference. Few articles describe measures of clinical validity. CONCLUSIONS The observed reporting practices leave room for improvement with a view to studying replication, method comparison and clinical applicability. To promote this improvement, we propose a list of recommendations for future studies in the field.
Collapse
Affiliation(s)
- Emilia Gryska
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| | - Justin Schneiderman
- Sektionen för klinisk neurovetenskap, Goteborgs Universitet Institutionen for Neurovetenskap och fysiologi, Goteborg, Sweden
| | | | - Rolf A Heckemann
- Medical Radiation Sciences, Goteborgs universitet Institutionen for kliniska vetenskaper, Goteborg, Sweden
| |
Collapse
|
6
|
A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis. Neuroimage 2020; 225:117471. [PMID: 33099007 PMCID: PMC7856304 DOI: 10.1016/j.neuroimage.2020.117471] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Here we present a method for the simultaneous segmentation of white matter lesions and normal-appearing neuroanatomical structures from multi-contrast brain MRI scans of multiple sclerosis patients. The method integrates a novel model for white matter lesions into a previously validated generative model for whole-brain segmentation. By using separate models for the shape of anatomical structures and their appearance in MRI, the algorithm can adapt to data acquired with different scanners and imaging protocols without retraining. We validate the method using four disparate datasets, showing robust performance in white matter lesion segmentation while simultaneously segmenting dozens of other brain structures. We further demonstrate that the contrast-adaptive method can also be safely applied to MRI scans of healthy controls, and replicate previously documented atrophy patterns in deep gray matter structures in MS. The algorithm is publicly available as part of the open-source neuroimaging package FreeSurfer.
Collapse
|
7
|
Essa E, Aldesouky D, Hussein SE, Rashad MZ. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation. Med Biol Eng Comput 2020; 58:2161-2175. [PMID: 32681214 DOI: 10.1007/s11517-020-02225-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
The segmentation of the lesion plays a core role in diagnosis and monitoring of multiple sclerosis (MS). Magnetic resonance imaging (MRI) is the most frequent image modality used to evaluate such lesions. Because of the massive amount of data, manual segmentation cannot be achieved within a sensible time that restricts the usage of accurate quantitative measurement in clinical practice. Therefore, the need for effective automated segmentation techniques is critical. However, a large spatial variability between the structure of brain lesions makes it more challenging. Recently, convolutional neural network (CNN), in particular, the region-based CNN (R-CNN), have attained tremendous progress within the field of object recognition because of its ability to learn and represent features. CNN has proven a last-breaking performance in various fields, such as object recognition, and has also gained more attention in brain imaging, especially in tissue and brain segmentation. In this paper, an automated technique for MS lesion segmentation is proposed, which is built on a 3D patch-wise R-CNN. The proposed system includes two stages: first, segmenting MS lesions in T2-w and FLAIR sequences using R-CNN, then an adaptive neuro-fuzzy inference system (ANFIS) is applied to fuse the results of the two modalities. To evaluate the performance of the proposed method, the public MICCAI2008 MS challenge dataset is employed to segment MS lesions. The experimental results show competitive results of the proposed method compared with the state-of-the-art MS lesion segmentation methods with an average total score of 83.25 and an average sensitivity of 61.8% on the MICCAI2008 testing set. Graphical Abstract The proposed system overview. First, the input of two modalities FLAIR and T2 are pre-processed to remove the skull and correct the bias field. Then 3D patches for lesion and non-lesion tissues are extracted and fed to R-CNN. Each R-CNN produces a probability map of the segmentation result that provides to ANFIS to fuse the results and obtain the final MS lesion segmentation. The MS lesions are shown on a pre-processed FLAIR image.
Collapse
Affiliation(s)
- Ehab Essa
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura, Dakahlia Governorate, Egypt.
| | - Doaa Aldesouky
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| | - Sherif E Hussein
- Computer Engineering and Systems Department, Faculty of Engineering, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| | - M Z Rashad
- Computer Science Department, Faculty of Computers and Information, Mansoura University, Mansoura, Dakahlia Governorate, Egypt
| |
Collapse
|
8
|
Danelakis A, Theoharis T, Verganelakis DA. Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Comput Med Imaging Graph 2018; 70:83-100. [DOI: 10.1016/j.compmedimag.2018.10.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/05/2018] [Accepted: 10/02/2018] [Indexed: 01/18/2023]
|
9
|
Knight J, Taylor GW, Khademi A. Voxel-Wise Logistic Regression and Leave-One-Source-Out Cross Validation for white matter hyperintensity segmentation. Magn Reson Imaging 2018; 54:119-136. [PMID: 29932970 DOI: 10.1016/j.mri.2018.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/21/2022]
Abstract
Many algorithms have been proposed for automated segmentation of white matter hyperintensities (WMH) in brain MRI. Yet, broad uptake of any particular algorithm has not been observed. In this work, we argue that this may be due to variable and suboptimal validation data and frameworks, precluding direct comparison of methods on heterogeneous data. As a solution, we present Leave-One-Source-Out Cross Validation (LOSO-CV), which leverages all available data for performance estimation, and show that this gives more realistic (lower) estimates of segmentation algorithm performance on data from different scanners. We also develop a FLAIR-only WMH segmentation algorithm: Voxel-Wise Logistic Regression (VLR), inspired by the open-source Lesion Prediction Algorithm (LPA). Our variant facilitates more accurate parameter estimation, and permits intuitive interpretation of model parameters. We illustrate the performance of the VLR algorithm using the LOSO-CV framework with a dataset comprising freely available data from several recent competitions (96 images from 7 scanners). The performance of the VLR algorithm (median Similarity Index of 0.69) is compared to its LPA predecessor (0.58), and the results of the VLR algorithm in the 2017 WMH Segmentation Competition are also presented.
Collapse
Affiliation(s)
- Jesse Knight
- University of Guelph, 50 Stone Rd E, Guelph, Canada.
| | - Graham W Taylor
- University of Guelph, 50 Stone Rd E, Guelph, Canada; Vector Institute, 101 College Street, Toronto, Suite HL30B, Canada
| | - April Khademi
- Ryerson University, 350 Victoria St, Toronto, Canada
| |
Collapse
|
10
|
Zhao Y, Guo S, Luo M, Shi X, Bilello M, Zhang S, Li C. A level set method for multiple sclerosis lesion segmentation. Magn Reson Imaging 2018; 49:94-100. [DOI: 10.1016/j.mri.2017.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 11/17/2022]
|
11
|
Meier DS, Guttmann CRG, Tummala S, Moscufo N, Cavallari M, Tauhid S, Bakshi R, Weiner HL. Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI. J Neuroimaging 2017; 28:36-47. [PMID: 29235194 PMCID: PMC5814929 DOI: 10.1111/jon.12491] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/12/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE A pipeline for fully automated segmentation of 3T brain MRI scans in multiple sclerosis (MS) is presented. This 3T morphometry (3TM) pipeline provides indicators of MS disease progression from multichannel datasets with high‐resolution 3‐dimensional T1‐weighted, T2‐weighted, and fluid‐attenuated inversion‐recovery (FLAIR) contrast. 3TM segments white (WM) and gray matter (GM) and cerebrospinal fluid (CSF) to assess atrophy and provides WM lesion (WML) volume. METHODS To address nonuniform distribution of noise/contrast (eg, posterior fossa in 3D‐FLAIR) of 3T magnetic resonance imaging, the method employs dual sensitivity (different sensitivities for lesion detection in predefined regions). We tested this approach by assigning different sensitivities to supratentorial and infratentorial regions, and validated the segmentation for accuracy against manual delineation, and for precision in scan‐rescans. RESULTS Intraclass correlation coefficients of .95, .91, and .86 were observed for WML and CSF segmentation accuracy and brain parenchymal fraction (BPF). Dual sensitivity significantly reduced infratentorial false‐positive WMLs, affording increases in global sensitivity without decreasing specificity. Scan‐rescan yielded coefficients of variation (COVs) of 8% and .4% for WMLs and BPF and COVs of .8%, 1%, and 2% for GM, WM, and CSF volumes. WML volume difference/precision was .49 ± .72 mL over a range of 0–24 mL. Correlation between BPF and age was r = .62 (P = .0004), and effect size for detecting brain atrophy was Cohen's d = 1.26 (standardized mean difference vs. healthy controls). CONCLUSIONS This pipeline produces probability maps for brain lesions and tissue classes, facilitating expert review/correction and may provide high throughput, efficient characterization of MS in large datasets.
Collapse
Affiliation(s)
- Dominik S Meier
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Medical Image Analysis Center, University Hospital Basel, Switzerland
| | - Charles R G Guttmann
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Subhash Tummala
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Moscufo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michele Cavallari
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahamat Tauhid
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rohit Bakshi
- Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Laboratory for Neuroimaging Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Partners Multiple Sclerosis Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Departments of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
A hybrid approach based on logistic classification and iterative contrast enhancement algorithm for hyperintense multiple sclerosis lesion segmentation. Med Biol Eng Comput 2017; 56:1063-1076. [DOI: 10.1007/s11517-017-1747-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/25/2017] [Indexed: 01/05/2023]
|
13
|
Galimzianova A, Lesjak Ž, Rubin DL, Likar B, Pernuš F, Špiclin Ž. Locally adaptive magnetic resonance intensity models for unsupervised segmentation of multiple sclerosis lesions. J Med Imaging (Bellingham) 2017; 5:011007. [PMID: 29134190 DOI: 10.1117/1.jmi.5.1.011007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/09/2017] [Indexed: 11/14/2022] Open
Abstract
Multiple sclerosis (MS) is a neurological disease characterized by focal lesions and morphological changes in the brain captured on magnetic resonance (MR) images. However, extraction of the corresponding imaging markers requires accurate segmentation of normal-appearing brain structures (NABS) and the lesions in MR images. On MR images of healthy brains, the NABS can be accurately captured by MR intensity mixture models, which, in combination with regularization techniques, such as in Markov random field (MRF) models, are known to give reliable NABS segmentation. However, on MR images that also contain abnormalities such as MS lesions, obtaining an accurate and reliable estimate of NABS intensity models is a challenge. We propose a method for automated segmentation of normal-appearing and abnormal structures in brain MR images that is based on a locally adaptive NABS model, a robust model parameters estimation method, and an MRF-based segmentation framework. Experiments on multisequence brain MR images of 30 MS patients show that, compared to whole-brain MR intensity model and compared to four popular unsupervised lesion segmentation methods, the proposed method increases the accuracy of MS lesion segmentation.
Collapse
Affiliation(s)
- Alfiia Galimzianova
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia.,Stanford University, School of Medicine, Palo Alto, California, United States
| | - Žiga Lesjak
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Daniel L Rubin
- Stanford University, School of Medicine, Palo Alto, California, United States
| | - Boštjan Likar
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia.,Sensum, Computer Vision Systems, Ljubljana, Slovenia
| | - Franjo Pernuš
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| | - Žiga Špiclin
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia.,Sensum, Computer Vision Systems, Ljubljana, Slovenia
| |
Collapse
|
14
|
Carass A, Roy S, Jog A, Cuzzocreo JL, Magrath E, Gherman A, Button J, Nguyen J, Prados F, Sudre CH, Jorge Cardoso M, Cawley N, Ciccarelli O, Wheeler-Kingshott CAM, Ourselin S, Catanese L, Deshpande H, Maurel P, Commowick O, Barillot C, Tomas-Fernandez X, Warfield SK, Vaidya S, Chunduru A, Muthuganapathy R, Krishnamurthi G, Jesson A, Arbel T, Maier O, Handels H, Iheme LO, Unay D, Jain S, Sima DM, Smeets D, Ghafoorian M, Platel B, Birenbaum A, Greenspan H, Bazin PL, Calabresi PA, Crainiceanu CM, Ellingsen LM, Reich DS, Prince JL, Pham DL. Longitudinal multiple sclerosis lesion segmentation: Resource and challenge. Neuroimage 2017; 148:77-102. [PMID: 28087490 PMCID: PMC5344762 DOI: 10.1016/j.neuroimage.2016.12.064] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/15/2016] [Accepted: 12/19/2016] [Indexed: 01/12/2023] Open
Abstract
In conjunction with the ISBI 2015 conference, we organized a longitudinal lesion segmentation challenge providing training and test data to registered participants. The training data consisted of five subjects with a mean of 4.4 time-points, and test data of fourteen subjects with a mean of 4.4 time-points. All 82 data sets had the white matter lesions associated with multiple sclerosis delineated by two human expert raters. Eleven teams submitted results using state-of-the-art lesion segmentation algorithms to the challenge, with ten teams presenting their results at the conference. We present a quantitative evaluation comparing the consistency of the two raters as well as exploring the performance of the eleven submitted results in addition to three other lesion segmentation algorithms. The challenge presented three unique opportunities: (1) the sharing of a rich data set; (2) collaboration and comparison of the various avenues of research being pursued in the community; and (3) a review and refinement of the evaluation metrics currently in use. We report on the performance of the challenge participants, as well as the construction and evaluation of a consensus delineation. The image data and manual delineations will continue to be available for download, through an evaluation website2 as a resource for future researchers in the area. This data resource provides a platform to compare existing methods in a fair and consistent manner to each other and multiple manual raters.
Collapse
Affiliation(s)
- Aaron Carass
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Snehashis Roy
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| | - Amod Jog
- Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jennifer L Cuzzocreo
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth Magrath
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| | - Adrian Gherman
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Julia Button
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - James Nguyen
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Ferran Prados
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Carole H Sudre
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK
| | - Manuel Jorge Cardoso
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; Dementia Research Centre, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Niamh Cawley
- NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Olga Ciccarelli
- NMR Research Unit, UCL Institute of Neurology, WC1N 3BG London, UK
| | | | - Sébastien Ourselin
- Translational Imaging Group, CMIC, UCL, NW1 2HE London, UK; Dementia Research Centre, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Laurence Catanese
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | | | - Pierre Maurel
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Olivier Commowick
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Christian Barillot
- VisAGeS: INSERM U746, CNRS UMR6074, INRIA, University of Rennes I, France
| | - Xavier Tomas-Fernandez
- Computational Radiology Laboratory, Boston Childrens Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Boston Childrens Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Suthirth Vaidya
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Abhijith Chunduru
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Ramanathan Muthuganapathy
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Ganapathy Krishnamurthi
- Biomedical Imaging Lab, Department of Engineering Design, Indian Institute of Technology, Chennai 600036, India
| | - Andrew Jesson
- Centre For Intelligent Machines, McGill University, Montréal, QC H3A 0E9, Canada
| | - Tal Arbel
- Centre For Intelligent Machines, McGill University, Montréal, QC H3A 0E9, Canada
| | - Oskar Maier
- Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany
| | - Heinz Handels
- Institute of Medical Informatics, University of Lübeck, 23538 Lübeck, Germany
| | - Leonardo O Iheme
- Bahçeşehir University, Faculty of Engineering and Natural Sciences, 34349 Beşiktaş, Turkey
| | - Devrim Unay
- Bahçeşehir University, Faculty of Engineering and Natural Sciences, 34349 Beşiktaş, Turkey
| | | | | | | | - Mohsen Ghafoorian
- Institute for Computing and Information Sciences, Radboud University, 6525 HP Nijmegen, Netherlands
| | - Bram Platel
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Ariel Birenbaum
- Department of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Hayit Greenspan
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Pierre-Louis Bazin
- Department of Neurophysics, Max Planck Institute, 04103 Leipzig, Germany
| | - Peter A Calabresi
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | - Lotta M Ellingsen
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Electrical and Computer Engineering, University of Iceland, 107 Reykjavík, Iceland
| | - Daniel S Reich
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Jerry L Prince
- Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dzung L Pham
- CNRM, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Multimodal spatial-based segmentation framework for white matter lesions in multi-sequence magnetic resonance images. Biomed Signal Process Control 2017. [DOI: 10.1016/j.bspc.2016.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Egger C, Opfer R, Wang C, Kepp T, Sormani MP, Spies L, Barnett M, Schippling S. MRI FLAIR lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual annotation? NEUROIMAGE-CLINICAL 2016; 13:264-270. [PMID: 28018853 PMCID: PMC5175993 DOI: 10.1016/j.nicl.2016.11.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 11/30/2022]
Abstract
Introduction Magnetic resonance imaging (MRI) has become key in the diagnosis and disease monitoring of patients with multiple sclerosis (MS). Both, T2 lesion load and Gadolinium (Gd) enhancing T1 lesions represent important endpoints in MS clinical trials by serving as a surrogate of clinical disease activity. T2- and fluid-attenuated inversion recovery (FLAIR) lesion quantification - largely due to methodological constraints – is still being performed manually or in a semi-automated fashion, although strong efforts have been made to allow automated quantitative lesion segmentation. In 2012, Schmidt and co-workers published an algorithm to be applied on FLAIR sequences. The aim of this study was to apply the Schmidt algorithm on an independent data set and compare automated segmentation to inter-rater variability of three independent, experienced raters. Methods MRI data of 50 patients with RRMS were randomly selected from a larger pool of MS patients attending the MS Clinic at the Brain and Mind Centre, University of Sydney, Australia. MRIs were acquired on a 3.0T GE scanner (Discovery MR750, GE Medical Systems, Milwaukee, WI) using an 8 channel head coil. We determined T2-lesion load (total lesion volume and total lesion number) using three versions of an automated segmentation algorithm (Lesion growth algorithm (LGA) based on SPM8 or SPM12 and lesion prediction algorithm (LPA) based on SPM12) as first described by Schmidt et al. (2012). Additionally, manual segmentation was performed by three independent raters. We calculated inter-rater correlation coefficients (ICC) and dice coefficients (DC) for all possible pairwise comparisons. Results We found a strong correlation between manual and automated lesion segmentation based on LGA SPM8, regarding lesion volume (ICC = 0.958 and DC = 0.60) that was not statistically different from the inter-rater correlation (ICC = 0.97 and DC = 0.66). Correlation between the two other algorithms (LGA SPM12 and LPA SPM12) and manual raters was weaker but still adequate (ICC = 0.927 and DC = 0.53 for LGA SPM12 and ICC = 0.949 and DC = 0.57 for LPA SPM12). Variability of both manual and automated segmentation was significantly higher regarding lesion numbers. Conclusion Automated lesion volume quantification can be applied reliably on FLAIR data sets using the SPM based algorithm of Schmidt et al. and shows good agreement with manual segmentation. Fully automated and manual MS lesion segmentation on FLAIR images were compared. Automated FLAIR lesion volume segmentation holds up with manual annotation. When using DC and ICC, SPM8 based algorithm performed better than recent updates.
Collapse
Affiliation(s)
- Christine Egger
- Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland
| | - Roland Opfer
- Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland; jung diagnostics GmbH, Hamburg, Germany
| | - Chenyu Wang
- Sydney Neuroimaging Analysis Centre, Sydney, Australia; Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Timo Kepp
- jung diagnostics GmbH, Hamburg, Germany
| | - Maria Pia Sormani
- Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | - Michael Barnett
- Sydney Neuroimaging Analysis Centre, Sydney, Australia; Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Sven Schippling
- Neuroimmunology and Multiple Sclerosis Research, Department of Neurology, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, CH-8091 Zurich, Switzerland
| |
Collapse
|
17
|
Storelli L, Pagani E, Rocca MA, Horsfield MA, Gallo A, Bisecco A, Battaglini M, De Stefano N, Vrenken H, Thomas DL, Mancini L, Ropele S, Enzinger C, Preziosa P, Filippi M. A Semiautomatic Method for Multiple Sclerosis Lesion Segmentation on Dual-Echo MR Imaging: Application in a Multicenter Context. AJNR Am J Neuroradiol 2016; 37:2043-2049. [PMID: 27444938 DOI: 10.3174/ajnr.a4874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/11/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The automatic segmentation of MS lesions could reduce time required for image processing together with inter- and intraoperator variability for research and clinical trials. A multicenter validation of a proposed semiautomatic method for hyperintense MS lesion segmentation on dual-echo MR imaging is presented. MATERIALS AND METHODS The classification technique used is based on a region-growing approach starting from manual lesion identification by an expert observer with a final segmentation-refinement step. The method was validated in a cohort of 52 patients with relapsing-remitting MS, with dual-echo images acquired in 6 different European centers. RESULTS We found a mathematic expression that made the optimization of the method independent of the need for a training dataset. The automatic segmentation was in good agreement with the manual segmentation (dice similarity coefficient = 0.62 and root mean square error = 2 mL). Assessment of the segmentation errors showed no significant differences in algorithm performance between the different MR scanner manufacturers (P > .05). CONCLUSIONS The method proved to be robust, and no center-specific training of the algorithm was required, offering the possibility for application in a clinical setting. Adoption of the method should lead to improved reliability and less operator time required for image analysis in research and clinical trials in MS.
Collapse
Affiliation(s)
- L Storelli
- From the Neuroimaging Research Unit (L.S., E.P., M.A.R., P.P., M.F.)
| | - E Pagani
- From the Neuroimaging Research Unit (L.S., E.P., M.A.R., P.P., M.F.)
| | - M A Rocca
- From the Neuroimaging Research Unit (L.S., E.P., M.A.R., P.P., M.F.)
- Institute of Experimental Neurology, Division of Neuroscience, Department of Neurology (M.A.R., P.P., M.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - M A Horsfield
- Xinapse Systems (M.A.H.), Colchester, United Kingdom
| | - A Gallo
- MRI Center "SUN-FISM" and Institute of Diagnosis and Care "Hermitage-Capodimonte" (A.G., A.B.)
- I Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences (A.G., A.B.), Second University of Naples, Naples, Italy
| | - A Bisecco
- MRI Center "SUN-FISM" and Institute of Diagnosis and Care "Hermitage-Capodimonte" (A.G., A.B.)
- I Division of Neurology, Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences (A.G., A.B.), Second University of Naples, Naples, Italy
| | - M Battaglini
- Department of Neurological and Behavioral Sciences (M.B., N.D.S.), University of Siena, Italy
| | - N De Stefano
- Department of Neurological and Behavioral Sciences (M.B., N.D.S.), University of Siena, Italy
| | - H Vrenken
- Department of Radiology and Nuclear Medicine, MS Centre Amsterdam (H.V.), VU Medical Centre, Amsterdam, the Netherlands
| | - D L Thomas
- Neuroradiological Academic Unit (D.L.T., L.M.), UCL Institute of Neurology, London, United Kingdom
| | - L Mancini
- Neuroradiological Academic Unit (D.L.T., L.M.), UCL Institute of Neurology, London, United Kingdom
| | - S Ropele
- Department of Neurology (S.R., C.E.)
| | - C Enzinger
- Department of Neurology (S.R., C.E.)
- Clinical Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology (C.E.), Medical University of Graz, Austria
| | - P Preziosa
- From the Neuroimaging Research Unit (L.S., E.P., M.A.R., P.P., M.F.)
- Institute of Experimental Neurology, Division of Neuroscience, Department of Neurology (M.A.R., P.P., M.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - M Filippi
- From the Neuroimaging Research Unit (L.S., E.P., M.A.R., P.P., M.F.)
- Institute of Experimental Neurology, Division of Neuroscience, Department of Neurology (M.A.R., P.P., M.F.), San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
18
|
Barillot C, Edan G, Commowick O. Imaging biomarkers in multiple Sclerosis: From image analysis to population imaging. Med Image Anal 2016; 33:134-139. [PMID: 27374128 DOI: 10.1016/j.media.2016.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
The production of imaging data in medicine increases more rapidly than the capacity of computing models to extract information from it. The grand challenges of better understanding the brain, offering better care for neurological disorders, and stimulating new drug design will not be achieved without significant advances in computational neuroscience. The road to success is to develop a new, generic, computational methodology and to confront and validate this methodology on relevant diseases with adapted computational infrastructures. This new concept sustains the need to build new research paradigms to better understand the natural history of the pathology at the early phase; to better aggregate data that will provide the most complete representation of the pathology in order to better correlate imaging with other relevant features such as clinical, biological or genetic data. In this context, one of the major challenges of neuroimaging in clinical neurosciences is to detect quantitative signs of pathological evolution as early as possible to prevent disease progression, evaluate therapeutic protocols or even better understand and model the natural history of a given neurological pathology. Many diseases encompass brain alterations often not visible on conventional MRI sequences, especially in normal appearing brain tissues (NABT). MRI has often a low specificity for differentiating between possible pathological changes which could help in discriminating between the different pathological stages or grades. The objective of medical image analysis procedures is to define new quantitative neuroimaging biomarkers to track the evolution of the pathology at different levels. This paper illustrates this issue in one acute neuro-inflammatory pathology: Multiple Sclerosis (MS). It exhibits the current medical image analysis approaches and explains how this field of research will evolve in the next decade to integrate larger scale of information at the temporal, cellular, structural and morphological levels.
Collapse
Affiliation(s)
- Christian Barillot
- CNRS, IRISA 6074, Campus de Beaulieu, F-35042 Rennes, France; Inria, Visages team, campus de Beaulieu, F-35042 Rennes, France; Inserm, Visages U746, IRISA, Campus de Beaulieu, F-35042 Rennes, France; University of Rennes I, Campus de Beaulieu, F-35042 Rennes, France.
| | - Gilles Edan
- CNRS, IRISA 6074, Campus de Beaulieu, F-35042 Rennes, France; Inria, Visages team, campus de Beaulieu, F-35042 Rennes, France; Inserm, Visages U746, IRISA, Campus de Beaulieu, F-35042 Rennes, France; University of Rennes I, Campus de Beaulieu, F-35042 Rennes, France; University Hospital of Rennes, Neurology Dept., rue H. Le Guilloux, F-35033 Rennes, France
| | - Olivier Commowick
- CNRS, IRISA 6074, Campus de Beaulieu, F-35042 Rennes, France; Inria, Visages team, campus de Beaulieu, F-35042 Rennes, France; Inserm, Visages U746, IRISA, Campus de Beaulieu, F-35042 Rennes, France; University of Rennes I, Campus de Beaulieu, F-35042 Rennes, France
| |
Collapse
|
19
|
Fartaria MJ, Bonnier G, Roche A, Kober T, Meuli R, Rotzinger D, Frackowiak R, Schluep M, Du Pasquier R, Thiran JP, Krueger G, Bach Cuadra M, Granziera C. Automated detection of white matter and cortical lesions in early stages of multiple sclerosis. J Magn Reson Imaging 2015; 43:1445-54. [DOI: 10.1002/jmri.25095] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/31/2015] [Indexed: 11/10/2022] Open
Affiliation(s)
- Mário João Fartaria
- Advanced Clinical Imaging Technology (HC CMEA SUI DI BM PI), Siemens Healthcare AG; Lausanne Switzerland
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
| | - Guillaume Bonnier
- Advanced Clinical Imaging Technology (HC CMEA SUI DI BM PI), Siemens Healthcare AG; Lausanne Switzerland
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Laboratoire de Recherché en Neuroimagérie (LREN), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - Alexis Roche
- Advanced Clinical Imaging Technology (HC CMEA SUI DI BM PI), Siemens Healthcare AG; Lausanne Switzerland
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Department of Radiology; Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology (HC CMEA SUI DI BM PI), Siemens Healthcare AG; Lausanne Switzerland
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Department of Radiology; Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - Reto Meuli
- Department of Radiology; Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - David Rotzinger
- Department of Radiology; Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - Richard Frackowiak
- Department of Clinical Neurosciences; Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - Myriam Schluep
- Neuroimmunology Unit; Neurology; Department of Clinical Neurosciences; Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - Renaud Du Pasquier
- Neuroimmunology Unit; Neurology; Department of Clinical Neurosciences; Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Department of Radiology; Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
| | - Gunnar Krueger
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Siemens Medical Solutions USA, Inc; Boston MA United States
| | - Meritxell Bach Cuadra
- Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne Switzerland
- Department of Radiology; Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
- Signal Processing Core, Centre d'Imagerie BioMédicale (CIBM); Lausanne Switzerland
| | - Cristina Granziera
- Advanced Clinical Imaging Technology (HC CMEA SUI DI BM PI), Siemens Healthcare AG; Lausanne Switzerland
- Laboratoire de Recherché en Neuroimagérie (LREN), Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
- Department of Clinical Neurosciences; Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL); Lausanne Switzerland
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School; Chalestown MA United States
| |
Collapse
|
20
|
Galimzianova A, Pernuš F, Likar B, Špiclin Ž. Robust estimation of unbalanced mixture models on samples with outliers. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2015; 37:2273-2285. [PMID: 26440267 DOI: 10.1109/tpami.2015.2404835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mixture models are often used to compactly represent samples from heterogeneous sources. However, in real world, the samples generally contain an unknown fraction of outliers and the sources generate different or unbalanced numbers of observations. Such unbalanced and contaminated samples may, for instance, be obtained by high density data sensors such as imaging devices. Estimation of unbalanced mixture models from samples with outliers requires robust estimation methods. In this paper, we propose a novel robust mixture estimator incorporating trimming of the outliers based on component-wise confidence level ordering of observations. The proposed method is validated and compared to the state-of-the-art FAST-TLE method on two data sets, one consisting of synthetic samples with a varying fraction of outliers and a varying balance between mixture weights, while the other data set contained structural magnetic resonance images of the brain with tumors of varying volumes. The results on both data sets clearly indicate that the proposed method is capable to robustly estimate unbalanced mixtures over a broad range of outlier fractions. As such, it is applicable to real-world samples, in which the outlier fraction cannot be estimated in advance.
Collapse
|
21
|
Sudre CH, Cardoso MJ, Bouvy WH, Biessels GJ, Barnes J, Ourselin S. Bayesian model selection for pathological neuroimaging data applied to white matter lesion segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:2079-2102. [PMID: 25850086 DOI: 10.1109/tmi.2015.2419072] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In neuroimaging studies, pathologies can present themselves as abnormal intensity patterns. Thus, solutions for detecting abnormal intensities are currently under investigation. As each patient is unique, an unbiased and biologically plausible model of pathological data would have to be able to adapt to the subject's individual presentation. Such a model would provide the means for a better understanding of the underlying biological processes and improve one's ability to define pathologically meaningful imaging biomarkers. With this aim in mind, this work proposes a hierarchical fully unsupervised model selection framework for neuroimaging data which enables the distinction between different types of abnormal image patterns without pathological a priori knowledge. Its application on simulated and clinical data demonstrated the ability to detect abnormal intensity clusters, resulting in a competitive to improved behavior in white matter lesion segmentation when compared to three other freely-available automated methods.
Collapse
|
22
|
Stratified mixture modeling for segmentation of white-matter lesions in brain MR images. Neuroimage 2015; 124:1031-1043. [PMID: 26427644 DOI: 10.1016/j.neuroimage.2015.09.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 09/07/2015] [Accepted: 09/20/2015] [Indexed: 11/21/2022] Open
Abstract
Accurate characterization of white-matter lesions from magnetic resonance (MR) images has increasing importance for diagnosis and management of treatment of certain neurological diseases, and can be performed in an objective and effective way by automated lesion segmentation. This usually involves modeling the whole-brain MR intensity distribution, however, capturing various sources of MR intensity variability and lesion heterogeneity results in highly complex whole-brain MR intensity models, thus their robust estimation on a large set of MR images presents a huge challenge. We propose a novel approach employing stratified mixture modeling, where the main premise is that the otherwise complex whole-brain model can be reduced to a tractable parametric form in small brain subregions. We show on MR images of multiple sclerosis (MS) patients with different lesion loads that robust estimators enable accurate mixture modeling of MR intensity in small brain subregions even in the presence of lesions. Recombination of the mixture models across strata provided an accurate whole-brain MR intensity model. Increasing the number of subregions and, thereby, the model complexity, consistently improved the accuracy of whole-brain MR intensity modeling and segmentation of normal structures. The proposed approach was incorporated into three unsupervised lesion segmentation methods and, compared to original and three other state-of-the-art methods, the proposed modeling approach significantly improved lesion segmentation according to increased Dice similarity indices and lower number of false positives on real MR images of 30 patients with MS.
Collapse
|
23
|
Pagnozzi AM, Gal Y, Boyd RN, Fiori S, Fripp J, Rose S, Dowson N. The need for improved brain lesion segmentation techniques for children with cerebral palsy: A review. Int J Dev Neurosci 2015; 47:229-46. [DOI: 10.1016/j.ijdevneu.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023] Open
Affiliation(s)
- Alex M. Pagnozzi
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
- The University of QueenslandSchool of MedicineSt. LuciaBrisbaneAustralia
| | - Yaniv Gal
- The University of QueenslandCentre for Medical Diagnostic Technologies in QueenslandSt. LuciaBrisbaneAustralia
| | - Roslyn N. Boyd
- The University of QueenslandQueensland Cerebral Palsy and Rehabilitation Research CentreSchool of MedicineBrisbaneAustralia
| | - Simona Fiori
- Department of Developmental NeuroscienceStella Maris Scientific InstitutePisaItaly
| | - Jurgen Fripp
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| | - Stephen Rose
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| | - Nicholas Dowson
- CSIRO Digital Productivity and Services FlagshipThe Australian e‐Health Research CentreBrisbaneAustralia
| |
Collapse
|
24
|
Tomas-Fernandez X, Warfield SK. A Model of Population and Subject (MOPS) Intensities With Application to Multiple Sclerosis Lesion Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1349-61. [PMID: 25616008 PMCID: PMC4506921 DOI: 10.1109/tmi.2015.2393853] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
White matter (WM) lesions are thought to play an important role in multiple sclerosis (MS) disease burden. Recent work in the automated segmentation of white matter lesions from magnetic resonance imaging has utilized a model in which lesions are outliers in the distribution of tissue signal intensities across the entire brain of each patient. However, the sensitivity and specificity of lesion detection and segmentation with these approaches have been inadequate. In our analysis, we determined this is due to the substantial overlap between the whole brain signal intensity distribution of lesions and normal tissue. Inspired by the ability of experts to detect lesions based on their local signal intensity characteristics, we propose a new algorithm that achieves lesion and brain tissue segmentation through simultaneous estimation of a spatially global within-the-subject intensity distribution and a spatially local intensity distribution derived from a healthy reference population. We demonstrate that MS lesions can be segmented as outliers from this intensity model of population and subject. We carried out extensive experiments with both synthetic and clinical data, and compared the performance of our new algorithm to those of state-of-the art techniques. We found this new approach leads to a substantial improvement in the sensitivity and specificity of lesion detection and segmentation.
Collapse
|
25
|
Harmouche R, Subbanna NK, Collins DL, Arnold DL, Arbel T. Probabilistic Multiple Sclerosis Lesion Classification Based on Modeling Regional Intensity Variability and Local Neighborhood Information. IEEE Trans Biomed Eng 2015; 62:1281-92. [DOI: 10.1109/tbme.2014.2385635] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Karimian A, Jafari S. A New Method to Segment the Multiple Sclerosis Lesions on Brain Magnetic Resonance Images. JOURNAL OF MEDICAL SIGNALS AND SENSORS 2015; 5:238-44. [PMID: 26955567 PMCID: PMC4759840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Automatic segmentation of multiple sclerosis (MS) lesions in brain magnetic resonance imaging (MRI) has been widely investigated in the recent years with the goal of helping MS diagnosis and patient follow-up. In this research work, Gaussian mixture model (GMM) has been used to segment the MS lesions in MRIs, including T1-weighted (T1-w), T2-w, and T2-fluid attenuation inversion recovery. Usually, GMM is optimized by using expectation-maximization (EM) algorithm. The drawbacks of this optimization method are, it does not converge to optimal maximum or minimum and furthermore, there are some voxels, which do not fit the GMM model and have to be rejected. So, GMM is time-consuming and not too much efficient. To overcome these limitations, in this research study, at the first step, GMM was applied to segment only T1-w images by using 100 various starting points when the maximum number of iterations was considered to be 50. Then segmentation results were used to calculate the parameters of the other two images. Furthermore, FAST-trimmed likelihood estimator algorithm was applied to determine which voxels should be rejected. The output result of the segmentation was classified in three classes; White and Gray matters, cerebrospinal fluid, and some rejected voxels which prone to be MS. In the next phase, MS lesions were detected by using some heuristic rules. This new method was applied on the brain MRIs of 25 patients from two hospitals. The automatic segmentation outputs were scored by two specialists and the results show that our method has the capability to segment the MS lesions with dice similarity coefficient score of 0.82. The results showed a better performance for the proposed approach, in comparison to those of previous works with less time-consuming.
Collapse
Affiliation(s)
- Alireza Karimian
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran,Address for correspondence: Dr. Alireza Karimian, Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran. E-mail:
| | - Simin Jafari
- Department of Telecommunication Engineering, Faculty of Electrical Engineering, Islamic Azad University of Najafabad, Isfahan, Iran
| |
Collapse
|
27
|
Wang R, Li C, Wang J, Wei X, Li Y, Hui C, Zhu Y, Zhang S. Automatic segmentation of white matter lesions on magnetic resonance images of the brain by using an outlier detection strategy. Magn Reson Imaging 2014; 32:1321-9. [DOI: 10.1016/j.mri.2014.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/23/2014] [Accepted: 08/08/2014] [Indexed: 11/17/2022]
|
28
|
Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator. Acad Radiol 2014; 21:1512-23. [PMID: 25176451 DOI: 10.1016/j.acra.2014.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 11/23/2022]
Abstract
RATIONALE AND OBJECTIVES Quantitative analysis of white matter hyperintensities (WMHs) on fluid-attenuated inversion recovery (FLAIR) images provides information for disease tracking, therapeutic efficacy assessment, and cognitive science research. This study developed an automatic segmentation method to detect and quantify WMHs on FLAIR images. This study aims to assess the accuracy and reproducibility of the proposed method. MATERIALS AND METHODS The FLAIR images of 82 patients (58-84 years) with different WMH burdens were acquired with the same 3T scanner (Intera-achieva SMI-2.1; Philip Medical System, Sixth Affiliated People's Hospital, Shanghai, China). The FLAIR images were preprocessed through brain extraction and intensity inhomogeneity correction. An anatomy atlas built from a set of 20 patients with different WMH burdens (mild, 11 patients; moderate, 6 patients; and severe, 3 patients) was used to estimate a control parameter in the framework of segmentation. The general flow for WMH segmentation included classification of foreground and background regions, detection of abnormally high signals, and WMH refinement. The performance of automatic segmentation was evaluated by a volumetric comparison with manual segmentation on patients with different WMH burdens. RESULTS Similarity index values for the accuracy of automatic segmentation compared to manual segmentation were consistently high for patients with different WMH burdens (mild, 0.78 ± 0.08; moderate, 0.83 ± 0.06; severe, 0.84 ± 0.08; and total, 0.80 ± 0.08). Linear regression demonstrated a strong correlation between the WMH volumes measured by the two methods in all patients (r = 0.98, P = .006). Small average differences were detected between the WMH volumes obtained through manual and automatic segmentations (mild, 4.76%; moderate, 6.84%; and severe, 7.59%). The results of Bland-Altman analysis show a system bias of 0.68 cm(3) and a standard deviation of 2.10 cm(3) over the range of 2.58-53.9 cm(3). CONCLUSIONS The developed method is accurate and efficient in detecting and quantifying differently sized WMHs on FLAIR images. Automatic segmentation is a promising computer-aided diagnostic tool to study WMHs in aging and dementia in basic research and even in clinical trials.
Collapse
|
29
|
Automatic segmentation and volumetric quantification of white matter hyperintensities on fluid-attenuated inversion recovery images using the extreme value distribution. Neuroradiology 2014; 57:307-20. [PMID: 25407717 DOI: 10.1007/s00234-014-1466-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
INTRODUCTION This study aims to develop an automatic segmentation framework on the basis of extreme value distribution (EVD) for the detection and volumetric quantification of white matter hyperintensities (WMHs) on fluid-attenuated inversion recovery (FLAIR) images. METHODS Two EVD-based segmentation methods, namely the Gumbel and Fréchet segmentation, were developed to detect WMHs on FLAIR (slice thickness = 5 mm; TR/TE/TI = 11,000/120/2,800 ms; flip angle = 90°) images. Another automatic segmentation method using a trimmed likelihood estimator (TLE) was implemented for comparison with our proposed segmentation framework. The performances of the three automatic segmentation methods were evaluated by comparing with the manual segmentation method. RESULTS The Dice similarity coefficients (DSCs) of the two EVD-based segmentation methods were larger than those of the TLE-based segmentation method (Gumbel, 0.823 ± 0.063; Fréchet, 0.843 ± 0.057; TLE, 0.817 ± 0.068), demonstrating that the EVD-based segmentation outperformed the TLE-based segmentation. The Fréchet segmentation obtained larger DSCs on patients with moderate to severe lesion loads and a comparable performance on patients with mild lesion loads, indicating that the Fréchet segmentation was superior to the Gumbel segmentation. The Gumbel segmentation underestimated the lesion volumes of all patients, whereas the Fréchet and TLE-based segmentation methods obtained overestimated lesion volumes (Manual, 13.71 ± 14.02 cc; Gumbel, 12.73 ± 13.21 cc; Fréchet, 13.88 ± 13.96 cc; TLE, 13.54 ± 12.27 cc). Moreover, the EVD-based segmentation was demonstrated to be comparable to other state-of-the-art methods on a publicly available dataset. CONCLUSION The proposed EVD-based segmentation framework is a promising, effective, and convenient tool for volumetric quantification and further study of WMHs in aging and dementia.
Collapse
|
30
|
Cabezas M, Oliver A, Roura E, Freixenet J, Vilanova JC, Ramió-Torrentà L, Rovira A, Lladó X. Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2014; 115:147-161. [PMID: 24813718 DOI: 10.1016/j.cmpb.2014.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/25/2014] [Accepted: 04/06/2014] [Indexed: 06/03/2023]
Abstract
Magnetic resonance imaging (MRI) is frequently used to detect and segment multiple sclerosis lesions due to the detailed and rich information provided. We present a modified expectation-maximisation algorithm to segment brain tissues (white matter, grey matter, and cerebro-spinal fluid) as well as a partial volume class containing fluid and grey matter. This algorithm provides an initial segmentation in which lesions are not separated from tissue, thus a second step is needed to find them. This second step involves the thresholding of the FLAIR image, followed by a regionwise refinement to discard false detections. To evaluate the proposal, we used a database with 45 cases comprising 1.5T imaging data from three different hospitals with different scanner machines and with a variable lesion load per case. The results for our database point out to a higher accuracy when compared to two of the best state-of-the-art approaches.
Collapse
Affiliation(s)
- Mariano Cabezas
- Department of Computer Architecture and Technology, University of Girona, Spain
| | - Arnau Oliver
- Department of Computer Architecture and Technology, University of Girona, Spain
| | - Eloy Roura
- Department of Computer Architecture and Technology, University of Girona, Spain
| | - Jordi Freixenet
- Department of Computer Architecture and Technology, University of Girona, Spain
| | | | - Lluís Ramió-Torrentà
- Multiple Sclerosis and Neuroimmunology Unit, Dr. Josep Trueta University Hospital, Spain
| | - Alex Rovira
- Magnetic Resonance Unit, Department of Radiology, Vall d'Hebron University Hospital, Spain
| | - Xavier Lladó
- Department of Computer Architecture and Technology, University of Girona, Spain.
| |
Collapse
|
31
|
Semi-automatic segmentation of brain tumors using population and individual information. J Digit Imaging 2014; 26:786-96. [PMID: 23319111 DOI: 10.1007/s10278-012-9568-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Efficient segmentation of tumors in medical images is of great practical importance in early diagnosis and radiation plan. This paper proposes a novel semi-automatic segmentation method based on population and individual statistical information to segment brain tumors in magnetic resonance (MR) images. First, high-dimensional image features are extracted. Neighborhood components analysis is proposed to learn two optimal distance metrics, which contain population and patient-specific information, respectively. The probability of each pixel belonging to the foreground (tumor) and the background is estimated by the k-nearest neighborhood classifier under the learned optimal distance metrics. A cost function for segmentation is constructed through these probabilities and is optimized using graph cuts. Finally, some morphological operations are performed to improve the achieved segmentation results. Our dataset consists of 137 brain MR images, including 68 for training and 69 for testing. The proposed method overcomes segmentation difficulties caused by the uneven gray level distribution of the tumors and even can get satisfactory results if the tumors have fuzzy edges. Experimental results demonstrate that the proposed method is robust to brain tumor segmentation.
Collapse
|
32
|
Aubert-Broche B, Fonov V, García-Lorenzo D, Mouiha A, Guizard N, Coupé P, Eskildsen S, Collins D. A new method for structural volume analysis of longitudinal brain MRI data and its application in studying the growth trajectories of anatomical brain structures in childhood. Neuroimage 2013; 82:393-402. [DOI: 10.1016/j.neuroimage.2013.05.065] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 04/16/2013] [Accepted: 05/11/2013] [Indexed: 01/18/2023] Open
|
33
|
Elliott C, Arnold DL, Collins DL, Arbel T. Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:1490-503. [PMID: 23613032 DOI: 10.1109/tmi.2013.2258403] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Detection of new Multiple Sclerosis (MS) lesions on magnetic resonance imaging (MRI) is important as a marker of disease activity and as a potential surrogate for relapses. We propose an approach where sequential scans are jointly segmented, to provide a temporally consistent tissue segmentation while remaining sensitive to newly appearing lesions. The method uses a two-stage classification process: 1) a Bayesian classifier provides a probabilistic brain tissue classification at each voxel of reference and follow-up scans, and 2) a random-forest based lesion-level classification provides a final identification of new lesions. Generative models are learned based on 364 scans from 95 subjects from a multi-center clinical trial. The method is evaluated on sequential brain MRI of 160 subjects from a separate multi-center clinical trial, and is compared to 1) semi-automatically generated ground truth segmentations and 2) fully manual identification of new lesions generated independently by nine expert raters on a subset of 60 subjects. For new lesions greater than 0.15 cc in size, the classifier has near perfect performance (99% sensitivity, 2% false detection rate), as compared to ground truth. The proposed method was also shown to exceed the performance of any one of the nine expert manual identifications.
Collapse
Affiliation(s)
- Colm Elliott
- Centre for Intelligent Machines, McGill University, Montreal, QC, H3A 0E9 Canada.
| | | | | | | |
Collapse
|
34
|
Bijar A, Khayati R, Peñalver Benavent A. Increasing the contrast of the brain MR FLAIR images using fuzzy membership functions and structural similarity indices in order to segment MS lesions. PLoS One 2013; 8:e65469. [PMID: 23799015 PMCID: PMC3684600 DOI: 10.1371/journal.pone.0065469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 04/28/2013] [Indexed: 11/18/2022] Open
Abstract
Segmentation is an important step for the diagnosis of multiple sclerosis (MS). This paper presents a new approach to the fully automatic segmentation of MS lesions in Fluid Attenuated Inversion Recovery (FLAIR) Magnetic Resonance (MR) images. With the aim of increasing the contrast of the FLAIR MR images with respect to the MS lesions, the proposed method first estimates the fuzzy memberships of brain tissues (i.e., the cerebrospinal fluid (CSF), the normal-appearing brain tissue (NABT), and the lesion). The procedure for determining the fuzzy regions of their member functions is performed by maximizing fuzzy entropy through Genetic Algorithm. Research shows that the intersection points of the obtained membership functions are not accurate enough to segment brain tissues. Then, by extracting the structural similarity (SSIM) indices between the FLAIR MR image and its lesions membership image, a new contrast-enhanced image is created in which MS lesions have high contrast against other tissues. Finally, the new contrast-enhanced image is used to segment MS lesions. To evaluate the result of the proposed method, similarity criteria from all slices from 20 MS patients are calculated and compared with other methods, which include manual segmentation. The volume of segmented lesions is also computed and compared with Gold standard using the Intraclass Correlation Coefficient (ICC) and paired samples t test. Similarity index for the patients with small lesion load, moderate lesion load and large lesion load was 0.7261, 0.7745 and 0.8231, respectively. The average overall similarity index for all patients is 0.7649. The t test result indicates that there is no statistically significant difference between the automatic and manual segmentation. The validated results show that this approach is very promising.
Collapse
Affiliation(s)
- Ahmad Bijar
- Department of Biomedical Engineering, Shahed University, Tehran, Iran.
| | | | | |
Collapse
|
35
|
Glatz A, Valdés Hernández MC, Kiker AJ, Bastin ME, Deary IJ, Wardlaw JM. Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects. Neuroimage 2013; 82:470-80. [PMID: 23769704 PMCID: PMC3776225 DOI: 10.1016/j.neuroimage.2013.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/05/2013] [Indexed: 12/29/2022] Open
Abstract
Multifocal T2*-weighted (T2*w) hypointensities in the basal ganglia, which are believed to arise predominantly from mineralized small vessels and perivascular spaces, have been proposed as a biomarker for cerebral small vessel disease. This study provides baseline data on their appearance on conventional structural MRI for improving and automating current manual segmentation methods. Using a published thresholding method, multifocal T2*w hypointensities were manually segmented from whole brain T2*w volumes acquired from 98 community-dwelling subjects in their early 70s. Connected component analysis was used to derive the average T2*w hypointensity count and load per basal ganglia nucleus, as well as the morphology of their connected components, while nonlinear spatial probability mapping yielded their spatial distribution. T1-weighted (T1w), T2-weighted (T2w) and T2*w intensity distributions of basal ganglia T2*w hypointensities and their appearance on T1w and T2w MRI were investigated to gain further insights into the underlying tissue composition. In 75/98 subjects, on average, 3 T2*w hypointensities with a median total volume per intracranial volume of 50.3 ppm were located in and around the globus pallidus. Individual hypointensities appeared smooth and spherical with a median volume of 12 mm3 and median in-plane area of 4 mm2. Spatial probability maps suggested an association between T2*w hypointensities and the point of entry of lenticulostriate arterioles into the brain parenchyma. T1w and T2w and especially the T2*w intensity distributions of these hypointensities, which were negatively skewed, were generally not normally distributed indicating an underlying inhomogeneous tissue structure. Globus pallidus T2*w hypointensities tended to appear hypo- and isointense on T1w and T2w MRI, whereas those from other structures appeared iso- and hypointense. This pattern could be explained by an increased mineralization of the globus pallidus. In conclusion, the characteristic spatial distribution and appearance of multifocal basal ganglia T2*w hypointensities in our elderly cohort on structural MRI appear to support the suggested association with mineralized proximal lenticulostriate arterioles and perivascular spaces. A rater segmented focal hypointensities on T2*w brain MRI from 98 elderly subjects. On average 3 focal hypointensities were found in the basal ganglia of 75 subjects. Their spatial distribution suggests an association with lenticulostriate arterioles. Signal intensity distributions suggest an underlying inhomogeneous tissue structure.
Collapse
Affiliation(s)
- Andreas Glatz
- Brain Research Imaging Centre (BRIC), Neuroimaging Sciences, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Datta S, Narayana PA. A comprehensive approach to the segmentation of multichannel three-dimensional MR brain images in multiple sclerosis. NEUROIMAGE-CLINICAL 2013; 2:184-96. [PMID: 24179773 PMCID: PMC3777770 DOI: 10.1016/j.nicl.2012.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/11/2012] [Accepted: 12/31/2012] [Indexed: 12/31/2022]
Abstract
Accurate classification and quantification of brain tissues is important for monitoring disease progression, measurement of atrophy, and correlating magnetic resonance (MR) measures with clinical disability. Classification of MR brain images in the presence of lesions, such as multiple sclerosis (MS), is particularly challenging. Images obtained with lower resolution often suffer from partial volume averaging leading to false classifications. While partial volume averaging can be reduced by acquiring volumetric images at high resolution, image segmentation and quantification can be technically challenging. In this study, we integrated the brain anatomical knowledge with non-parametric and parametric statistical classifiers for automatically classifying tissues and lesions on high resolution multichannel three-dimensional images acquired on 60 MS brains. The results of automatic lesion segmentation were reviewed by the expert. The agreement between results obtained by the automated analysis and the expert was excellent as assessed by the quantitative metrics, low absolute volume difference percent (36.18 ± 34.90), low average symmetric surface distance (1.64 mm ± 1.30 mm), high true positive rate (84.75 ± 12.69), and low false positive rate (34.10 ± 16.00). The segmented results were also in close agreement with the corrected results as assessed by Bland-Altman and regression analyses. Finally, our lesion segmentation was validated using the MS lesion segmentation grand challenge dataset (MICCAI 2008).
Collapse
Affiliation(s)
- Sushmita Datta
- Corresponding author at: Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, USA. Tel.: + 1 713 500 7597; fax: + 1 713 500 7684.
| | | |
Collapse
|
37
|
García-Lorenzo D, Francis S, Narayanan S, Arnold DL, Collins DL. Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Med Image Anal 2013; 17:1-18. [DOI: 10.1016/j.media.2012.09.004] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 01/21/2023]
|
38
|
Lladó X, Oliver A, Cabezas M, Freixenet J, Vilanova JC, Quiles A, Valls L, Ramió-Torrentà L, Rovira À. Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches. Inf Sci (N Y) 2012. [DOI: 10.1016/j.ins.2011.10.011] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|