1
|
Filippou A, Evripidou N, Georgiou A, Georgiou L, Chrysanthou A, Ioannides C, Damianou C. Magnetic Resonance Thermometry of Focused Ultrasound Using a Preclinical Focused Ultrasound Robotic System at 3T. J Med Phys 2024; 49:583-596. [PMID: 39926130 PMCID: PMC11801101 DOI: 10.4103/jmp.jmp_133_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 02/11/2025] Open
Abstract
AIM Focused ultrasound (FUS) therapies are often performed within magnetic resonance imaging (MRI) systems providing thermometry-based temperature monitoring. Herein, MRI thermometry was assessed for FUS sonications executed using a preclinical system on agar-based phantoms at 1.5T and 3T MRI scanners, using the proton resonance frequency shift technique. MATERIALS AND METHODS Sonications were executed at 1.5T and 3T to assess the system and observe variations in magnetic resonance (MR) thermometry temperature measurements. MR thermometry was assessed at 3T, for identical sonications on three agar-based phantoms doped with varied silica and evaporated milk concentrations, and for sonications executed at varied acoustic power of 1.5-45 W. Moreover, echo time (TE) values of 5-20 ms were used to assess the effect on the signal-to-noise ratio (SNR) and temperature change sensitivity. RESULTS Clearer thermal maps with a 2.5-fold higher temporal resolution were produced for sonications at 3T compared to 1.5T, despite employment of similar thermometry sequences. At 3T, temperature changes between 41°C and 50°C were recorded for the three phantoms produced with varied silica and evaporated milk, with the addition of 2% w/v silica resulting in a 20% increase in temperature change. The lowest acoustic power that produced reliable beam detection within a voxel was 1.5 W. A TE of 10 ms resulted in the highest temperature sensitivity with adequate SNR. CONCLUSIONS MR thermometry performed at 3T achieved short temporal resolution with temperature dependencies exhibited with the sonication and imaging parameters. Present data could be used in preclinical MRI-guided FUS feasibility studies to enhance MR thermometry.
Collapse
Affiliation(s)
- Antria Filippou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Andreas Georgiou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Leonidas Georgiou
- Department of Interventional Radiology, German Oncology Centre, Limassol, Cyprus
| | - Antreas Chrysanthou
- Department of Interventional Radiology, German Oncology Centre, Limassol, Cyprus
| | - Cleanthis Ioannides
- Department of Interventional Radiology, German Oncology Centre, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
- Department of Electronics and Information Engineering, Hangzhou Diazin University, Hangzhou, China
| |
Collapse
|
2
|
Kim K, Narsinh K, Ozhinsky E. Technical advances in motion-robust MR thermometry. Magn Reson Med 2024; 92:15-27. [PMID: 38501903 PMCID: PMC11132643 DOI: 10.1002/mrm.30057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/20/2024]
Abstract
Proton resonance frequency shift (PRFS) MR thermometry is the most common method used in clinical thermal treatments because of its fast acquisition and high sensitivity to temperature. However, motion is the biggest obstacle in PRFS MR thermometry for monitoring thermal treatment in moving organs. This challenge arises because of the introduction of phase errors into the PRFS calculation through multiple methods, such as image misregistration, susceptibility changes in the magnetic field, and intraframe motion during MRI acquisition. Various approaches for motion correction have been developed for real-time, motion-robust, and volumetric MR thermometry. However, current technologies have inherent trade-offs among volume coverage, processing time, and temperature accuracy. These tradeoffs should be considered and chosen according to the thermal treatment application. In hyperthermia treatment, precise temperature measurements are of increased importance rather than the requirement for exceedingly high temporal resolution. In contrast, ablation procedures require robust temporal resolution to accurately capture a rapid temperature rise. This paper presents a comprehensive review of current cutting-edge MRI techniques for motion-robust MR thermometry, and recommends which techniques are better suited for each thermal treatment. We expect that this study will help discern the selection of motion-robust MR thermometry strategies and inspire the development of motion-robust volumetric MR thermometry for practical use in clinics.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| | - Kazim Narsinh
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| | - Eugene Ozhinsky
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
3
|
Qian E, Poojar P, Fung M, Jin Z, Vaughan JT, Shrivastava D, Gultekin D, Fernandes T, Geethanath S. Magnetic resonance fingerprinting based thermometry (MRFT): application to ex vivoimaging near DBS leads. Phys Med Biol 2023; 68:17NT01. [PMID: 37489867 DOI: 10.1088/1361-6560/acea54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
The purpose of this study is to demonstrate the first work ofT1-based magnetic resonance thermometry using magnetic resonance fingerprinting (dubbed MRFT). We compared temperature estimation of MRFT with proton resonance frequency shift (PRFS) thermometry onex vivobovine muscle. We demonstrated MRFT's feasibility in predicting temperature onex vivobovine muscles with deep brain stimulation (DBS) lead.B0maps generated from MRFT were compared with gold standardB0maps near the DBS lead. MRFT and PRFS estimated temperatures were compared in the presence of motion. All experiments were performed on a 3 Tesla whole-body GE Premier system with a 21-channel receive head coil (GE Healthcare, Milwaukee, WI). Four fluoroptic probes were used to measure the temperature at the center of a cold muscle (probe 1), the room temperature water bottle (probe 2), and the center and periphery of the heated muscle (probes 3 and 4). We selected regions of interest (ROIs) around the location of the probes and used simple linear regression to generate the temperature sensitivity calibration equations that convertT1maps and Δsmaps to temperature maps. We then repeated the same setup and compared MRFT and PRFS thermometry temperature estimation with gold standard probe measurements. For the MRFT experiment on DBS lead, we taped the probe to the tip of the DBS lead and used a turbo spin echo sequence to induce heating near the lead. We selected ROIs around the tip of the lead to compare MRFT temperature estimation with probe measurements and compared with PRFS temperature estimation. Vendor-suppliedB0mapping sequence was acquired to compare with MRFT-generatedB0maps. We found strong linear relationships (R2> 0.958) betweenT1and temperature and Δsand temperatures in our temperature sensitivity calibration experiment. MRFT and PRFS thermometry both accurately predict temperature (RMSE < 1.55 °C) compared to probe measurements. MRFT estimated temperature near DBS lead has a similar trend as the probe temperature. BothB0maps show inhomogeneities around the lead. MRFT estimated temperature is less sensitive to motion.
Collapse
Affiliation(s)
- Enlin Qian
- Columbia Magnetic Resonance Research Center, Columbia University, New York, NY, United States of America
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Pavan Poojar
- Accessible MR Laboratory, Biomedical Engineering and Imaging Institute, Dept. of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Maggie Fung
- GE Healthcare, New York, NY, United States of America
| | - Zhezhen Jin
- Department of Biostatistics, Columbia University, New York, NY, United States of America
| | - John Thomas Vaughan
- Columbia Magnetic Resonance Research Center, Columbia University, New York, NY, United States of America
- Department of Biomedical Engineering, Columbia University, New York, NY, United States of America
| | - Devashish Shrivastava
- Columbia Magnetic Resonance Research Center, Columbia University, New York, NY, United States of America
| | - David Gultekin
- Columbia Magnetic Resonance Research Center, Columbia University, New York, NY, United States of America
| | - Tiago Fernandes
- Accessible MR Laboratory, Biomedical Engineering and Imaging Institute, Dept. of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
- ISR - Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico-Universidade de Lisboa, Lisbon, Portugal
| | - Sairam Geethanath
- Columbia Magnetic Resonance Research Center, Columbia University, New York, NY, United States of America
- Accessible MR Laboratory, Biomedical Engineering and Imaging Institute, Dept. of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| |
Collapse
|
4
|
Kikken MWI, Steensma BR, van den Berg CAT, Raaijmakers AJE. Multi-echo MR thermometry in the upper leg at 7 T using near-harmonic 2D reconstruction for initialization. Magn Reson Med 2023; 89:2347-2360. [PMID: 36688273 DOI: 10.1002/mrm.29591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
PURPOSE The aim of this work is the development of a thermometry method to measure temperature increases in vivo, with a precision and accuracy sufficient for validation against thermal simulations. Such an MR thermometry model would be a valuable tool to get an indication on one of the major safety concerns in MR imaging: the tissue heating occurring due to radiofrequency (RF) exposure. To prevent excessive temperature rise, RF power deposition, expressed as specific absorption rate, cannot exceed predefined thresholds. Using these thresholds, MRI has demonstrated an extensive history of safe usage. Nevertheless, MR thermometry would be a valuable tool to address some of the unmet needs in the area of RF safety assessment, such as validation of specific absorption rate and thermal simulations, investigation of local peak temperatures during scanning, or temperature-based safety guidelines. METHODS The harmonic initialized model-based multi-echo approach is proposed. The method combines a previously published model-based multi-echo water/fat separated approach with an also previously published near-harmonic 2D reconstruction method. The method is tested on the human thigh with a multi-transmit array at 7 T, in three volunteers, and for several RF shims. RESULTS Precision and accuracy are improved considerably compared to a previous fat-referenced method (precision: 0.09 vs. 0.19°C). Comparison of measured temperature rise distributions to subject-specific simulated counterparts show good relative agreement for multiple RF shim settings. CONCLUSION The high precision shows promising potential for validation purposes and other RF safety applications.
Collapse
Affiliation(s)
- Mathijs W I Kikken
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander J E Raaijmakers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
5
|
Alpers J, Hensen B, Rötzer M, Reimert DL, Gerlach T, Vick R, Gutberlet M, Wacker F, Hansen C. Comparison study of reconstruction algorithms for volumetric necrosis maps from 2D multi-slice GRE thermometry images. Sci Rep 2022; 12:11509. [PMID: 35799055 PMCID: PMC9263155 DOI: 10.1038/s41598-022-15712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a disease which requires a significant amount of careful medical attention. For minimally-invasive thermal ablation procedures, the monitoring of heat distribution is one of the biggest challenges. In this work, three approaches for volumetric heat map reconstruction (Delauney triangulation, minimum volume enclosing ellipsoids (MVEE) and splines) are presented based on uniformly distributed 2D MRI phase images rotated around the applicator’s main axis. We compare them with our previous temperature interpolation method with respect to accuracy, robustness and adaptability. All approaches are evaluated during MWA treatment on the same data sets consisting of 13 ex vivo bio protein phantoms, including six phantoms with simulated heat sink effects. Regarding accuracy, the DSC similarity results show a strong trend towards the MVEE (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.80\pm 0.03$$\end{document}0.80±0.03) and the splines (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.77\pm 0.04$$\end{document}0.77±0.04) method compared to the Delauney triangulation (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.75\pm 0.02$$\end{document}0.75±0.02) or the temperature interpolation (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.73\pm 0.07$$\end{document}0.73±0.07). Robustness is increased for all three approaches and the adaptability shows a significant trend towards the initial interpolation method and the splines. To overcome local inhomogeneities in the acquired data, the use of adaptive simulations should be considered in the future. In addition, the transfer to in vivo animal experiments should be considered to test for clinical applicability.
Collapse
Affiliation(s)
- Julian Alpers
- Faculty of Computer Science, Otto-von-Guericke University, 39106, Magdeburg, Germany. .,Research Campus STIMULATE, Otto-von-Guericke University, 39106, Magdeburg, Germany.
| | - Bennet Hensen
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, 30625, Hannover, Germany.,Research Campus STIMULATE, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Maximilian Rötzer
- Faculty of Computer Science, Otto-von-Guericke University, 39106, Magdeburg, Germany.,Research Campus STIMULATE, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Daniel L Reimert
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, 30625, Hannover, Germany.,Research Campus STIMULATE, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Thomas Gerlach
- Faculty of Electrical Engineering and Information Technologies, Otto-von-Guericke University, 39106, Magdeburg, Germany.,Research Campus STIMULATE, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Ralf Vick
- Faculty of Electrical Engineering and Information Technologies, Otto-von-Guericke University, 39106, Magdeburg, Germany.,Research Campus STIMULATE, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, 30625, Hannover, Germany.,Research Campus STIMULATE, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, 30625, Hannover, Germany.,Research Campus STIMULATE, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Christian Hansen
- Faculty of Computer Science, Otto-von-Guericke University, 39106, Magdeburg, Germany.,Research Campus STIMULATE, Otto-von-Guericke University, 39106, Magdeburg, Germany
| |
Collapse
|
6
|
Scotti AM, Damen F, Gao J, Li W, Liew CW, Cai Z, Zhang Z, Cai K. Phase-independent thermometry by Z-spectrum MR imaging. Magn Reson Med 2022; 87:1731-1741. [PMID: 34752646 PMCID: PMC10029969 DOI: 10.1002/mrm.29072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 01/05/2023]
Abstract
PURPOSE Z-spectrum imaging, defined as the consecutive collection of images after saturating over a range of frequency offsets, has been recently proposed as a method to measure the fat-water fraction by the simultaneous detection of fat and water resonances. By incorporating a binomial pulse irradiated at each offset before the readout, the spectral selectivity of the sequence can be further amplified, making it possible to monitor the subtle proton resonance frequency shift that follows a change in temperature. METHODS We tested the hypothesis in aqueous and cream phantoms and in healthy mice, all under thermal challenge. The binomial module consisted of 2 sinc-shaped pulses of opposite phase separated by a delay. Such a delay served to spread out off-resonance spins, with the resulting excitation profile being a periodic function of the delay and the chemical shift. RESULTS During heating experiments, the water resonance shifted downfield, and by fitting the curve to a sine function it was possible to quantify the change in temperature. Results from Z-spectrum imaging correlated linearly with data from conventional MRI techniques like T1 mapping and phase differences from spoiled GRE. CONCLUSION Because the measurement is performed solely on magnitude images, the technique is independent of phase artifacts and is therefore applicable in mixed tissues (e.g., fat). We showed that Z-spectrum imaging can deliver reliable temperature change measurement in both muscular and fatty tissues.
Collapse
Affiliation(s)
- Alessandro M. Scotti
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Frederick Damen
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jin Gao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Weiguo Li
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zimeng Cai
- School of Medical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Image Processing, Southern Medical University, Guangzhou, China
| | - Zhuoli Zhang
- Department of Radiology, Northwestern University, Evanston, Illinois, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Le Guevelou J, Chirila ME, Achard V, Guillemin PC, Lorton O, Uiterwijk JWE, Dipasquale G, Salomir R, Zilli T. Combined hyperthermia and radiotherapy for prostate cancer: a systematic review. Int J Hyperthermia 2022; 39:547-556. [PMID: 35313781 DOI: 10.1080/02656736.2022.2053212] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Optimization of treatment strategies for prostate cancer patients treated with curative radiation therapy (RT) represents one of the major challenges for the radiation oncologist. Dose escalation or combination of RT with systemic therapies is used to improve tumor control in patients with unfavorable prostate cancer, at the risk of increasing rates and severity of treatment-related toxicities. Elevation of temperature to a supra-physiological level has been shown to both increase tumor oxygenation and reduce DNA repair capabilities. Thus, hyperthermia (HT) combined with RT represents a compelling treatment strategy to improve the therapeutic ratio in prostate cancer patients. The aim of the present systematic review is to report on preclinical and clinical evidence supporting the combination of HT and RT for prostate cancer, discussing future applications and developments of this combined treatment.
Collapse
Affiliation(s)
- Jennifer Le Guevelou
- Division of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Monica Emilia Chirila
- Division of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland.,Amethyst Radiotherapy Centre, Cluj-Napoca, Romania
| | - Vérane Achard
- Division of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| | | | - Orane Lorton
- Department of Radiology and Medical Informatics, Geneva University Hospital, Geneva, Switzerland
| | | | - Giovanna Dipasquale
- Division of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Rares Salomir
- Faculty of Medicine, Geneva University, Geneva, Switzerland.,Department of Radiology and Medical Informatics, Geneva University Hospital, Geneva, Switzerland
| | - Thomas Zilli
- Division of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
8
|
Boehm C, Goeger-Neff M, Mulder HT, Zilles B, Lindner LH, van Rhoon GC, Karampinos DC, Wu M. Susceptibility artifact correction in MR thermometry for monitoring of mild radiofrequency hyperthermia using total field inversion. Magn Reson Med 2022; 88:120-132. [PMID: 35313384 DOI: 10.1002/mrm.29191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE MR temperature monitoring of mild radiofrequency hyperthermia (RF-HT) of cancer exploits the linear resonance frequency shift of water with temperature. Motion-induced susceptibility distribution changes cause artifacts that we correct here using the total field inversion (TFI) approach. METHODS The performance of TFI was compared to two background field removal (BFR) methods: Laplacian boundary value (LBV) and projection onto dipole fields (PDF). Data sets with spatial susceptibility change and B 0 -drift were simulated, phantom heating experiments were performed, four volunteer data sets at thermoneutral conditions as well as data from one cervical cancer, two sarcoma, and one seroma patients undergoing mild RF-HT were corrected using the proposed methods. RESULTS Simulations and phantom heating experiments revealed that using BFR or TFI preserves temperature-induced phase change, while removing susceptibility artifacts and B 0 -drift. TFI resulted in the least cumulative error for all four volunteers. Temperature probe information from four patient data sets were best depicted by TFI-corrected data in terms of accuracy and precision. TFI also performed best in case of the sarcoma treatment without temperature probe. CONCLUSION TFI outperforms previously suggested BFR methods in terms of accuracy and robustness. While PDF consistently overestimates susceptibility contribution, and LBV removes valuable pixel information, TFI is more robust and leads to more accurate temperature estimations.
Collapse
Affiliation(s)
- Christof Boehm
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | | | | | - Benjamin Zilles
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Lars H Lindner
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | | | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mingming Wu
- Department of Diagnostic and Interventional Radiology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Zhou H, Cheng C, Peng H, Liang D, Liu X, Zheng H, Zou C. The PHU-NET: A robust phase unwrapping method for MRI based on deep learning. Magn Reson Med 2021; 86:3321-3333. [PMID: 34272757 DOI: 10.1002/mrm.28927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE This work was aimed at designing a deep-learning-based approach for MR image phase unwrapping to improve the robustness and efficiency of traditional methods. METHODS A deep learning network called PHU-NET was designed for MR phase unwrapping. In this network, a novel training data generation method was proposed to simulate the wrapping patterns in MR phase images. The wrapping boundary and wrapping counts were explicitly estimated and used for network training. The proposed method was quantitatively evaluated and compared to other methods using a number of simulated datasets with varying signal-to-noise ratio (SNR) and MR phase images from various parts of the human body. RESULTS The results showed that our method performed better in the simulated data even under an extremely low SNR. The proposed method had less residual wrapping in the images from various parts of human body and worked well in the presence of severe anatomical discontinuity. Our method was also advantageous in terms of computational efficiency compared to the traditional methods. CONCLUSION This work proposed a robust and computationally efficient MR phase unwrapping method based on a deep learning network, which has promising performance in applications using MR phase information.
Collapse
Affiliation(s)
- Hongyu Zhou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuanli Cheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hao Peng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Chao Zou
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| |
Collapse
|
10
|
Payne A, Chopra R, Ellens N, Chen L, Ghanouni P, Sammet S, Diederich C, Ter Haar G, Parker D, Moonen C, Stafford J, Moros E, Schlesinger D, Benedict S, Wear K, Partanen A, Farahani K. AAPM Task Group 241: A medical physicist's guide to MRI-guided focused ultrasound body systems. Med Phys 2021; 48:e772-e806. [PMID: 34224149 DOI: 10.1002/mp.15076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/28/2021] [Accepted: 06/21/2021] [Indexed: 11/07/2022] Open
Abstract
Magnetic resonance-guided focused ultrasound (MRgFUS) is a completely non-invasive technology that has been approved by FDA to treat several diseases. This report, prepared by the American Association of Physicist in Medicine (AAPM) Task Group 241, provides background on MRgFUS technology with a focus on clinical body MRgFUS systems. The report addresses the issues of interest to the medical physics community, specific to the body MRgFUS system configuration, and provides recommendations on how to successfully implement and maintain a clinical MRgFUS program. The following sections describe the key features of typical MRgFUS systems and clinical workflow and provide key points and best practices for the medical physicist. Commonly used terms, metrics and physics are defined and sources of uncertainty that affect MRgFUS procedures are described. Finally, safety and quality assurance procedures are explained, the recommended role of the medical physicist in MRgFUS procedures is described, and regulatory requirements for planning clinical trials are detailed. Although this report is limited in scope to clinical body MRgFUS systems that are approved or currently undergoing clinical trials in the United States, much of the material presented is also applicable to systems designed for other applications.
Collapse
Affiliation(s)
- Allison Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Lili Chen
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Steffen Sammet
- Department of Radiology, University of Chicago, Chicago, IL, USA
| | - Chris Diederich
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | | - Dennis Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, USA
| | - Chrit Moonen
- Imaging Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jason Stafford
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - David Schlesinger
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | | | - Keith Wear
- U.S. Food and Drug Administration, Silver Spring, MD, USA
| | | | - Keyvan Farahani
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
11
|
de Senneville BD, Coupé P, Ries M, Facq L, Moonen CTW. Deep correction of breathing-related artifacts in real-time MR-thermometry. Comput Med Imaging Graph 2020; 87:101834. [PMID: 33352524 DOI: 10.1016/j.compmedimag.2020.101834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022]
Abstract
Real-time MR-imaging has been clinically adapted for monitoring thermal therapies since it can provide on-the-fly temperature maps simultaneously with anatomical information. However, proton resonance frequency based thermometry of moving targets remains challenging since temperature artifacts are induced by the respiratory as well as physiological motion. If left uncorrected, these artifacts lead to severe errors in temperature estimates and impair therapy guidance. In this study, we evaluated deep learning for on-line correction of motion related errors in abdominal MR-thermometry. For this, a convolutional neural network (CNN) was designed to learn the apparent temperature perturbation from images acquired during a preparative learning stage prior to hyperthermia. The input of the designed CNN is the most recent magnitude image and no surrogate of motion is needed. During the subsequent hyperthermia procedure, the recent magnitude image is used as an input for the CNN-model in order to generate an on-line correction for the current temperature map. The method's artifact suppression performance was evaluated on 12 free breathing volunteers and was found robust and artifact-free in all examined cases. Furthermore, thermometric precision and accuracy was assessed for in vivo ablation using high intensity focused ultrasound. All calculations involved at the different stages of the proposed workflow were designed to be compatible with the clinical time constraints of a therapeutic procedure.
Collapse
Affiliation(s)
- B Denis de Senneville
- University of Bordeaux, IMB, UMR CNRS 5251, Talence, France, Talence Cedex, F-33405, France; INRIA Project Team Monc, Talence, France, Talence Cedex, F-33405, France; Department of Radiotherapy, UMC Utrecht, Heidelberglaan 100, 3508 GA, The Netherlands.
| | - P Coupé
- CNRS, University of Bordeaux, Bordeaux INP, "Laboratoire Bordelais de la Recherche Informatique" (LaBRI), UMR5800, Talence, F-33400, France
| | - M Ries
- Imaging Division, UMC Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, The Netherlands
| | - L Facq
- University of Bordeaux, IMB, UMR CNRS 5251, Talence, France, Talence Cedex, F-33405, France
| | - C T W Moonen
- Imaging Division, UMC Utrecht, Heidelberglaan 100, Utrecht, 3508 GA, The Netherlands
| |
Collapse
|
12
|
Le Ster C, Mauconduit F, Mirkes C, Bottlaender M, Boumezbeur F, Djemai B, Vignaud A, Boulant N. RF heating measurement using MR thermometry and field monitoring: Methodological considerations and first in vivo results. Magn Reson Med 2020; 85:1282-1293. [PMID: 32936510 DOI: 10.1002/mrm.28501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 08/10/2020] [Indexed: 11/11/2022]
Abstract
PURPOSE A MR thermometry (MRT) method with field monitoring is proposed to improve the measurement of small temperature variations induced in brain MRI exams. METHODS MR thermometry experiments were performed at 7 Tesla with concurrent field monitoring and RF heating. Images were reconstructed with nominal k-space trajectories and with first-order spherical harmonics correction. Experiments were performed in vitro with deliberate field disturbances and on an anesthetized macaque in 2 different specific absorption rate regimes, that is, at 50% and 100% of the maximal specific absorption rate level allowed in the International Electrotechnical Commission normal mode of operation. Repeatability was assessed by running a second separate session on the same animal. RESULTS Inclusion of magnetic field fluctuations in the reconstruction improved temperature measurement accuracy in vitro down to 0.02°C. Measurement precision in vivo was on the order of 0.15°C in areas little affected by motion. In the same region, temperature increase reached 0.5 to 0.8°C after 20 min of heating at 100% specific absorption rates and followed a rough factor of 2 with the 50% specific absorption rate scans. A horizontal temperature plateau, as predicted by Pennes bioheat model with thermal constants from the literature and constant blood temperature assumption, was not observed. CONCLUSION Inclusion of field fluctuations in image reconstruction was beneficial for the measurement of small temperature rises encountered in standard brain exams. More work is needed to correct for motion-induced field disturbances to extract reliable temperature maps.
Collapse
Affiliation(s)
- Caroline Le Ster
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Franck Mauconduit
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | | | - Michel Bottlaender
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frederic Joliot, Orsay, France.,UNIACT, Neurospin, CEA, Gif-sur-Yvette, France
| | - Fawzi Boumezbeur
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Boucif Djemai
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Alexandre Vignaud
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Nicolas Boulant
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| |
Collapse
|
13
|
Ferrer CJ, Bartels LW, van der Velden TA, Grüll H, Heijman E, Moonen CTW, Bos C. Field drift correction of proton resonance frequency shift temperature mapping with multichannel fast alternating nonselective free induction decay readouts. Magn Reson Med 2020; 83:962-973. [PMID: 31544289 PMCID: PMC6899537 DOI: 10.1002/mrm.27985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/07/2023]
Abstract
PURPOSE To demonstrate that proton resonance frequency shift MR thermometry (PRFS-MRT) acquisition with nonselective free induction decay (FID), combined with coil sensitivity profiles, allows spatially resolved B0 drift-corrected thermometry. METHODS Phantom experiments were performed at 1.5T and 3T. Acquisition of PRFS-MRT and FID were performed during MR-guided high-intensity focused ultrasound heating. The phase of the FIDs was used to estimate the change in angular frequency δωdrift per coil element. Two correction methods were investigated: (1) using the average δωdrift over all coil elements (0th-order) and (2) using coil sensitivity profiles for spatially resolved correction. Optical probes were used for independent temperature verification. In-vivo feasibility of the methods was evaluated in the leg of 1 healthy volunteer at 1.5T. RESULTS In 30 minutes, B0 drift led to an apparent temperature change of up to -18°C and -98°C at 1.5T and 3T, respectively. In the sonicated area, both corrections had a median error of 0.19°C at 1.5T and -0.54°C at 3T. At 1.5T, the measured median error with respect to the optical probe was -1.28°C with the 0th-order correction and improved to 0.43°C with the spatially resolved correction. In vivo, without correction the spatiotemporal median of the apparent temperature was at -4.3°C and interquartile range (IQR) of 9.31°C. The 0th-order correction had a median of 0.75°C and IQR of 0.96°C. The spatially resolved method had the lowest median at 0.33°C and IQR of 0.80°C. CONCLUSION FID phase information from individual receive coil elements allows spatially resolved B0 drift correction in PRFS-based MRT.
Collapse
Affiliation(s)
- Cyril J. Ferrer
- Imaging DivisionUniversity Medical Center UtrechtUtrechtNetherlands
| | | | | | - Holger Grüll
- Faculty of Medicine and University Hospital of CologneDepartment of Diagnostic and Interventional RadiologyUniversity of CologneCologneGermany
| | - Edwin Heijman
- Faculty of Medicine and University Hospital of CologneDepartment of Diagnostic and Interventional RadiologyUniversity of CologneCologneGermany
- Oncology SolutionsPhilips ResearchAachenGermany
| | | | - Clemens Bos
- Imaging DivisionUniversity Medical Center UtrechtUtrechtNetherlands
| |
Collapse
|
14
|
Fahrenholtz SJ, Guo C, MacLellan CJ, Yung JP, Hwang KP, Layman RR, Stafford RJ, Cressman E. Temperature mapping of exothermic in situ chemistry: imaging of thermoembolization via MR. Int J Hyperthermia 2020; 36:730-738. [PMID: 31362538 DOI: 10.1080/02656736.2019.1635274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose: MR temperature imaging (MRTI) was employed for visualizing the spatiotemporal evolution of the exotherm of thermoembolization, an investigative transarterial treatment for solid tumors. Materials and methods: Five explanted kidneys were injected with thermoembolic solutions, and monitored by MRTI. In three nonselective experiments, 5 ml of 4 mol/l dichloroacetyl chloride (DCA-Cl) solution in a hydrocarbon vehicle was injected via the main renal artery. For two of these three, MRTI temperature data were compared to fiber optic thermal probes. Another two kidneys received selective injections, treating only portions of the kidneys with 1 ml of 2 mol/l DCA-Cl. MRTI data were acquired and compared to changes in pre- and post-injection CT. Specimens were bisected and photographed for gross pathology 24 h post-procedure. Results: MRTI temperature estimates were within ±1 °C of the probes. In experiments without probes, MRTI measured increases of 30 °C. Some regions had not reached peak temperature by the end of the >18 min acquisition. MRTI indicated the initial heating occurred in the renal cortex, gradually spreading more proximally toward the main renal artery. Gross pathology showed the nonselective injection denatured the entire kidney whereas in the selective injections, only the treated territory was coagulated. Conclusion: The spatiotemporal evolution of thermoembolization was visualized for the first time using noninvasive MRTI, providing unique insight into the thermodynamics of thermoembolization. Précis Thermoembolization is being investigated as a novel transarterial treatment. In order to begin to characterize delivery of this novel treatment modality and aid translation from the laboratory to patients, we employ MR temperature imaging to visualize the spatiotemporal distribution of temperature from thermoembolization in ex vivo tissue.
Collapse
Affiliation(s)
- Samuel John Fahrenholtz
- a Department of Imaging Physics, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Chunxiao Guo
- b Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Christopher J MacLellan
- a Department of Imaging Physics, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Joshua P Yung
- a Department of Imaging Physics, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Ken-Pin Hwang
- a Department of Imaging Physics, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Rick R Layman
- a Department of Imaging Physics, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - R Jason Stafford
- a Department of Imaging Physics, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Erik Cressman
- b Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
15
|
Kokuryo D, Kumamoto E, Kuroda K. Recent technological advancements in thermometry. Adv Drug Deliv Rev 2020; 163-164:19-39. [PMID: 33217482 DOI: 10.1016/j.addr.2020.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/25/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Thermometry is the key factor for achieving successful thermal therapy. Although invasive thermometry with a probe has been used for more than four decades, this method can only detect the local temperature within the probing volume. Noninvasive temperature imaging using a tomographic technique is ideal for monitoring hot-spot formation in the human body. Among various techniques, such as X-ray computed tomography, microwave tomography, echo sonography, and magnetic resonance (MR) imaging, the proton resonance frequency shift method of MR thermometry is the only method currently available for clinical practice because its temperature sensitivity is consistent in most aqueous tissues and can be easily observed using common clinical scanners. New techniques are being proposed to improve the robustness of this method against tissue motion. MR techniques for fat thermometry were also developed based on relaxation times. One of the latest non-MR techniques to attract attention is photoacoustic imaging.
Collapse
Affiliation(s)
- Daisuke Kokuryo
- Graduate School of System Informatics, Kobe University, Japan
| | - Etsuko Kumamoto
- Information Science and Technology Center, Kobe University, Japan
| | - Kagayaki Kuroda
- School of Information Science and Technology, Tokai University, Japan; Center for Frontier Medical Engineering, Chiba University, Japan.
| |
Collapse
|
16
|
Chen Q, Li Y, Jiang R, Zou C, Tie C, Wen J, Yang X, Zhang X, Liu X, Zheng H. A flexible 9-channel coil array for fast 3D MR thermometry in MR-guided high-intensity focused ultrasound (HIFU) studies on rabbits at 3 T. Magn Reson Imaging 2019; 65:37-44. [PMID: 31655140 DOI: 10.1016/j.mri.2019.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/12/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023]
Abstract
Signal-to-noise ratio (SNR) is a critical factor in MR-guided high-intensity focused ultrasound (HIFU) for local heating, which can affect the accuracy of temperature measurement. In order to achieve high SNR and higher temporal resolution, dedicated coil arrays for MR-guided HIFU applications need to be developed. In this work, a flexible 9-channel coil array was designed, and constructed at 3 T to achieve fast temperature mapping for MR-guided HIFU applications on rabbit leg muscle. Coil performance was evaluated for SNR, and parallel imaging capability by in-vivo studies. Compared to a commercially available 4-channel flexible coil array, the dedicated 9-channel coil array has a much higher SNR, with at least a 2.6-fold increment in the region of interest (ROI). The inverse g-factors maps demonstrated that the dedicated 9-channel coil array has a better parallel imaging capability than the Flex Small 4. With accelerations normal to the array direction, both coil arrays showed much higher g-factors than those of accelerations along the array direction. Room temperature mapping was implemented to evaluate the temperature measurement accuracy by in-vivo experiments. The precisions of the 9-channel coil, ±0.18 °C for un-acceleration and ± 0.56 °C for acceleration at R = 2 × 2, both improved by an order of magnitude than these of the 4-channel coil, which were ± 1.45 °C for un-acceleration and ± 3.52 °C for acceleration at R = 2 × 2. In the fast temperature imaging on the rabbit leg muscle with heating, a high temporal resolution of 3.3 s with a temperature measurement precision of ±0.56 °C has been achieved using the dedicated 9-channel coil. This study demonstrates that the dedicated 9-channel coil array for rabbit leg imaging provides improved performance in SNR, parallel imaging capability, and the accuracy of temperature measurement compared to a commercial 4-channel coil, and it also achieves fast temperature mapping in practical MR-guided HIFU applications.
Collapse
Affiliation(s)
- Qiaoyan Chen
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Ye Li
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Rui Jiang
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Chao Zou
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Changjun Tie
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Jianhong Wen
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Xing Yang
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Xiaoliang Zhang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, United States; UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, United States
| | - Xin Liu
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China
| | - Hairong Zheng
- Lauterbur Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Shenzhen Key Laboratory for MRI, Shenzhen, China.
| |
Collapse
|
17
|
Odéen H, Parker DL. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:34-61. [PMID: 30803693 PMCID: PMC6662927 DOI: 10.1016/j.pnmrs.2019.01.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
Most parameters that influence the magnetic resonance imaging (MRI) signal experience a temperature dependence. The fact that MRI can be used for non-invasive measurements of temperature and temperature change deep inside the human body has been known for over 30 years. Today, MR temperature imaging is widely used to monitor and evaluate thermal therapies such as radio frequency, microwave, laser, and focused ultrasound therapy. In this paper we cover the physical principles underlying the biological applications of MR temperature imaging and discuss practical considerations and remaining challenges. For biological tissue, the MR signal of interest comes mostly from hydrogen protons of water molecules but also from protons in, e.g., adipose tissue and various metabolites. Most of the discussed methods, such as those using the proton resonance frequency (PRF) shift, T1, T2, and diffusion only measure temperature change, but measurements of absolute temperatures are also possible using spectroscopic imaging methods (taking advantage of various metabolite signals as internal references) or various types of contrast agents. Currently, the PRF method is the most used clinically due to good sensitivity, excellent linearity with temperature, and because it is largely independent of tissue type. Because the PRF method does not work in adipose tissues, T1- and T2-based methods have recently gained interest for monitoring temperature change in areas with high fat content such as the breast and abdomen. Absolute temperature measurement methods using spectroscopic imaging and contrast agents often offer too low spatial and temporal resolution for accurate monitoring of ablative thermal procedures, but have shown great promise in monitoring the slower and usually less spatially localized temperature change observed during hyperthermia procedures. Much of the current research effort for ablative procedures is aimed at providing faster measurements, larger field-of-view coverage, simultaneous monitoring in aqueous and adipose tissues, and more motion-insensitive acquisitions for better precision measurements in organs such as the heart, liver, and kidneys. For hyperthermia applications, larger coverage, motion insensitivity, and simultaneous aqueous and adipose monitoring are also important, but great effort is also aimed at solving the problem of long-term field drift which gets interpreted as temperature change when using the PRF method.
Collapse
Affiliation(s)
- Henrik Odéen
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| | - Dennis L Parker
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| |
Collapse
|
18
|
Lorton O, Guillemin PC, Mori N, Crowe LA, Boudabbous S, Terraz S, Becker CD, Cattin P, Salomir R, Gui L. Self-Scanned HIFU Ablation of Moving Tissue Using Real-Time Hybrid US-MR Imaging. IEEE Trans Biomed Eng 2018; 66:2182-2191. [PMID: 30530308 DOI: 10.1109/tbme.2018.2885233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE High intensity focused ultrasound (HIFU) treatment in the abdominal cavity is challenging due to the respiratory motion. In the self-scanning HIFU ablation method, the focal spot is kept static and the heating pattern is obtained through natural tissue motion. This paper describes a novel approach for modulating the HIFU power during self-scanning in order to compensate for the effect of tissue motion on thermal buildup. METHODS The therapy, using hybrid ultrasound (US)/magnetic resonance (MR) imaging, consists of detecting and tracking speckle on US images in order to predict the next tissue position, and modulating the HIFU power according to the tissue speed in order to obtain a rectilinear pattern of uniform temperature elevation. Experiments were conducted on ex vivo tissue subjected to a breathing-like motion generated by an MR-compatible robot and sonicated by a phased array HIFU transducer. RESULTS US and MR data were free from interferences. For both periodic and non-periodic motion, MR temperature maps showed a substantial improvement in the uniformity of the temperature elevation by using acoustic power modulation. CONCLUSION The presented method does not require a learning stage and enables a duty cycle close to 100%, higher average acoustic intensity and avoidance of side lobe effects versus performing HIFU beam steering to compensate tissue motion. SIGNIFICANCE To our knowledge, the proposed method provides the first experimental validation of the self-scanning HIFU ablation paradigm via a real-time hybrid MRI/US imaging, opening the path toward self-scanning in vivo therapies.
Collapse
|
19
|
Tan J, Mougenot C, Pichardo S, Drake JM, Waspe AC. Motion compensation using principal component analysis and projection onto dipole fields for abdominal magnetic resonance thermometry. Magn Reson Med 2018; 81:195-207. [PMID: 30058167 DOI: 10.1002/mrm.27368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 01/18/2023]
Abstract
PURPOSE High intensity focused ultrasound (HIFU) has the potential to locally and non-invasively treat cancer with fewer side effects than alternative therapies. However, motion and tissue heterogeneity in the abdomen can compromise the HIFU focus and confound current thermometry methods. METHODS The proposed thermometry method combines principal component analysis (PCA), as a multi-baseline technique, and projection onto dipole fields (PDF), as a near-referenceless method. PCA forgoes tracking tools by projecting incoming images onto a subspace spanning the motion history. PDF is subsequently used to synthesize the naturally feasible components of the residual phase using a magnetic dipole model. This leaves only the phase shifts that are induced by HIFU. RESULTS With in vivo measurements, in porcine and human kidneys, the mean pixel-wise temperature SD was 0.86 ± 0.41°C in selected regions of interest (ROIs) across all data sets, without any user-interaction or supplementary tracking tools. This is an improvement over a benchmark hybrid method, which scored 1.36 ± 1.20°C on the same data. Uncorrected subtraction of the data yielded a score of 3.02 ± 2.87°C. CONCLUSION The PCA-PDF hybrid method achieves superior artifact correction by exploiting the motion history and intrinsic magnetic susceptibility of the underlying tissue.
Collapse
Affiliation(s)
- Jeremy Tan
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Samuel Pichardo
- Radiology and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - James M Drake
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam C Waspe
- Centre for Image Guided Innovation and Therapeutic Intervention, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Abstract
The unique ability of magnetic resonance imaging to measure temperature noninvasively, in vivo, makes it an attractive tool for monitoring interventional procedures, such as radiofrequency or microwave ablation in real-time. The most frequently used approach for magnetic resonance-based temperature measurement is proton resonance frequency (PRF) thermometry. Although it has many advantages, including tissue-independence and real-time capability, the main drawback is its motion sensitivity. This is likely the reason PRF thermometry in moving organs, such as the liver, is not commonly used in the clinical arena. In recent years, however, several developments suggest that motion-corrected thermometry in the liver is achievable. The present article summarizes the diverse attempts to correct thermometry in the liver. Therefore, the physical principle of PRF is introduced, with additional references for necrosis zone estimation and how to deal with fat phase modulation, and main magnetic field drifts. The primary categories of motion correction are presented, including general methods for motion compensation and library-based approaches, and referenceless thermometry and hybrid methods. Practical validation of the described methods in larger patient groups will be necessary to establish accurate motion-corrected thermometry in the clinical arena, with the goal of complete liver tumor ablation.
Collapse
|
21
|
Peng Y, Zou C, Qiao Y, Tie C, Wan Q, Jiang R, Cheng C, Liang D, Zheng H, Li F, Liu X. Fast MR thermometry using an echo-shifted sequence with simultaneous multi-slice imaging. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2018; 31:771-779. [PMID: 29948236 DOI: 10.1007/s10334-018-0692-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/15/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Real-time monitoring is important for the safety and effectiveness of high-intensity focused ultrasound (HIFU) therapy. Magnetic resonance imaging is the preferred imaging modality for HIFU monitoring, with its unique capability of temperature imaging. For real-time temperature imaging, higher temporal resolution and larger spatial coverage are needed. In this study, a sequence based on the echo-shifted RF-spoiled gradient echo (GRE) with simultaneous multi-slice (SMS) imaging was designed for fast temperature imaging. METHODS A phantom experiment was conducted to evaluate the accuracy of the echo-shifted sequence using a fluorescent fiber thermometer as reference. The temperature uncertainty of the echo-shifted sequence was compared with the traditional GRE sequence at room temperature through the ex vivo porcine muscle. Finally, the ex vivo porcine liver tissue experiment using HIFU heating was performed to demonstrate that the spatial coverage was increased without decreasing temporal resolution. RESULTS The echo-shifted sequence had a better temperature uncertainty performance compared with the traditional GRE sequence with the same temporal resolution. The ex vivo heating experiment confirmed that by combining the SMS technique and echo-shifted sequence, the spatial coverage was increased without decreasing the temporal resolution while maintaining high temperature measurement precision. CONCLUSION The proposed technique was validated as an effective real-time method for monitoring HIFU therapy.
Collapse
Affiliation(s)
- Yuhong Peng
- State Key Laboratory of Ultrasound Engineering in Medicine, Chongqing Key Laboratory of Biomedical Engineering, Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, 153 Box, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China.,Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China
| | - Chao Zou
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Yangzi Qiao
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Changjun Tie
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Qian Wan
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Rui Jiang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Chuanli Cheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Dong Liang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Faqi Li
- State Key Laboratory of Ultrasound Engineering in Medicine, Chongqing Key Laboratory of Biomedical Engineering, Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Medical University, 153 Box, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China. .,Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China.
| | - Xin Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Blvd, Nanshan District, Shenzhen, 518055, Guangdong, China. .,Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine, Chongqing, 400016, China.
| |
Collapse
|
22
|
Elhelf IS, Albahar H, Shah U, Oto A, Cressman E, Almekkawy M. High intensity focused ultrasound: The fundamentals, clinical applications and research trends. Diagn Interv Imaging 2018; 99:349-359. [DOI: 10.1016/j.diii.2018.03.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
|
23
|
Karakitsios I, Mihcin S, Melzer A. Reference-less MR thermometry on pre-clinical thiel human cadaver for liver surgery with MRgFUS. MINIM INVASIV THER 2018; 28:15-21. [PMID: 29764258 DOI: 10.1080/13645706.2018.1470985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Reference-less MR thermometry can be a promising technique for temperature mapping during liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS), as it is more robust to breathing motion than Proton Resonance Frequency MR thermometry. However, there is a lack of a pre-clinical model for repeatable testing of reference-less thermometry. The purpose of this work was to verify the explanted Thiel embalmed human liver and whole Thiel embalmed human cadaver for application of a custom made reference-less thermometry algorithm during MRgFUS sonication. MATERIAL AND METHODS Phase maps were generated during sonication as an input to the algorithm. A square Region-of-Interest (ROI) was designed around the heated area. The ROI was interpolated using a two-dimensional polynomial to the surrounding phase map to calculate the background phase. RESULTS Using the phase information from the images, the temperature rise was measured. Validation of the methodology showed accordance of temperatures with actual temperatures. CONCLUSIONS The explanted liver and the whole cadaver constitute a promising and feasible model to study reference-less techniques for thermometry during MRgFUS, before clinical trials.
Collapse
Affiliation(s)
- Ioannis Karakitsios
- a Institute for Medical Science and Technology , University of Dundee , Dundee , Scotland , UK
| | - Senay Mihcin
- a Institute for Medical Science and Technology , University of Dundee , Dundee , Scotland , UK
| | - Andreas Melzer
- a Institute for Medical Science and Technology , University of Dundee , Dundee , Scotland , UK
| |
Collapse
|
24
|
Kuroda K. MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments. J Magn Reson Imaging 2018; 47:316-331. [PMID: 28580706 DOI: 10.1002/jmri.25770] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/02/2017] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED To make full use of the ability of magnetic resonance (MR) to guide high-intensity focused ultrasound (HIFU) treatment, effort has been made to improve techniques for thermometry, motion tracking, and sound beam visualization. For monitoring rapid temperature elevation with proton resonance frequency (PRF) shift, data acquisition and processing can be accelerated with parallel imaging and/or sparse sampling in conjunction with appropriate signal processing methods. Thermometry should be robust against tissue motion, motion-induced magnetic field variation, and susceptibility change. Thus, multibaseline, referenceless, or hybrid techniques have become important. In cases with adipose or bony tissues, for which PRF shift cannot be used, thermometry with relaxation times or signal intensity may be utilized. Motion tracking is crucial not only for thermometry but also for targeting the focus of an ultrasound in moving organs such as the liver, kidney, or heart. Various techniques for motion tracking, such as those based on an anatomical image atlas with optical-flow displacement detection, a navigator echo to seize the diaphragm position, and/or rapid imaging to track vessel positions, have been proposed. Techniques for avoiding the ribcage and near-field heating have also been examined. MR acoustic radiation force imaging (MR-ARFI) is an alternative to thermometry that can identify the location and shape of the focal spot and sound beam path. This technique could be useful for treating heterogeneous tissue regions or performing transcranial therapy. All of these developments, which will be discussed further in this review, expand the applicability of HIFU treatments to a variety of clinical targets while maintaining safety and precision. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 4 J. Magn. Reson. Imaging 2018;47:316-331.
Collapse
Affiliation(s)
- Kagayaki Kuroda
- Department of Human and Information Science, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
- Center for Frontier Medical Engineering, Chiba University, Inage, Chiba, Japan
| |
Collapse
|
25
|
Celicanin Z, Manasseh G, Petrusca L, Scheffler K, Auboiroux V, Crowe LA, Hyacinthe JN, Natsuaki Y, Santini F, Becker CD, Terraz S, Bieri O, Salomir R. Hybrid ultrasound-MR guided HIFU treatment method with 3D motion compensation. Magn Reson Med 2017; 79:2511-2523. [PMID: 28944490 DOI: 10.1002/mrm.26897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 01/16/2023]
Abstract
PURPOSE Treatments using high-intensity focused ultrasound (HIFU) in the abdominal region remain challenging as a result of respiratory organ motion. A novel method is described here to achieve 3D motion-compensated ultrasound (US) MR-guided HIFU therapy using simultaneous ultrasound and MRI. METHODS A truly hybrid US-MR-guided HIFU method was used to plan and control the treatment. Two-dimensional ultrasound was used in real time to enable tracking of the motion in the coronal plane, whereas an MR pencil-beam navigator was used to detect anterior-posterior motion. Prospective motion compensation of proton resonance frequency shift (PRFS) thermometry and HIFU electronic beam steering were achieved. RESULTS The 3D prospective motion-corrected PRFS temperature maps showed reduced intrascan ghosting artifacts, a high signal-to-noise ratio, and low geometric distortion. The k-space data yielded a consistent temperature-dependent PRFS effect, matching the gold standard thermometry within approximately 1°C. The maximum in-plane temperature elevation ex vivo was improved by a factor of 2. Baseline thermometry acquired in volunteers indicated reduction of residual motion, together with an accuracy/precision of near-harmonic referenceless PRFS thermometry on the order of 0.5/1.0°C. CONCLUSIONS Hybrid US-MR-guided HIFU ablation with 3D motion compensation was demonstrated ex vivo together with a stable referenceless PRFS thermometry baseline in healthy volunteer liver acquisitions. Magn Reson Med 79:2511-2523, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Zarko Celicanin
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Gibran Manasseh
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lorena Petrusca
- Hepatobiliary and Pancreatic Interventional Radiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Klaus Scheffler
- MRC Department, MPI for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Vincent Auboiroux
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Clinatec/LETI/CEA, 38054, Grenoble, France
| | - Lindsey A Crowe
- Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Jean-Noel Hyacinthe
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,School of Health Sciences, HES-SO, University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Christoph D Becker
- Hepatobiliary and Pancreatic Interventional Radiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Sylvain Terraz
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Oliver Bieri
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Rares Salomir
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
de Bever JT, Odéen H, Hofstetter LW, Parker DL. Simultaneous MR thermometry and acoustic radiation force imaging using interleaved acquisition. Magn Reson Med 2017; 79:1515-1524. [PMID: 28795419 DOI: 10.1002/mrm.26827] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/15/2017] [Accepted: 06/15/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE A novel and practical method for simultaneously performing MR acoustic radiation force imaging (ARFI) and proton resonance frequency (PRF)-shift thermometry has been developed and tested. This could be an important tool for evaluating the success of MR-guided focused ultrasound procedures for which MR-thermometry measures temperature and thermal dose and MR-ARFI detects changes in tissue mechanical properties. METHODS MR imaging was performed using a gradient recalled echo segmented echo-planar imaging pulse sequence with bipolar motion encoding gradients (MEG). Images with ultrasound pulses (ON) and without ultrasound pulses (OFF) during the MEG were interleaved at the repetition time (TR) level. ARFI displacements were calculated by complex subtraction of ON-OFF images, and PRF temperature maps were calculated by baseline subtraction. Evaluations in tissue-mimicking phantoms and ex vivo porcine brain tissue were performed. Constrained reconstruction improved the temporal resolution of dynamic measurements. RESULTS Simultaneous maps of displacement and temperature were acquired in 2D and 3D while keeping tissue heating < 1°C. Accuracy of the temperature maps was comparable to the standard PRF sequence. Using constrained reconstruction and subsampled k-space (R = 4.33), 3D simultaneous temperature and displacement maps can be acquired every 4.7 s. CONCLUSION This new sequence acquires simultaneous temperature and displacement maps with minimal tissue heating, and can be applied dynamically for monitoring tissue mechanical properties during ablation procedures. Magn Reson Med 79:1515-1524, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Joshua T de Bever
- School of Computing, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Department of Radiology, Stanford University, Stanford, California, USA
| | - Henrik Odéen
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Lorne W Hofstetter
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
27
|
Ferrer CJ, Bartels LW, van Stralen M, Denis de Senneville B, Moonen CTW, Bos C. Fluid filling of the digestive tract for improved proton resonance frequency shift-based MR thermometry in the pancreas. J Magn Reson Imaging 2017. [PMID: 28646608 DOI: 10.1002/jmri.25800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To demonstrate that fluid filling of the digestive tract improves the performance of respiratory motion-compensated proton resonance frequency shift (PRFS)-based magnetic resonance (MR) thermometry in the pancreas. MATERIALS AND METHODS In seven volunteers (without heating), we evaluated PRFS thermometry in the pancreas with and without filling of the surrounding digestive tract. All data acquisition was performed at 1.5T, then all datasets were analyzed and compared with three different PRFS respiratory motion-compensated thermometry methods: gating, multibaseline, and referenceless. The temperature precision of the different methods was evaluated by assessing temperature standard deviation over time, while a simulation experiment was used to study the accuracy of the methods. RESULTS Without fluid intake, errors in temperature precision in the pancreas up to 10°C were observed for all evaluated methods. After liquid intake, temperature precision improved to median values between 1.8 and 2.9°C. The simulations showed that gating had the lowest accuracy, with errors up to 7°C. Multibaseline and referenceless thermometry performed better, with a median error in the pancreas between -3 and +3°C after fluid intake, for all volunteers. CONCLUSION Preparation of the digestive tract near the pancreas by filling it with fluid improved MR thermometry precision and accuracy for all common respiratory motion-compensated methods evaluated. These improvements are attributed to reducing field inhomogeneity in the pancreas. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:692-701.
Collapse
Affiliation(s)
- Cyril J Ferrer
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lambertus W Bartels
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marijn van Stralen
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Chrit T W Moonen
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Clemens Bos
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
28
|
Yung JP, Fuentes D, MacLellan CJ, Maier F, Liapis Y, Hazle JD, Stafford RJ. Referenceless magnetic resonance temperature imaging using Gaussian process modeling. Med Phys 2017; 44:3545-3555. [PMID: 28317125 DOI: 10.1002/mp.12231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 12/15/2016] [Accepted: 01/09/2017] [Indexed: 11/12/2022] Open
Abstract
PURPOSE During magnetic resonance (MR)-guided thermal therapies, water proton resonance frequency shift (PRFS)-based MR temperature imaging can quantitatively monitor tissue temperature changes. It is widely known that the PRFS technique is easily perturbed by tissue motion, tissue susceptibility changes, magnetic field drift, and modality-dependent applicator-induced artifacts. Here, a referenceless Gaussian process modeling (GPM)-based estimation of the PRFS is investigated as a methodology to mitigate unwanted background field changes. The GPM offers a complementary trade-off between data fitting and smoothing and allows prior information to be used. The end result being the GPM provides a full probabilistic prediction and an estimate of the uncertainty. METHODS GPM was employed to estimate the covariance between the spatial position and MR phase measurements. The mean and variance provided by the statistical model extrapolated background phase values from nonheated neighboring voxels used to train the model. MR phase predictions in the heating ROI are computed using the spatial coordinates as the test input. The method is demonstrated in ex vivo rabbit liver tissue during focused ultrasound heating with manually introduced perturbations (n = 6) and in vivo during laser-induced interstitial thermal therapy to treat the human brain (n = 1) and liver (n = 1). RESULTS Temperature maps estimated using the GPM referenceless method demonstrated a RMS error of <0.8°C with artifact-induced reference-based MR thermometry during ex vivo heating using focused ultrasound. Nonheated surrounding areas were <0.5°C from the artifact-free MR measurements. The GPM referenceless MR temperature values and thermally damaged regions were within the 95% confidence interval during in vivo laser ablations. CONCLUSIONS A new approach to estimation for referenceless PRFS temperature imaging is introduced that allows for an accurate probabilistic extrapolation of the background phase. The technique demonstrated reliable temperature estimates in the presence of the background phase changes and was demonstrated useful in the in vivo brain and liver ablation scenarios presented.
Collapse
Affiliation(s)
- Joshua P Yung
- Unit 1902, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave., Houston, TX, 77030, USA
| | - David Fuentes
- Unit 1902, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave., Houston, TX, 77030, USA
| | - Christopher J MacLellan
- Unit 1902, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave., Houston, TX, 77030, USA
| | - Florian Maier
- Unit 1902, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Yannis Liapis
- Unit 1902, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - John D Hazle
- Unit 1902, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave., Houston, TX, 77030, USA
| | - R Jason Stafford
- Unit 1902, Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave., Houston, TX, 77030, USA
| |
Collapse
|
29
|
Madankan R, Stefan W, Fahrenholtz S, MacLellan C, Hazle J, Stafford RJ, Weinberg JS, Rao G, Fuentes D. Accelerated magnetic resonance thermometry in the presence of uncertainties. Phys Med Biol 2017; 62:214-245. [PMID: 27991449 PMCID: PMC11648572 DOI: 10.1088/1361-6560/62/1/214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A model-based information theoretic approach is presented to perform the task of magnetic resonance (MR) thermal image reconstruction from a limited number of observed samples on k-space. The key idea of the proposed approach is to optimally detect samples of k-space that are information-rich with respect to a model of the thermal data acquisition. These highly informative k-space samples can then be used to refine the mathematical model and efficiently reconstruct the image. The information theoretic reconstruction was demonstrated retrospectively in data acquired during MR-guided laser induced thermal therapy (MRgLITT) procedures. The approach demonstrates that locations with high-information content with respect to a model-based reconstruction of MR thermometry may be quantitatively identified. These information-rich k-space locations are demonstrated to be useful as a guide for k-space undersampling techniques. The effect of interactively increasing the predicted number of data points used in the subsampled model-based reconstruction was quantified using the L2-norm of the distance between the subsampled and fully sampled reconstruction. Performance of the proposed approach was also compared with uniform rectilinear subsampling and variable-density Poisson disk subsampling techniques. The proposed subsampling scheme resulted in accurate reconstructions using a small fraction of k-space points, suggesting that the reconstruction technique may be useful in improving the efficiency of thermometry data temporal resolution.
Collapse
Affiliation(s)
- R. Madankan
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - W. Stefan
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - S. Fahrenholtz
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - C. MacLellan
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J. Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - R. J. Stafford
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J. S. Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - G. Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - D. Fuentes
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
30
|
Seo J, Koizumi N, Mitsuishi M, Sugita N. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound. Int J Med Robot 2016; 13. [PMID: 27995752 PMCID: PMC5724706 DOI: 10.1002/rcs.1793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 01/16/2023]
Abstract
Background Although high intensity focused ultrasound (HIFU) is a promising technology for tumor treatment, a moving abdominal target is still a challenge in current HIFU systems. In particular, respiratory‐induced organ motion can reduce the treatment efficiency and negatively influence the treatment result. In this research, we present: (1) a methodology for integration of ultrasound (US) image based visual servoing in a HIFU system; and (2) the experimental results obtained using the developed system. Materials and methods In the visual servoing system, target motion is monitored by biplane US imaging and tracked in real time (40 Hz) by registration with a preoperative 3D model. The distance between the target and the current HIFU focal position is calculated in every US frame and a three‐axis robot physically compensates for differences. Because simultaneous HIFU irradiation disturbs US target imaging, a sophisticated interlacing strategy was constructed. Results In the experiments, respiratory‐induced organ motion was simulated in a water tank with a linear actuator and kidney‐shaped phantom model. Motion compensation with HIFU irradiation was applied to the moving phantom model. Based on the experimental results, visual servoing exhibited a motion compensation accuracy of 1.7 mm (RMS) on average. Moreover, the integrated system could make a spherical HIFU‐ablated lesion in the desired position of the respiratory‐moving phantom model. Conclusions We have demonstrated the feasibility of our US image based visual servoing technique in a HIFU system for moving target treatment.
Collapse
Affiliation(s)
- Joonho Seo
- Korea Institute of Machinery and Materials, Daegu, South Korea
| | | | | | | |
Collapse
|
31
|
Zou C, Tie C, Pan M, Wan Q, Liang C, Liu X, Chung YC. Referenceless MR thermometry—a comparison of five methods. Phys Med Biol 2016; 62:1-16. [DOI: 10.1088/1361-6560/62/1/1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Poorman ME, Chaplin VL, Wilkens K, Dockery MD, Giorgio TD, Grissom WA, Caskey CF. Open-source, small-animal magnetic resonance-guided focused ultrasound system. J Ther Ultrasound 2016; 4:22. [PMID: 27597889 PMCID: PMC5011339 DOI: 10.1186/s40349-016-0066-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/16/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND MR-guided focused ultrasound or high-intensity focused ultrasound (MRgFUS/MRgHIFU) is a non-invasive therapeutic modality with many potential applications in areas such as cancer therapy, drug delivery, and blood-brain barrier opening. However, the large financial costs involved in developing preclinical MRgFUS systems represent a barrier to research groups interested in developing new techniques and applications. We aim to mitigate these challenges by detailing a validated, open-source preclinical MRgFUS system capable of delivering thermal and mechanical FUS in a quantifiable and repeatable manner under real-time MRI guidance. METHODS A hardware and software package was developed that includes closed-loop feedback controlled thermometry code and CAD drawings for a therapy table designed for a preclinical MRI scanner. For thermal treatments, the modular software uses a proportional integral derivative controller to maintain a precise focal temperature rise in the target given input from MR phase images obtained concurrently. The software computes the required voltage output and transmits it to a FUS transducer that is embedded in the delivery table within the magnet bore. The delivery table holds the FUS transducer, a small animal and its monitoring equipment, and a transmit/receive RF coil. The transducer is coupled to the animal via a water bath and is translatable in two dimensions from outside the magnet. The transducer is driven by a waveform generator and amplifier controlled by real-time software in Matlab. MR acoustic radiation force imaging is also implemented to confirm the position of the focus for mechanical and thermal treatments. RESULTS The system was validated in tissue-mimicking phantoms and in vivo during murine tumor hyperthermia treatments. Sonications were successfully controlled over a range of temperatures and thermal doses for up to 20 min with minimal temperature overshoot. MR thermometry was validated with an optical temperature probe, and focus visualization was achieved with acoustic radiation force imaging. CONCLUSIONS We developed an MRgFUS platform for small-animal treatments that robustly delivers accurate, precise, and controllable sonications over extended time periods. This system is an open source and could increase the availability of low-cost small-animal systems to interdisciplinary researchers seeking to develop new MRgFUS applications and technology.
Collapse
Affiliation(s)
- Megan E. Poorman
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
| | - Vandiver L. Chaplin
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
- Chemical and Physical Biology Program, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
| | - Ken Wilkens
- Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
| | - Mary D. Dockery
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
| | - Todd D. Giorgio
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
| | - William A. Grissom
- Department of Biomedical Engineering, Vanderbilt University, PMB 351631 2301 Vanderbilt Place, Nashville, 37235 TN USA
- Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
| | - Charles F. Caskey
- Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
- Department of Radiology, Vanderbilt University, 1161 21st Avenue South, Nashville, 37232 TN USA
| |
Collapse
|
33
|
Ektate K, Kapoor A, Maples D, Tuysuzoglu A, VanOsdol J, Ramasami S, Ranjan A. Motion Compensated Ultrasound Imaging Allows Thermometry and Image Guided Drug Delivery Monitoring from Echogenic Liposomes. Am J Cancer Res 2016; 6:1963-74. [PMID: 27570563 PMCID: PMC4997249 DOI: 10.7150/thno.15922] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022] Open
Abstract
Ultrasound imaging is widely used both for cancer diagnosis and to assess therapeutic success, but due to its weak tissue contrast and the short half-life of commercially available contrast agents, it is currently not practical for assessing motion compensated contrast-enhanced tumor imaging, or for determining time-resolved absolute tumor temperature while simultaneously reporting on drug delivery. The objectives of this study were to: 1) develop echogenic heat sensitive liposomes (E-LTSL) and non-thermosensitive liposomes (E-NTSL) to enhance half-life of contrast agents, and 2) measure motion compensated temperature induced state changes in acoustic impedance and Laplace pressure of liposomes to monitor temperature and doxorubicin (Dox) delivery to tumors. LTSL and NTSL containing Dox were co-loaded with an US contrast agent (perfluoropentane, PFP) using a one-step sonoporation method to create E-LTSL and E-NTSL. To determine temperature induced intensity variation with respect to the state change of E-LTSL and E-NTSL in mouse colon tumors, cine acquisition of 20 frames/second for about 20 min (or until wash out) at temperatures of 42°C, 39.5°C, and 37°C was performed. A rigid rotation and translation was applied to each of the "key frames" to adjust for any gross motion that arose due to motion of the animal or the transducer. To evaluate the correlation between ultrasound (US) intensity variation and Dox release at various temperatures, treatment (5 mg Dox/kg) was administered via a tail vein once tumors reached a size of 300-400 mm(3), and mean intensity within regions of interest (ROIs) defined for each sample was computed over the collected frames and normalized in the range of [0,1]. When the motion compensation technique was applied, a > 2-fold drop in standard deviation in mean image intensity of tumor was observed, enabling a more robust estimation of temporal variations in tumor temperatures for 15-20 min. due to state change of E-LTSL and E-NTSL. Consequently, a marked increase in peak intensity at 42°C compared to 37°C that corresponded with enhanced Dox delivery from E-LTSL in tumors was obtained. Our results suggest that echogenic liposomes provide a predictable change in tumor vascular contrast with temperature, and this property could be applicable to nanomonitoring of drug delivery in real time.
Collapse
|
34
|
Lesser TG, Schubert H, Güllmar D, Reichenbach JR, Wolfram F. One-lung flooding reduces the ipsilateral diaphragm motion during mechanical ventilation. Eur J Med Res 2016; 21:9. [PMID: 26957315 PMCID: PMC4784448 DOI: 10.1186/s40001-016-0205-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/26/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Diaphragm motion during spontaneous or mechanical respiration hinders image-guided percutaneous interventions of tumours in lung and upper abdomen. Motion-tracking methods can be applied but increase procedure complexity and procedure time. One-lung flooding (OLF) generates a suitable acoustic pathway to lung tumours and likely suppress diaphragm motion. The aim of this study was to quantify the effect of OLF on ipsilateral diaphragm motion during contralateral one-lung ventilation. METHODS To measure the diaphragm motion, M-mode ultrasonography of the right hemidiaphragm was performed during spontaneous breathing and mechanical ventilation, as well as after right-side lung flooding, in three pigs. Diaphragm motion was analysed using magnetic resonance images during left-side lung flooding and mechanical ventilation, in four pigs. RESULTS Double-lung ventilation increased the diaphragm movement in comparison with spontaneous breathing (17.8 ± 4.4 vs. 12.2 ± 3.4 mm, p = 0.014). Diaphragm movement on the flooded side during contralateral one-lung ventilation was significantly reduced compared to that during double-lung ventilation (3.9 ± 1.0 vs. 17.8 ± 4.4 mm, p = 0.041). By analysing the magnetic resonance images, the hemidiaphragm on the flooded side showed an average displacement of 4.2 mm, a maximum displacement of 15 mm close to the ventilated lung and no displacement at the lateral side. CONCLUSION OLF leads to a drastic reduction of diaphragm motion on the ipsilateral side which implies that targeting and motion compensation algorithms for interventions like high-intensity focused ultrasound ablation of intrapulmonary and hepatic lesions might not be required.
Collapse
Affiliation(s)
- Thomas Günther Lesser
- Department of Thoracic and Vascular Surgery, SRH Wald-Klinikum Gera, Teaching Hospital of Friedrich-Schiller University of Jena, Strasse des Friedens 122, 07548, Gera, Germany.
| | - Harald Schubert
- Institute of Animal Experimentation and Animal Welfare, Jena University Hospital, Friedrich-Schiller University, Jena, Germany.
| | - Daniel Güllmar
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany.
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany.
| | - Frank Wolfram
- Department of Thoracic and Vascular Surgery, SRH Wald-Klinikum Gera, Teaching Hospital of Friedrich-Schiller University of Jena, Strasse des Friedens 122, 07548, Gera, Germany.
| |
Collapse
|
35
|
Tatebe K, Ramsay E, Mougenot C, Kazem M, Peikari H, Bronskill M, Chopra R. Influence of geometric and material properties on artifacts generated by interventional MRI devices: Relevance to PRF-shift thermometry. Med Phys 2016; 43:241. [PMID: 26745917 DOI: 10.1118/1.4938099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Magnetic resonance imaging (MRI) is capable of providing valuable real-time feedback during medical procedures, partly due to the excellent soft-tissue contrast available. Several technical hurdles still exist to seamless integration of medical devices with MRI due to incompatibility of most conventional devices with this imaging modality. In this study, the effect of local perturbations in the magnetic field caused by the magnetization of medical devices was examined using finite element analysis modeling. As an example, the influence of the geometric and material characteristics of a transurethral high-intensity ultrasound applicator on temperature measurements using proton resonance frequency (PRF)-shift thermometry was investigated. METHODS The effect of local perturbations in the magnetic field, caused by the magnetization of medical device components, was examined using finite element analysis modeling. The thermometry artifact generated by a transurethral ultrasound applicator was simulated, and these results were validated against analytic models and scans of an applicator in a phantom. Several parameters were then varied to identify which most strongly impacted the level of simulated thermometry artifact, which varies as the applicator moves over the course of an ablative high-intensity ultrasound treatment. RESULTS Key design parameters identified as having a strong influence on the magnitude of thermometry artifact included the susceptibility of materials and their volume. The location of components was also important, particularly when positioned to maximize symmetry of the device. Finally, the location of component edges and the inclination of the device relative to the magnetic field were also found to be important factors. CONCLUSIONS Previous design strategies to minimize thermometry artifact were validated, and novel design strategies were identified that substantially reduce PRF-shift thermometry artifacts for a variety of device orientations. These new strategies are being incorporated into the next generation of applicators. The general strategy described in this study can be applied to the design of other interventional devices intended for use with MRI.
Collapse
Affiliation(s)
- Ken Tatebe
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390
| | - Elizabeth Ramsay
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N3M5, Canada
| | - Charles Mougenot
- Philips Healthcare, 281 Hillmount Road, Markham, Ontario L6C 2S3, Canada
| | - Mohammad Kazem
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N3M5, Canada
| | - Hamed Peikari
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N3M5, Canada
| | - Michael Bronskill
- Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N3M5, Canada and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G2M9, Canada
| | - Rajiv Chopra
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390; Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N3M5, Canada; and Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario M5G2M9, Canada
| |
Collapse
|
36
|
MRI-Guided HIFU Methods for the Ablation of Liver and Renal Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:43-63. [DOI: 10.1007/978-3-319-22536-4_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Winter L, Oberacker E, Paul K, Ji Y, Oezerdem C, Ghadjar P, Thieme A, Budach V, Wust P, Niendorf T. Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. Int J Hyperthermia 2015; 32:63-75. [DOI: 10.3109/02656736.2015.1108462] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
38
|
Simonis FFJ, Petersen ET, Lagendijk JJW, van den Berg CAT. Feasibility of measuring thermoregulation during RF heating of the human calf muscle using MR based methods. Magn Reson Med 2015; 75:1743-51. [PMID: 25977138 DOI: 10.1002/mrm.25710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/04/2015] [Accepted: 03/09/2015] [Indexed: 11/06/2022]
Abstract
PURPOSE One of the main safety concerns in MR is heating of the subject due to radiofrequency (RF) exposure. Recently was shown that local peak temperatures can reach dangerous values and the most prominent parameter for accurate temperature estimations is thermoregulation. Therefore, the goal of this research is testing the feasibility of measuring thermoregulation in vivo using MR methods. THEORY AND METHODS The calves of 13 volunteers were scanned at 3 tesla. A Proton Resonance Frequency Shift method was used for temperature measurement. Arterial Spin Labeling and phase contrast scans were used for perfusion and flow measurements respectively. The calves were monitored during extreme RF exposure (20 W/kg, 16 min) and after physical exercise. RESULTS Temperature increases due to RF absorption (range of the 90th percentile of all volunteers: 1.1-2.5°C) matched with the reference skin temperature changes. Increases in perfusion and flow were defined on the whole leg and normalized to baseline. Perfusion showed a significant increase due to RF heating (ratio compared with baseline: 1.28 ± 0.37; P < 0.05), the influence of exercise was much greater, however (2.97 ± 2.45, P < 0.01). CONCLUSION This study represents a first exploration of measuring thermoregulation, which will become essential when new safety guidelines are based on thermal dose.
Collapse
Affiliation(s)
- Frank F J Simonis
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Esben T Petersen
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan J W Lagendijk
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
39
|
Maier F, Fuentes D, Weinberg JS, Hazle JD, Stafford RJ. Robust phase unwrapping for MR temperature imaging using a magnitude-sorted list, multi-clustering algorithm. Magn Reson Med 2015; 73:1662-8. [PMID: 24809984 PMCID: PMC4224999 DOI: 10.1002/mrm.25279] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 11/09/2022]
Abstract
PURPOSE Several methods in MRI use the phase information of the complex signal and require phase unwrapping (e.g., B0 field mapping, chemical shift imaging, and velocity measurements). In this work, an algorithm was developed focusing on the needs and requirements of MR temperature imaging applications. METHODS The proposed method performs fully automatic unwrapping using a list of all pixels sorted by magnitude in descending order and creates and merges clusters of unwrapped pixels until the entire image is unwrapped. The algorithm was evaluated using simulated phantom data and in vivo clinical temperature imaging data. RESULTS The evaluation of the phantom data demonstrated no errors in regions with signal-to-noise ratios of at least 4.5. For the in vivo data, the algorithm did not fail at an average of more than one pixel for signal-to-noise ratios greater than 6.3. Processing times less than 30 ms per image were achieved by unwrapping pixels inside a region of interest (53 × 53 pixels) used for referenceless MR temperature imaging. CONCLUSIONS The algorithm has been demonstrated to operate robustly with clinical in vivo data in this study. The processing time for common regions of interest in referenceless MR temperature imaging allows for online updates of temperature maps without noticeable delay.
Collapse
Affiliation(s)
- Florian Maier
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States
| | - David Fuentes
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey S. Weinberg
- Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States
| | - John D. Hazle
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States
| | - R. Jason Stafford
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
40
|
Schwenke M, Strehlow J, Haase S, Jenne J, Tanner C, Langø T, Loeve AJ, Karakitsios I, Xiao X, Levy Y, Sat G, Bezzi M, Braunewell S, Guenther M, Melzer A, Preusser T. An integrated model-based software for FUS in moving abdominal organs. Int J Hyperthermia 2015; 31:240-50. [DOI: 10.3109/02656736.2014.1002817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
41
|
Boulant N, Bottlaender M, Uhrig L, Giacomini E, Luong M, Amadon A, Massire A, Larrat B, Vignaud A. FID navigator-based MR thermometry method to monitor small temperature changes in the brain of ventilated animals. NMR IN BIOMEDICINE 2015; 28:101-107. [PMID: 25388870 DOI: 10.1002/nbm.3232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 06/04/2023]
Abstract
An MR thermometry method is proposed for measuring in vivo small temperature changes engendered by external RF heat sources. The method relies on reproducible and stable respiration and therefore currently applies to ventilated animals whose breathing is carefully controlled. It first consists in characterizing the stability of the main magnetic field as well as the variations induced by breathing during a first monitoring stage. Second, RF heating is applied while the phase and thus temperature evolutions are continuously measured, the corrections due to breathing and field drift being made thanks to the data accumulated during the first period. The RF heat source is finally stopped and the temperature rise likewise is continuously monitored during a third and last stage to observe the animal cooling down and to validate the assumptions made for correcting for the main field variation and the physiological noise. Experiments were performed with a clinical 7 T scanner on an anesthetized baboon and with a dedicated RF heating setup. Analysis of the data reveals a precision around 0.1°C, which allows us to reliably measure sub-degree temperature rises in the muscle and in the brain of the animal.
Collapse
Affiliation(s)
- Nicolas Boulant
- CEA/DSV/I2BM/NeuroSpin/UNIRS, CEA Saclay, 91191, Gif sur Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pichardo S, Köhler M, Lee J, Hynnyen K. In vivo optimisation study for multi-baseline MR-based thermometry in the context of hyperthermia using MR-guided high intensity focused ultrasound for head and neck applications. Int J Hyperthermia 2014; 30:579-92. [DOI: 10.3109/02656736.2014.981299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
In vitro demonstration of focused ultrasound thrombolysis using bifrequency excitation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:518787. [PMID: 25243147 PMCID: PMC4163449 DOI: 10.1155/2014/518787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/05/2014] [Accepted: 06/25/2014] [Indexed: 11/20/2022]
Abstract
Focused ultrasound involving inertial cavitation has been shown to be an
efficient method to induce thrombolysis without any pharmacological agent. However,
further investigation of the mechanisms involved and further optimization of the
process are still required. The present work aims at studying the relevance of a
bifrequency excitation compared to a classical monofrequency excitation to achieve
thrombolysis without any pharmacological agent. In vitro human blood clots were
placed at the focus of a piezoelectric transducer. Efficiency of the thrombolysis
was assessed by weighing each clot before and after sonication. The efficiencies of
mono- (550 kHz) and bifrequency (535 and 565 kHz) excitations were compared for
peak power ranging from 70 W to 220 W. The thrombolysis efficiency appears to be
correlated to the inertial cavitation activity quantified by passive acoustic listening.
In the conditions of the experiment, the power needed to achieve 80% of thrombolysis
with a monofrequency excitation is reduced by the half with a bifrequency excitation.
The thermal effects of bifrequency and monofrequency excitations, studied using MR
thermometry measurements in turkey muscle samples where no cavitation occurred,
did not show any difference between both types of excitations when using the same
power level.
Collapse
|
44
|
Sonographic analysis of the intercostal spaces for the application of high-intensity focused ultrasound therapy to the liver. AJR Am J Roentgenol 2014; 203:201-8. [PMID: 24951216 DOI: 10.2214/ajr.13.11744] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The purposes of this study were to assess the widths of the intercostal spaces of the right inferior human rib cage through which high-intensity focused ultrasound therapy would be applied for treating liver cancer and to elucidate the demographic factors associated with intercostal space width. SUBJECTS AND METHODS From March 2013 to June 2013, the widths of the intercostal spaces and the ribs at six areas of the right inferior rib cage (area 1, lowest intercostal space on anterior axillary line and the adjacent upper rib; area 2, second-lowest intercostal space on anterior axillary line and the adjacent upper rib; areas 3 and 4, lowest and second-lowest spaces on midaxillary line; areas 5 and 6, lowest and second-lowest spaces on posterior axillary line) were sonographically measured in 466 patients (214 men, 252 women; mean age, 53.0 years) after an abdominal sonographic examination. Demographic factors and the presence or absence of chronic liver disease were evaluated by multivariate analysis to investigate which factors influence intercostal width. RESULTS The width of the intercostal space was 19.7 ± 3.7 mm (range, 9-33 mm) at area 1, 18.3 ± 3.4 mm (range, 9-33 mm) at area 2, 17.4 ± 4.0 mm (range, 7-33 mm) at area 3, 15.4 ± 3.5 mm (range, 5-26 mm) at area 4, 17.2 ± 3.7 mm (range, 7-28 mm) at area 5, and 14.5 ± 3.6 mm (range, 4-26 mm) at area 6. The corresponding widths of the ribs were 15.2 ± 2.3 mm (range, 8-22 mm), 14.5 ± 2.3 mm (range, 9-22 mm), 13.2 ± 2.0 mm (range, 9-20), 14.3 ± 2.2 mm (range, 9-20 mm), 15.0 ± 2.2 mm (range, 10-22 mm), and 15.1 ± 2.3 mm (range, 8-21 mm). Only female sex was significantly associated with the narrower intercostal width at areas 1, 2, 3, and 5 (regression coefficient, 1.124-1.885; p = 0.01-0.04). CONCLUSION There was substantial variation in the widths of the intercostal spaces of the right inferior rib cage such that the anterior and inferior aspects of the intercostal space were relatively wider. Women had significantly narrower intercostal spaces than men.
Collapse
|
45
|
Reply to: high-frequency jet ventilation for HIFU. Cardiovasc Intervent Radiol 2014; 37:1399-400. [PMID: 25063476 DOI: 10.1007/s00270-014-0938-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 01/18/2023]
|
46
|
Petrusca L, Auboiroux V, Goget T, Viallon M, Muller A, Gross P, Becker CD, Salomir R. A nonparametric temperature controller with nonlinear negative reaction for multi-point rapid MR-guided HIFU ablation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1324-1337. [PMID: 24893259 DOI: 10.1109/tmi.2014.2310704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Magnetic resonance-guided high intensity focused ultrasound (MRgHIFU) is a noninvasive method for thermal ablation, which exploits the capabilities of magnetic resonance imaging (MRI) for excellent visualization of the target and for near real-time thermometry. Oncological quality of ablation may be obtained by volumetric sonication under automatic feedback control of the temperature. For this purpose, a new nonparametric (i.e., model independent) temperature controller, using nonlinear negative reaction, was designed and evaluated for the iterated sonication of a prescribed pattern of foci. The main objective was to achieve the same thermal history at each sonication point during volumetric MRgHIFU. Differently sized linear and circular trajectories were investigated ex vivo and in vivo using a phased-array HIFU transducer. A clinical 3T MRI scanner was used and the temperature elevation was measured in five slices simultaneously with a voxel size of 1 ×1 ×5 mm(3) and temporal resolution of 4 s. In vivo results indicated a similar thermal history of each sonicated focus along the prescribed pattern, that was 17.3 ± 0.5 °C as compared to 16 °C prescribed temperature elevation. The spatio-temporal control of the temperature also enabled meaningful comparison of various sonication patterns in terms of dosimetry and near-field safety. The thermal build-up tended to drift downwards in the HIFU transducer with a circular scan.
Collapse
|
47
|
Respiratory-gated MRgHIFU in upper abdomen using an MR-compatible in-bore digital camera. BIOMED RESEARCH INTERNATIONAL 2014; 2014:421726. [PMID: 24716196 PMCID: PMC3925565 DOI: 10.1155/2014/421726] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 11/28/2022]
Abstract
Objective. To demonstrate the technical feasibility and the potential interest of using a digital optical camera inside the MR magnet bore for monitoring the breathing cycle and subsequently gating the PRFS MR thermometry, MR-ARFI measurement, and MRgHIFU sonication in the upper abdomen.
Materials and Methods. A digital camera was reengineered to remove its magnetic parts and was further equipped with a 7 m long USB cable. The system was electromagnetically shielded and operated inside the bore of a closed 3T clinical scanner. Suitable triggers were generated based on real-time motion analysis of the images produced by the camera (resolution 640 × 480 pixels, 30 fps). Respiratory-gated MR-ARFI prepared MRgHIFU ablation was performed in the kidney and liver of two sheep in vivo, under general anaesthesia and ventilator-driven forced breathing.
Results. The optical device demonstrated very good MR compatibility. The current setup permitted the acquisition of motion artefact-free and high resolution MR 2D ARFI and multiplanar interleaved PRFS thermometry (average SNR 30 in liver and 56 in kidney). Microscopic histology indicated precise focal lesions with sharply delineated margins following the respiratory-gated HIFU sonications.
Conclusion. The proof-of-concept for respiratory motion management in MRgHIFU using an in-bore digital camera has been validated in vivo.
Collapse
|
48
|
Petrusca L, Viallon M, Breguet R, Terraz S, Manasseh G, Auboiroux V, Goget T, Baboi L, Gross P, Sekins KM, Becker CD, Salomir R. An experimental model to investigate the targeting accuracy of MR-guided focused ultrasound ablation in liver. J Transl Med 2014; 12:12. [PMID: 24433332 PMCID: PMC3901025 DOI: 10.1186/1479-5876-12-12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background Magnetic Resonance-guided High Intensity Focused Ultrasound (MRgHIFU) is a hybrid technology that aims to offer non-invasive thermal ablation of targeted tumors or other pathological tissues. Acoustic aberrations and non-linear wave propagating effects may shift the focal point significantly away from the prescribed (or, theoretical) position. It is therefore mandatory to evaluate the spatial accuracy of ablation for a given HIFU protocol and/or device. We describe here a method for producing a user-defined ballistic target as an absolute reference marker for MRgHIFU ablations. Methods The investigated method is based on trapping a mixture of MR contrast agent and histology stain using radiofrequency (RF) ablation causing cell death and coagulation. A dedicated RF-electrode was used for the marker fixation as follows: a RF coagulation (4 W, 15 seconds) and injection of the mixture followed by a second RF coagulation. As a result, the contrast agent/stain is encapsulated in the intercellular space. Ultrasonography imaging was performed during the procedure, while high resolution T1w 3D VIBE MR acquisition was used right after to identify the position of the ballistic marker and hence the target tissue. For some cases, after the marker fixation procedure, HIFU volumetric ablations were produced by a phased-array HIFU platform. First ex vivo experiments were followed by in vivo investigation on four rabbits in thigh muscle and six pigs in liver, with follow-up at Day 7. Results At the end of the procedure, no ultrasound indication of the marker’s presence could be observed, while it was clearly visible under MR and could be conveniently used to prescribe the HIFU ablation, centered on the so-created target. The marker was identified at Day 7 after treatment, immediately after animal sacrifice, after 3 weeks of post-mortem formalin fixation and during histology analysis. Its size ranged between 2.5 and 4 mm. Conclusions Experimental validation of this new ballistic marker method was performed for liver MRgHIFU ablation, free of any side effects (e.g. no edema around the marker, no infection, no bleeding). The study suggests that the absolute reference marker had ultrasound conspicuity below the detection threshold, was irreversible, MR-compatible and MR-detectable, while also being a well-established histology staining technique.
Collapse
Affiliation(s)
- Lorena Petrusca
- Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Celicanin Z, Auboiroux V, Bieri O, Petrusca L, Santini F, Viallon M, Scheffler K, Salomir R. Real-time method for motion-compensated MR thermometry and MRgHIFU treatment in abdominal organs. Magn Reson Med 2013; 72:1087-95. [DOI: 10.1002/mrm.25017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/27/2013] [Accepted: 10/07/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Zarko Celicanin
- Department of Radiology, Division of Radiological Physics; University of Basel Hospital; Basel Switzerland
- MRC Department; MPI for Biological Cybernetics; Tübingen Germany
| | | | - Oliver Bieri
- Department of Radiology, Division of Radiological Physics; University of Basel Hospital; Basel Switzerland
| | - Lorena Petrusca
- Radiology Department; University of Geneva; Geneva Switzerland
| | - Francesco Santini
- Department of Radiology, Division of Radiological Physics; University of Basel Hospital; Basel Switzerland
| | - Magalie Viallon
- Radiology Department; University of Geneva; Geneva Switzerland
| | - Klaus Scheffler
- MRC Department; MPI for Biological Cybernetics; Tübingen Germany
- Department of Biomedical Magnetic Resonance; University of Tübingen; Tübingen Germany
| | - Rares Salomir
- Radiology Department; University of Geneva; Geneva Switzerland
| |
Collapse
|
50
|
Muller A, Petrusca L, Auboiroux V, Valette PJ, Salomir R, Cotton F. Management of Respiratory Motion in Extracorporeal High-Intensity Focused Ultrasound Treatment in Upper Abdominal Organs: Current Status and Perspectives. Cardiovasc Intervent Radiol 2013; 36:1464-1476. [DOI: 10.1007/s00270-013-0713-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 05/08/2013] [Indexed: 12/25/2022]
|