1
|
Xu Y, Quan R, Xu W, Huang Y, Chen X, Liu F. Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches. Bioengineering (Basel) 2024; 11:1034. [PMID: 39451409 PMCID: PMC11505408 DOI: 10.3390/bioengineering11101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Medical image segmentation plays a critical role in accurate diagnosis and treatment planning, enabling precise analysis across a wide range of clinical tasks. This review begins by offering a comprehensive overview of traditional segmentation techniques, including thresholding, edge-based methods, region-based approaches, clustering, and graph-based segmentation. While these methods are computationally efficient and interpretable, they often face significant challenges when applied to complex, noisy, or variable medical images. The central focus of this review is the transformative impact of deep learning on medical image segmentation. We delve into prominent deep learning architectures such as Convolutional Neural Networks (CNNs), Fully Convolutional Networks (FCNs), U-Net, Recurrent Neural Networks (RNNs), Adversarial Networks (GANs), and Autoencoders (AEs). Each architecture is analyzed in terms of its structural foundation and specific application to medical image segmentation, illustrating how these models have enhanced segmentation accuracy across various clinical contexts. Finally, the review examines the integration of deep learning with traditional segmentation methods, addressing the limitations of both approaches. These hybrid strategies offer improved segmentation performance, particularly in challenging scenarios involving weak edges, noise, or inconsistent intensities. By synthesizing recent advancements, this review provides a detailed resource for researchers and practitioners, offering valuable insights into the current landscape and future directions of medical image segmentation.
Collapse
Affiliation(s)
- Yan Xu
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| | - Rixiang Quan
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| | - Weiting Xu
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| | - Yi Huang
- Bristol Medical School, University of Bristol, Bristol BS8 1UD, UK;
| | - Xiaolong Chen
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Fengyuan Liu
- School of Electrical, Electronic and Mechanical Engineering, University of Bristol, Bristol BS8 1QU, UK; (Y.X.); (R.Q.); (W.X.)
| |
Collapse
|
2
|
Lu F, Zhang Z, Zhao S, Lin X, Zhang Z, Jin B, Gu W, Chen J, Wu X. CMM: A CNN-MLP Model for COVID-19 Lesion Segmentation and Severity Grading. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:789-802. [PMID: 37028373 DOI: 10.1109/tcbb.2023.3253901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In this paper, a CNN-MLP model (CMM) is proposed for COVID-19 lesion segmentation and severity grading in CT images. The CMM starts by lung segmentation using UNet, and then segmenting the lesion from the lung region using a multi-scale deep supervised UNet (MDS-UNet), finally implementing the severity grading by a multi-layer preceptor (MLP). In MDS-UNet, shape prior information is fused with the input CT image to reduce the searching space of the potential segmentation outputs. The multi-scale input compensates for the loss of edge contour information in convolution operations. In order to enhance the learning of multiscale features, the multi-scale deep supervision extracts supervision signals from different upsampling points on the network. In addition, it is empirical that the lesion which has a whiter and denser appearance tends to be more severe in the COVID-19 CT image. So, the weighted mean gray-scale value (WMG) is proposed to depict this appearance, and together with the lung and lesion area to serve as input features for the severity grading in MLP. To improve the precision of lesion segmentation, a label refinement method based on the Frangi vessel filter is also proposed. Comparative experiments on COVID-19 public datasets show that our proposed CMM achieves high accuracy on COVID-19 lesion segmentation and severity grading.
Collapse
|
3
|
Alsaadi HH, Aldwairi M, Yasin F, Cachinho SCP, Hussein A. Artificial intelligence tool for the study of COVID-19 microdroplet spread across the human diameter and airborne space. PLoS One 2023; 18:e0269905. [PMID: 37467202 PMCID: PMC10355432 DOI: 10.1371/journal.pone.0269905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 03/20/2023] [Indexed: 07/21/2023] Open
Abstract
The 2019 novel coronavirus (SARS-CoV-2 / COVID-19), with a point of origin in Wuhan, China, has spread rapidly all over the world. It turned into a raging pandemic wrecking havoc on health care facilities, world economy and affecting everyone's life to date. With every new variant, rate of transmission, spread of infections and the number of cases continues to rise at an international level and scale. There are limited reliable researches that study microdroplets spread and transmissions from human sneeze or cough in the airborne space. In this paper, we propose an intelligent technique to visualize, detect, measure the distance of spread in a real-world settings of microdroplet transmissions in airborne space, called "COVNET45". In this paper, we investigate the microdroplet transmission and validate the measurements accuracy compared to published researches, by examining several microscopic and visual images taken to investigate the novel coronavirus (SARS-CoV-2 / COVID-19). The ultimate contribution is to calculate the spread of the microdroplets, measure it precisely and provide a graphical presentation. Additionally, the work employs machine learning and five algorithms for image optimization, detection and measurement.
Collapse
Affiliation(s)
- Hesham H. Alsaadi
- College of Technological Innovation, Zayed University, Abu Dhabi, UAE
| | - Monther Aldwairi
- College of Technological Innovation, Zayed University, Abu Dhabi, UAE
| | - Faten Yasin
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kindom
| | - Sandra C. P. Cachinho
- Cell Sorting and Isolation Facility, Research Technology Building, University of Liverpool, Liverpool, United Kindom
| | | |
Collapse
|
4
|
Rezaei SR, Ahmadi A. A GAN-based method for 3D lung tumor reconstruction boosted by a knowledge transfer approach. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-27. [PMID: 37362675 PMCID: PMC10106883 DOI: 10.1007/s11042-023-15232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/18/2023] [Accepted: 03/30/2023] [Indexed: 06/28/2023]
Abstract
Three-dimensional (3D) image reconstruction of tumors has been one of the most effective techniques for accurately visualizing tumor structures and treatment with high resolution, which requires a set of two-dimensional medical images such as CT slices. In this paper we propose a novel method based on generative adversarial networks (GANs) for 3D lung tumor reconstruction by CT images. The proposed method consists of three stages: lung segmentation, tumor segmentation and 3D lung tumor reconstruction. Lung and tumor segmentation are performed using snake optimization and Gustafson-Kessel (GK) clustering. In the 3D reconstruction part first, features are extracted using the pre-trained VGG model from the tumors that detected in 2D CT slices. Then, a sequence of extracted features is fed into an LSTM to output compressed features. Finally, the compressed feature is used as input for GAN, where the generator is responsible for high-level reconstructing the 3D image of the lung tumor. The main novelty of this paper is the use of GAN to reconstruct a 3D lung tumor model for the first time, to the best of our knowledge. Also, we used knowledge transfer to extract features from 2D images to speed up the training process. The results obtained from the proposed model on the LUNA dataset showed better results than state of the art. According to HD and ED metrics, the proposed method has the lowest values of 3.02 and 1.06, respectively, as compared to those of other methods. The experimental results show that the proposed method performs better than previous similar methods and it is useful to help practitioners in the treatment process.
Collapse
Affiliation(s)
- Seyed Reza Rezaei
- Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran
| | - Abbas Ahmadi
- Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
5
|
Li X, Feng B, Qiao S, Wei H, Feng C. SIFT-GVF-based lung edge correction method for correcting the lung region in CT images. PLoS One 2023; 18:e0282107. [PMID: 36854040 PMCID: PMC9974113 DOI: 10.1371/journal.pone.0282107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
Juxtapleural nodules were excluded from the segmented lung region in the Hounsfield unit threshold-based segmentation method. To re-include those regions in the lung region, a new approach was presented using scale-invariant feature transform and gradient vector flow models in this study. First, the scale-invariant feature transform method was utilized to detect all scale-invariant points in the binary lung region. The boundary points in the neighborhood of a scale-invariant point were collected to form the supportive boundary lines. Then, we utilized a Fourier descriptor to obtain a character representation of each supportive boundary line. Spectrum energy recognizes supportive boundaries that must be corrected. Third, the gradient vector flow-snake method was presented to correct the recognized supportive borders with a smooth profile curve, giving an ideal correction edge in those regions. Finally, the performance of the proposed method was evaluated through experiments on multiple authentic computed tomography images. The perfect results and robustness proved that the proposed method could correct the juxtapleural region precisely.
Collapse
Affiliation(s)
- Xin Li
- College of Information Science and Technology, Taishan University, Taian, P. R. China
| | - Bin Feng
- College of Information Science and Technology, Taishan University, Taian, P. R. China
| | - Sai Qiao
- College of Information Science and Technology, Taishan University, Taian, P. R. China
| | - Haiyan Wei
- College of Teacher and Education, Taishan University, Taian, P. R. China
| | - Changli Feng
- College of Information Science and Technology, Taishan University, Taian, P. R. China
- * E-mail:
| |
Collapse
|
6
|
Liu X, Shen H, Gao L, Guo R. Lung parenchyma segmentation based on semantic data augmentation and boundary attention consistency. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Mridha MF, Prodeep AR, Hoque ASMM, Islam MR, Lima AA, Kabir MM, Hamid MA, Watanobe Y. A Comprehensive Survey on the Progress, Process, and Challenges of Lung Cancer Detection and Classification. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5905230. [PMID: 36569180 PMCID: PMC9788902 DOI: 10.1155/2022/5905230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/17/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022]
Abstract
Lung cancer is the primary reason of cancer deaths worldwide, and the percentage of death rate is increasing step by step. There are chances of recovering from lung cancer by detecting it early. In any case, because the number of radiologists is limited and they have been working overtime, the increase in image data makes it hard for them to evaluate the images accurately. As a result, many researchers have come up with automated ways to predict the growth of cancer cells using medical imaging methods in a quick and accurate way. Previously, a lot of work was done on computer-aided detection (CADe) and computer-aided diagnosis (CADx) in computed tomography (CT) scan, magnetic resonance imaging (MRI), and X-ray with the goal of effective detection and segmentation of pulmonary nodule, as well as classifying nodules as malignant or benign. But still, no complete comprehensive review that includes all aspects of lung cancer has been done. In this paper, every aspect of lung cancer is discussed in detail, including datasets, image preprocessing, segmentation methods, optimal feature extraction and selection methods, evaluation measurement matrices, and classifiers. Finally, the study looks into several lung cancer-related issues with possible solutions.
Collapse
Affiliation(s)
- M. F. Mridha
- Department of Computer Science and Engineering, American International University Bangladesh, Dhaka 1229, Bangladesh
| | - Akibur Rahman Prodeep
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh
| | - A. S. M. Morshedul Hoque
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh
| | - Md. Rashedul Islam
- Department of Computer Science and Engineering, University of Asia Pacific, Dhaka 1216, Bangladesh
| | - Aklima Akter Lima
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh
| | - Muhammad Mohsin Kabir
- Department of Computer Science and Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh
| | - Md. Abdul Hamid
- Department of Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yutaka Watanobe
- Department of Computer Science and Engineering, University of Aizu, Aizuwakamatsu 965-8580, Japan
| |
Collapse
|
8
|
Carmo D, Ribeiro J, Dertkigil S, Appenzeller S, Lotufo R, Rittner L. A Systematic Review of Automated Segmentation Methods and Public Datasets for the Lung and its Lobes and Findings on Computed Tomography Images. Yearb Med Inform 2022; 31:277-295. [PMID: 36463886 PMCID: PMC9719778 DOI: 10.1055/s-0042-1742517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVES Automated computational segmentation of the lung and its lobes and findings in X-Ray based computed tomography (CT) images is a challenging problem with important applications, including medical research, surgical planning, and diagnostic decision support. With the increase in large imaging cohorts and the need for fast and robust evaluation of normal and abnormal lungs and their lobes, several authors have proposed automated methods for lung assessment on CT images. In this paper we intend to provide a comprehensive summarization of these methods. METHODS We used a systematic approach to perform an extensive review of automated lung segmentation methods. We chose Scopus, PubMed, and Scopus to conduct our review and included methods that perform segmentation of the lung parenchyma, lobes or internal disease related findings. The review was not limited by date, but rather by only including methods providing quantitative evaluation. RESULTS We organized and classified all 234 included articles into various categories according to methodological similarities among them. We provide summarizations of quantitative evaluations, public datasets, evaluation metrics, and overall statistics indicating recent research directions of the field. CONCLUSIONS We noted the rise of data-driven models in the last decade, especially due to the deep learning trend, increasing the demand for high-quality data annotation. This has instigated an increase of semi-supervised and uncertainty guided works that try to be less dependent on human annotation. In addition, the question of how to evaluate the robustness of data-driven methods remains open, given that evaluations derived from specific datasets are not general.
Collapse
Affiliation(s)
- Diedre Carmo
- School of Electrical and Computer Engineering, University of Campinas, Brazil
| | - Jean Ribeiro
- School of Electrical and Computer Engineering, University of Campinas, Brazil
| | | | | | - Roberto Lotufo
- School of Electrical and Computer Engineering, University of Campinas, Brazil
| | - Leticia Rittner
- School of Electrical and Computer Engineering, University of Campinas, Brazil,Correspondence to: Leticia Rittner Av. Albert Einstein, 400, Cidade Universitária Zeferino Vaz, Barão Geraldo - Campinas - SP 13083-852Brazil
| |
Collapse
|
9
|
Pan S, Lei Y, Wang T, Wynne J, Chang CW, Roper J, Jani AB, Patel P, Bradley JD, Liu T, Yang X. Male pelvic multi-organ segmentation using token-based transformer Vnet. Phys Med Biol 2022; 67:10.1088/1361-6560/ac95f7. [PMID: 36170872 PMCID: PMC9671083 DOI: 10.1088/1361-6560/ac95f7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022]
Abstract
Objective. This work aims to develop an automated segmentation method for the prostate and its surrounding organs-at-risk in pelvic computed tomography to facilitate prostate radiation treatment planning.Approach. In this work, we propose a novel deep learning algorithm combining a U-shaped convolutional neural network (CNN) and vision transformer (VIT) for multi-organ (i.e. bladder, prostate, rectum, left and right femoral heads) segmentation in male pelvic CT images. The U-shaped model consists of three components: a CNN-based encoder for local feature extraction, a token-based VIT for capturing global dependencies from the CNN features, and a CNN-based decoder for predicting the segmentation outcome from the VIT's output. The novelty of our network is a token-based multi-head self-attention mechanism used in the transformer, which encourages long-range dependencies and forwards informative high-resolution feature maps from the encoder to the decoder. In addition, a knowledge distillation strategy is deployed to further enhance the learning capability of the proposed network.Main results. We evaluated the network using: (1) a dataset collected from 94 patients with prostate cancer; (2) and a public dataset CT-ORG. A quantitative evaluation of the proposed network's performance was performed on each organ based on (1) volume similarity between the segmented contours and ground truth using Dice score, segmentation sensitivity, and precision, (2) surface similarity evaluated by Hausdorff distance (HD), mean surface distance (MSD) and residual mean square distance (RMS), (3) and percentage volume difference (PVD). The performance was then compared against other state-of-art methods. Average volume similarity measures obtained by the network overall organs were Dice score = 0.91, sensitivity = 0.90, precision = 0.92, average surface similarities were HD = 3.78 mm, MSD = 1.24 mm, RMS = 2.03 mm; average percentage volume difference was PVD = 9.9% on the first dataset. The network also obtained Dice score = 0.93, sensitivity = 0.93, precision = 0.93, average surface similarities were HD = 5.82 mm, MSD = 1.16 mm, RMS = 1.24 mm; average percentage volume difference was PVD = 6.6% on the CT-ORG dataset.Significance. In summary, we propose a token-based transformer network with knowledge distillation for multi-organ segmentation using CT images. This method provides accurate and reliable segmentation results for each organ using CT imaging, facilitating the prostate radiation clinical workflow.
Collapse
Affiliation(s)
- Shaoyan Pan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Jacob Wynne
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Ashesh B Jani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Jeffrey D Bradley
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, United States of America
| |
Collapse
|
10
|
Chi J, Zhang S, Han X, Wang H, Wu C, Yu X. MID-UNet: Multi-input directional UNet for COVID-19 lung infection segmentation from CT images. SIGNAL PROCESSING. IMAGE COMMUNICATION 2022; 108:116835. [PMID: 35935468 PMCID: PMC9344813 DOI: 10.1016/j.image.2022.116835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 05/30/2022] [Accepted: 07/23/2022] [Indexed: 05/05/2023]
Abstract
Coronavirus Disease 2019 (COVID-19) has spread globally since the first case was reported in December 2019, becoming a world-wide existential health crisis with over 90 million total confirmed cases. Segmentation of lung infection from computed tomography (CT) scans via deep learning method has a great potential in assisting the diagnosis and healthcare for COVID-19. However, current deep learning methods for segmenting infection regions from lung CT images suffer from three problems: (1) Low differentiation of semantic features between the COVID-19 infection regions, other pneumonia regions and normal lung tissues; (2) High variation of visual characteristics between different COVID-19 cases or stages; (3) High difficulty in constraining the irregular boundaries of the COVID-19 infection regions. To solve these problems, a multi-input directional UNet (MID-UNet) is proposed to segment COVID-19 infections in lung CT images. For the input part of the network, we firstly propose an image blurry descriptor to reflect the texture characteristic of the infections. Then the original CT image, the image enhanced by the adaptive histogram equalization, the image filtered by the non-local means filter and the blurry feature map are adopted together as the input of the proposed network. For the structure of the network, we propose the directional convolution block (DCB) which consist of 4 directional convolution kernels. DCBs are applied on the short-cut connections to refine the extracted features before they are transferred to the de-convolution parts. Furthermore, we propose a contour loss based on local curvature histogram then combine it with the binary cross entropy (BCE) loss and the intersection over union (IOU) loss for better segmentation boundary constraint. Experimental results on the COVID-19-CT-Seg dataset demonstrate that our proposed MID-UNet provides superior performance over the state-of-the-art methods on segmenting COVID-19 infections from CT images.
Collapse
Affiliation(s)
- Jianning Chi
- Northeastern University, NO. 195, Chuangxin Road, Hunnan District, Shenyang, China
| | - Shuang Zhang
- Northeastern University, NO. 195, Chuangxin Road, Hunnan District, Shenyang, China
| | - Xiaoying Han
- Northeastern University, NO. 195, Chuangxin Road, Hunnan District, Shenyang, China
| | - Huan Wang
- Northeastern University, NO. 195, Chuangxin Road, Hunnan District, Shenyang, China
| | - Chengdong Wu
- Northeastern University, NO. 195, Chuangxin Road, Hunnan District, Shenyang, China
| | - Xiaosheng Yu
- Northeastern University, NO. 195, Chuangxin Road, Hunnan District, Shenyang, China
| |
Collapse
|
11
|
Lung Field Segmentation in Chest X-ray Images Using Superpixel Resizing and Encoder–Decoder Segmentation Networks. Bioengineering (Basel) 2022; 9:bioengineering9080351. [PMID: 36004876 PMCID: PMC9404743 DOI: 10.3390/bioengineering9080351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Lung segmentation of chest X-ray (CXR) images is a fundamental step in many diagnostic applications. Most lung field segmentation methods reduce the image size to speed up the subsequent processing time. Then, the low-resolution result is upsampled to the original high-resolution image. Nevertheless, the image boundaries become blurred after the downsampling and upsampling steps. It is necessary to alleviate blurred boundaries during downsampling and upsampling. In this paper, we incorporate the lung field segmentation with the superpixel resizing framework to achieve the goal. The superpixel resizing framework upsamples the segmentation results based on the superpixel boundary information obtained from the downsampling process. Using this method, not only can the computation time of high-resolution medical image segmentation be reduced, but also the quality of the segmentation results can be preserved. We evaluate the proposed method on JSRT, LIDC-IDRI, and ANH datasets. The experimental results show that the proposed superpixel resizing framework outperforms other traditional image resizing methods. Furthermore, combining the segmentation network and the superpixel resizing framework, the proposed method achieves better results with an average time score of 4.6 s on CPU and 0.02 s on GPU.
Collapse
|
12
|
Lung’s Segmentation Using Context-Aware Regressive Conditional GAN. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After declaring COVID-19 pneumonia as a pandemic, researchers promptly advanced to seek solutions for patients fighting this fatal disease. Computed tomography (CT) scans offer valuable insight into how COVID-19 infection affects the lungs. Analysis of CT scans is very significant, especially when physicians are striving for quick solutions. This study successfully segmented lung infection due to COVID-19 and provided a physician with a quantitative analysis of the condition. COVID-19 lesions often occur near and over parenchyma walls, which are denser and exhibit lower contrast than the tissues outside the parenchyma. We applied Adoptive Wallis and Gaussian filter alternatively to regulate the outlining of the lungs and lesions near the parenchyma. We proposed a context-aware conditional generative adversarial network (CGAN) with gradient penalty and spectral normalization for automatic segmentation of lungs and lesion segmentation. The proposed CGAN implements higher-order statistics when compared to traditional deep-learning models. The proposed CGAN produced promising results for lung segmentation. Similarly, CGAN has shown outstanding results for COVID-19 lesions segmentation with an accuracy of 99.91%, DSC of 92.91%, and AJC of 92.91%. Moreover, we achieved an accuracy of 99.87%, DSC of 96.77%, and AJC of 95.59% for lung segmentation. Additionally, the suggested network attained a sensitivity of 100%, 81.02%, 76.45%, and 99.01%, respectively, for critical, severe, moderate, and mild infection severity levels. The proposed model outperformed state-of-the-art techniques for the COVID-19 segmentation and detection cases.
Collapse
|
13
|
Fahmy D, Kandil H, Khelifi A, Yaghi M, Ghazal M, Sharafeldeen A, Mahmoud A, El-Baz A. How AI Can Help in the Diagnostic Dilemma of Pulmonary Nodules. Cancers (Basel) 2022; 14:cancers14071840. [PMID: 35406614 PMCID: PMC8997734 DOI: 10.3390/cancers14071840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Pulmonary nodules are considered a sign of bronchogenic carcinoma, detecting them early will reduce their progression and can save lives. Lung cancer is the second most common type of cancer in both men and women. This manuscript discusses the current applications of artificial intelligence (AI) in lung segmentation as well as pulmonary nodule segmentation and classification using computed tomography (CT) scans, published in the last two decades, in addition to the limitations and future prospects in the field of AI. Abstract Pulmonary nodules are the precursors of bronchogenic carcinoma, its early detection facilitates early treatment which save a lot of lives. Unfortunately, pulmonary nodule detection and classification are liable to subjective variations with high rate of missing small cancerous lesions which opens the way for implementation of artificial intelligence (AI) and computer aided diagnosis (CAD) systems. The field of deep learning and neural networks is expanding every day with new models designed to overcome diagnostic problems and provide more applicable and simply used models. We aim in this review to briefly discuss the current applications of AI in lung segmentation, pulmonary nodule detection and classification.
Collapse
Affiliation(s)
- Dalia Fahmy
- Diagnostic Radiology Department, Mansoura University Hospital, Mansoura 35516, Egypt;
| | - Heba Kandil
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (H.K.); (A.S.); (A.M.)
- Information Technology Department, Faculty of Computers and Informatics, Mansoura University, Mansoura 35516, Egypt
| | - Adel Khelifi
- Computer Science and Information Technology Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates;
| | - Maha Yaghi
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.Y.); (M.G.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.Y.); (M.G.)
| | - Ahmed Sharafeldeen
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (H.K.); (A.S.); (A.M.)
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (H.K.); (A.S.); (A.M.)
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (H.K.); (A.S.); (A.M.)
- Correspondence:
| |
Collapse
|
14
|
Water Cycle Bat Algorithm and Dictionary-Based Deformable Model for Lung Tumor Segmentation. Int J Biomed Imaging 2021; 2021:3492099. [PMID: 34853581 PMCID: PMC8629667 DOI: 10.1155/2021/3492099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Among the different types of cancers, lung cancer is one of the widespread diseases which causes the highest number of deaths every year. The early detection of lung cancer is very essential for increasing the survival rate in patients. Although computed tomography (CT) is the preferred choice for lungs imaging, sometimes CT images may produce less tumor visibility regions and unconstructive rates in tumor portions. Hence, the development of an efficient segmentation technique is necessary. In this paper, water cycle bat algorithm- (WCBA-) based deformable model approach is proposed for lung tumor segmentation. In the preprocessing stage, a median filter is used to remove the noise from the input image and to segment the lung lobe regions, and Bayesian fuzzy clustering is applied. In the proposed method, deformable model is modified by the dictionary-based algorithm to segment the lung tumor accurately. In the dictionary-based algorithm, the update equation is modified by the proposed WCBA and is designed by integrating water cycle algorithm (WCA) and bat algorithm (BA).
Collapse
|
15
|
Three-dimensional reconstruction of In Vivo human lumbar spine from biplanar radiographs. Comput Med Imaging Graph 2021; 96:102011. [PMID: 35007843 DOI: 10.1016/j.compmedimag.2021.102011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022]
Abstract
We present a method for three dimensional (3D) reconstruction of in vivo human lumbar spine from biplanar radiographs with comparable results to Computerised Tomography (CT) scans or Magnetic Resonance Imaging (MRI) models. In this work, we used uncalibrated radiographs to reconstruct the 3D vertebrae and a priori information stored in an Active Shape Model (ASM) that is constructed using the Spherical Demons Algorithm. The method is semi-automatic as bounding boxes are required to delimit the positions of the vertebrae on biplanar radiographs of a patient. Optimisation is based on comparisons between simulated and actual radiographs. Finally, we compare the results to the models generated from MRI and CT scans. The results show the feasibility of generating personalised models of patients from biplanar radiographs.
Collapse
|
16
|
Singadkar G, Mahajan A, Thakur M, Talbar S. Automatic lung segmentation for the inclusion of juxtapleural nodules and pulmonary vessels using curvature based border correction. JOURNAL OF KING SAUD UNIVERSITY - COMPUTER AND INFORMATION SCIENCES 2021; 33:975-987. [DOI: 10.1016/j.jksuci.2018.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
Liu X, Li KW, Yang R, Geng LS. Review of Deep Learning Based Automatic Segmentation for Lung Cancer Radiotherapy. Front Oncol 2021; 11:717039. [PMID: 34336704 PMCID: PMC8323481 DOI: 10.3389/fonc.2021.717039] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality for males and females. Radiation therapy (RT) is one of the primary treatment modalities for lung cancer. While delivering the prescribed dose to tumor targets, it is essential to spare the tissues near the targets-the so-called organs-at-risk (OARs). An optimal RT planning benefits from the accurate segmentation of the gross tumor volume and surrounding OARs. Manual segmentation is a time-consuming and tedious task for radiation oncologists. Therefore, it is crucial to develop automatic image segmentation to relieve radiation oncologists of the tedious contouring work. Currently, the atlas-based automatic segmentation technique is commonly used in clinical routines. However, this technique depends heavily on the similarity between the atlas and the image segmented. With significant advances made in computer vision, deep learning as a part of artificial intelligence attracts increasing attention in medical image automatic segmentation. In this article, we reviewed deep learning based automatic segmentation techniques related to lung cancer and compared them with the atlas-based automatic segmentation technique. At present, the auto-segmentation of OARs with relatively large volume such as lung and heart etc. outperforms the organs with small volume such as esophagus. The average Dice similarity coefficient (DSC) of lung, heart and liver are over 0.9, and the best DSC of spinal cord reaches 0.9. However, the DSC of esophagus ranges between 0.71 and 0.87 with a ragged performance. In terms of the gross tumor volume, the average DSC is below 0.8. Although deep learning based automatic segmentation techniques indicate significant superiority in many aspects compared to manual segmentation, various issues still need to be solved. We discussed the potential issues in deep learning based automatic segmentation including low contrast, dataset size, consensus guidelines, and network design. Clinical limitations and future research directions of deep learning based automatic segmentation were discussed as well.
Collapse
Affiliation(s)
- Xi Liu
- School of Physics, Beihang University, Beijing, China
| | - Kai-Wen Li
- School of Physics, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, China
| | - Ruijie Yang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Li-Sheng Geng
- School of Physics, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine and Engineering, Key Laboratory of Big Data-Based Precision Medicine, Ministry of Industry and Information Technology, Beihang University, Beijing, China
- Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing, China
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Montgomery MK, David J, Zhang H, Ram S, Deng S, Premkumar V, Manzuk L, Jiang ZK, Giddabasappa A. Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography. PLoS One 2021; 16:e0252950. [PMID: 34138905 PMCID: PMC8211241 DOI: 10.1371/journal.pone.0252950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Unlike the majority of cancers, survival for lung cancer has not shown much improvement since the early 1970s and survival rates remain low. Genetically engineered mice tumor models are of high translational relevance as we can generate tissue specific mutations which are observed in lung cancer patients. Since these tumors cannot be detected and quantified by traditional methods, we use micro-computed tomography imaging for longitudinal evaluation and to measure response to therapy. Conventionally, we analyze microCT images of lung cancer via a manual segmentation. Manual segmentation is time-consuming and sensitive to intra- and inter-analyst variation. To overcome the limitations of manual segmentation, we set out to develop a fully-automated alternative, the Mouse Lung Automated Segmentation Tool (MLAST). MLAST locates the thoracic region of interest, thresholds and categorizes the lung field into three tissue categories: soft tissue, intermediate, and lung. An increase in the tumor burden was measured by a decrease in lung volume with a simultaneous increase in soft and intermediate tissue quantities. MLAST segmentation was validated against three methods: manual scoring, manual segmentation, and histology. MLAST was applied in an efficacy trial using a Kras/Lkb1 non-small cell lung cancer model and demonstrated adequate precision and sensitivity in quantifying tumor growth inhibition after drug treatment. Implementation of MLAST has considerably accelerated the microCT data analysis, allowing for larger study sizes and mid-study readouts. This study illustrates how automated image analysis tools for large datasets can be used in preclinical imaging to deliver high throughput and quantitative results.
Collapse
Affiliation(s)
| | - John David
- Comparative Medicine, Pfizer Inc., La Jolla, CA, United States of America
| | - Haikuo Zhang
- Oncology Research Unit, Pfizer Inc., La Jolla, CA, United States of America
| | - Sripad Ram
- Drug Safety Research Unit, Pfizer Inc., La Jolla, CA, United States of America
| | - Shibing Deng
- Early Clinical Development, Pfizer Inc., La Jolla, CA, United States of America
| | - Vidya Premkumar
- Comparative Medicine, Pfizer Inc., La Jolla, CA, United States of America
| | - Lisa Manzuk
- Comparative Medicine, Pfizer Inc., La Jolla, CA, United States of America
| | - Ziyue Karen Jiang
- Comparative Medicine, Pfizer Inc., La Jolla, CA, United States of America
| | - Anand Giddabasappa
- Comparative Medicine, Pfizer Inc., La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Wang T, Lei Y, Roper J, Ghavidel B, Beitler JJ, McDonald M, Curran WJ, Liu T, Yang X. Head and neck multi-organ segmentation on dual-energy CT using dual pyramid convolutional neural networks. Phys Med Biol 2021; 66:10.1088/1361-6560/abfce2. [PMID: 33915524 PMCID: PMC11747937 DOI: 10.1088/1361-6560/abfce2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/29/2021] [Indexed: 11/11/2022]
Abstract
Organ delineation is crucial to diagnosis and therapy, while it is also labor-intensive and observer-dependent. Dual energy CT (DECT) provides additional image contrast than conventional single energy CT (SECT), which may facilitate automatic organ segmentation. This work aims to develop an automatic multi-organ segmentation approach using deep learning for head-and-neck region on DECT. We proposed a mask scoring regional convolutional neural network (R-CNN) where comprehensive features are firstly learnt from two independent pyramid networks and are then combined via deep attention strategy to highlight the informative ones extracted from both two channels of low and high energy CT. To perform multi-organ segmentation and avoid misclassification, a mask scoring subnetwork was integrated into the Mask R-CNN framework to build the correlation between the class of potential detected organ's region-of-interest (ROI) and the shape of that organ's segmentation within that ROI. We evaluated our model on DECT images from 127 head-and-neck cancer patients (66 training, 61 testing) with manual contours of 19 organs as training target and ground truth. For large- and mid-sized organs such as brain and parotid, the proposed method successfully achieved average Dice similarity coefficient (DSC) larger than 0.8. For small-sized organs with very low contrast such as chiasm, cochlea, lens and optic nerves, the DSCs ranged between around 0.5 and 0.8. With the proposed method, using DECT images outperforms using SECT in almost all 19 organs with statistical significance in DSC (p<0.05). Meanwhile, by using the DECT, the proposed method is also significantly superior to a recently developed FCN-based method in most of organs in terms of DSC and the 95th percentile Hausdorff distance. Quantitative results demonstrated the feasibility of the proposed method, the superiority of using DECT to SECT, and the advantage of the proposed R-CNN over FCN on the head-and-neck patient study. The proposed method has the potential to facilitate the current head-and-neck cancer radiation therapy workflow in treatment planning.
Collapse
Affiliation(s)
- Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Beth Ghavidel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Jonathan J Beitler
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Mark McDonald
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| |
Collapse
|
20
|
Fu Y, Lei Y, Wang T, Curran WJ, Liu T, Yang X. A review of deep learning based methods for medical image multi-organ segmentation. Phys Med 2021; 85:107-122. [PMID: 33992856 PMCID: PMC8217246 DOI: 10.1016/j.ejmp.2021.05.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/12/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Deep learning has revolutionized image processing and achieved the-state-of-art performance in many medical image segmentation tasks. Many deep learning-based methods have been published to segment different parts of the body for different medical applications. It is necessary to summarize the current state of development for deep learning in the field of medical image segmentation. In this paper, we aim to provide a comprehensive review with a focus on multi-organ image segmentation, which is crucial for radiotherapy where the tumor and organs-at-risk need to be contoured for treatment planning. We grouped the surveyed methods into two broad categories which are 'pixel-wise classification' and 'end-to-end segmentation'. Each category was divided into subgroups according to their network design. For each type, we listed the surveyed works, highlighted important contributions and identified specific challenges. Following the detailed review, we discussed the achievements, shortcomings and future potentials of each category. To enable direct comparison, we listed the performance of the surveyed works that used thoracic and head-and-neck benchmark datasets.
Collapse
Affiliation(s)
- Yabo Fu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Lei Y, Wang T, Tian S, Fu Y, Patel P, Jani AB, Curran WJ, Liu T, Yang X. Male pelvic CT multi-organ segmentation using synthetic MRI-aided dual pyramid networks. Phys Med Biol 2021; 66:10.1088/1361-6560/abf2f9. [PMID: 33780918 PMCID: PMC11755409 DOI: 10.1088/1361-6560/abf2f9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022]
Abstract
The delineation of the prostate and organs-at-risk (OARs) is fundamental to prostate radiation treatment planning, but is currently labor-intensive and observer-dependent. We aimed to develop an automated computed tomography (CT)-based multi-organ (bladder, prostate, rectum, left and right femoral heads (RFHs)) segmentation method for prostate radiation therapy treatment planning. The proposed method uses synthetic MRIs (sMRIs) to offer superior soft-tissue information for male pelvic CT images. Cycle-consistent adversarial networks (CycleGAN) were used to generate CT-based sMRIs. Dual pyramid networks (DPNs) extracted features from both CTs and sMRIs. A deep attention strategy was integrated into the DPNs to select the most relevant features from both CTs and sMRIs to identify organ boundaries. The CT-based sMRI generated from our previously trained CycleGAN and its corresponding CT images were inputted to the proposed DPNs to provide complementary information for pelvic multi-organ segmentation. The proposed method was trained and evaluated using datasets from 140 patients with prostate cancer, and were then compared against state-of-art methods. The Dice similarity coefficients and mean surface distances between our results and ground truth were 0.95 ± 0.05, 1.16 ± 0.70 mm; 0.88 ± 0.08, 1.64 ± 1.26 mm; 0.90 ± 0.04, 1.27 ± 0.48 mm; 0.95 ± 0.04, 1.08 ± 1.29 mm; and 0.95 ± 0.04, 1.11 ± 1.49 mm for bladder, prostate, rectum, left and RFHs, respectively. Mean center of mass distances was within 3 mm for all organs. Our results performed significantly better than those of competing methods in most evaluation metrics. We demonstrated the feasibility of sMRI-aided DPNs for multi-organ segmentation on pelvic CT images, and its superiority over other networks. The proposed method could be used in routine prostate cancer radiotherapy treatment planning to rapidly segment the prostate and standard OARs.
Collapse
Affiliation(s)
| | | | - Sibo Tian
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Yabo Fu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Ashesh B Jani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States of America
| |
Collapse
|
22
|
Sahu P, Zhao Y, Bhatia P, Bogoni L, Jerebko A, Qin H. Structure Correction for Robust Volume Segmentation in Presence of Tumors. IEEE J Biomed Health Inform 2021; 25:1151-1162. [PMID: 32750948 DOI: 10.1109/jbhi.2020.3004296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
CNN based lung segmentation models in absence of diverse training dataset fail to segment lung volumes in presence of severe pathologies such as large masses, scars, and tumors. To rectify this problem, we propose a multi-stage algorithm for lung volume segmentation from CT scans. The algorithm uses a 3D CNN in the first stage to obtain a coarse segmentation of the left and right lungs. In the second stage, shape correction is performed on the segmentation mask using a 3D structure correction CNN. A novel data augmentation strategy is adopted to train a 3D CNN which helps in incorporating global shape prior. Finally, the shape corrected segmentation mask is up-sampled and refined using a parallel flood-fill operation. The proposed multi-stage algorithm is robust in the presence of large nodules/tumors and does not require labeled segmentation masks for entire pathological lung volume for training. Through extensive experiments conducted on publicly available datasets such as NSCLC, LUNA, and LOLA11 we demonstrate that the proposed approach improves the recall of large juxtapleural tumor voxels by at least 15% over state-of-the-art models without sacrificing segmentation accuracy in case of normal lungs. The proposed method also meets the requirement of CAD software by performing segmentation within 5 seconds which is significantly faster than present methods.
Collapse
|
23
|
Cui Y, Arimura H, Nakano R, Yoshitake T, Shioyama Y, Yabuuchi H. Automated approach for segmenting gross tumor volumes for lung cancer stereotactic body radiation therapy using CT-based dense V-networks. JOURNAL OF RADIATION RESEARCH 2021; 62:346-355. [PMID: 33480438 PMCID: PMC7948852 DOI: 10.1093/jrr/rraa132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/12/2020] [Indexed: 06/12/2023]
Abstract
The aim of this study was to develop an automated segmentation approach for small gross tumor volumes (GTVs) in 3D planning computed tomography (CT) images using dense V-networks (DVNs) that offer more advantages in segmenting smaller structures than conventional V-networks. Regions of interest (ROI) with dimensions of 50 × 50 × 6-72 pixels in the planning CT images were cropped based on the GTV centroids when applying stereotactic body radiotherapy (SBRT) to patients. Segmentation accuracy of GTV contours for 192 lung cancer patients [with the following tumor types: 118 solid, 53 part-solid types and 21 pure ground-glass opacity (pure GGO)], who underwent SBRT, were evaluated based on a 10-fold cross-validation test using Dice's similarity coefficient (DSC) and Hausdorff distance (HD). For each case, 11 segmented GTVs consisting of three single outputs, four logical AND outputs, and four logical OR outputs from combinations of two or three outputs from DVNs were obtained by three runs with different initial weights. The AND output (combination of three outputs) achieved the highest values of average 3D-DSC (0.832 ± 0.074) and HD (4.57 ± 2.44 mm). The average 3D DSCs from the AND output for solid, part-solid and pure GGO types were 0.838 ± 0.074, 0.822 ± 0.078 and 0.819 ± 0.059, respectively. This study suggests that the proposed approach could be useful in segmenting GTVs for planning lung cancer SBRT.
Collapse
Affiliation(s)
- Yunhao Cui
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hidetaka Arimura
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Risa Nakano
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tadamasa Yoshitake
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoshiyuki Shioyama
- Saga International Heavy Ion Cancer Treatment Foundation, 3049 Harakogamachi, Tosu-shi, Saga 841-0071, Japan
| | - Hidetake Yabuuchi
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
24
|
Sun S, Ren H, Dan T, Wei W. 3D segmentation of lungs with juxta-pleural tumor using the improved active shape model approach. Technol Health Care 2021; 29:385-398. [PMID: 33682776 PMCID: PMC8150541 DOI: 10.3233/thc-218037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE: At present, there are many methods for pathological lung segmentation. However, there are still two unresolved problems. (1) The search steps in traditional ASM is a least square optimization method, which is sensitive to outlier marker points, and it makes the profile update to the transition area in the middle of normal lung tissue and tumor rather than a true lung contour. (2) If the noise images exist in the training dataset, the corrected shape model cannot be constructed. METHODS: To solve the first problem, we proposed a new ASM algorithm. Firstly, we detected these outlier marker points by a distance method, and then the different searching functions to the abnormal and normal marker points are applied. To solve the second problem, robust principal component analysis (RPCA) of low rank theory can remove noise, so the proposed method combines RPCA instead of PCA with ASM to solve this problem. Low rank decompose for marker points matrix of training dataset and covariance matrix of PCA will be done before segmentation using ASM. RESULTS: Using the proposed method to segment 122 lung images with juxta-pleural tumors of EMPIRE10 database, got the overlap rate with the gold standard as 94.5%. While the accuracy of ASM based on PCA is only 69.5%. CONCLUSIONS: The results showed that when the noise sample is contained in the training sample set, a good segmentation result for the lungs with juxta-pleural tumors can be obtained by the ASM based on RPCA.
Collapse
Affiliation(s)
- Shenshen Sun
- College of Information and Engineering, Shenyang University, Shenyang, Liaoning, China
| | - Huizhi Ren
- College of Mechanical Engineering, Shenyang University of Technology, Shenyang, Liaoning, China
| | - Tian Dan
- College of Information and Engineering, Shenyang University, Shenyang, Liaoning, China
| | - Wu Wei
- College of Information and Engineering, Shenyang University, Shenyang, Liaoning, China
| |
Collapse
|
25
|
Gerard SE, Herrmann J, Xin Y, Martin KT, Rezoagli E, Ippolito D, Bellani G, Cereda M, Guo J, Hoffman EA, Kaczka DW, Reinhardt JM. CT image segmentation for inflamed and fibrotic lungs using a multi-resolution convolutional neural network. Sci Rep 2021; 11:1455. [PMID: 33446781 PMCID: PMC7809065 DOI: 10.1038/s41598-020-80936-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities, to facilitate rapid quantitative analysis of computed tomography images. A polymorphic training approach is proposed, in which both specifically labeled left and right lungs of humans with COPD, and nonspecifically labeled lungs of animals with acute lung injury, were incorporated into training a single neural network. The resulting network is intended for predicting left and right lung regions in humans with or without diffuse opacification and consolidation. Performance of the proposed lung segmentation algorithm was extensively evaluated on CT scans of subjects with COPD, confirmed COVID-19, lung cancer, and IPF, despite no labeled training data of the latter three diseases. Lobar segmentations were obtained using the left and right lung segmentation as input to the LobeNet algorithm. Regional lobar analysis was performed using hierarchical clustering to identify radiographic subtypes of COVID-19. The proposed lung segmentation algorithm was quantitatively evaluated using semi-automated and manually-corrected segmentations in 87 COVID-19 CT images, achieving an average symmetric surface distance of [Formula: see text] mm and Dice coefficient of [Formula: see text]. Hierarchical clustering identified four radiographical phenotypes of COVID-19 based on lobar fractions of consolidated and poorly aerated tissue. Lower left and lower right lobes were consistently more afflicted with poor aeration and consolidation. However, the most severe cases demonstrated involvement of all lobes. The polymorphic training approach was able to accurately segment COVID-19 cases with diffuse consolidation without requiring COVID-19 cases for training.
Collapse
Affiliation(s)
- Sarah E Gerard
- Department of Radiology, University of Iowa, Iowa City, IA, USA.
| | - Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin T Martin
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Emanuele Rezoagli
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Davide Ippolito
- Department of Diagnostic and Interventional Radiology, San Gerardo Hospital, Monza, Italy
| | - Giacomo Bellani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Junfeng Guo
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - David W Kaczka
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Department of Anesthesia, University of Iowa, Iowa City, IA, USA
| | - Joseph M Reinhardt
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
26
|
Jalali Y, Fateh M, Rezvani M, Abolghasemi V, Anisi MH. ResBCDU-Net: A Deep Learning Framework for Lung CT Image Segmentation. SENSORS (BASEL, SWITZERLAND) 2021; 21:E268. [PMID: 33401581 PMCID: PMC7796094 DOI: 10.3390/s21010268] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/05/2022]
Abstract
Lung CT image segmentation is a key process in many applications such as lung cancer detection. It is considered a challenging problem due to existing similar image densities in the pulmonary structures, different types of scanners, and scanning protocols. Most of the current semi-automatic segmentation methods rely on human factors therefore it might suffer from lack of accuracy. Another shortcoming of these methods is their high false-positive rate. In recent years, several approaches, based on a deep learning framework, have been effectively applied in medical image segmentation. Among existing deep neural networks, the U-Net has provided great success in this field. In this paper, we propose a deep neural network architecture to perform an automatic lung CT image segmentation process. In the proposed method, several extensive preprocessing techniques are applied to raw CT images. Then, ground truths corresponding to these images are extracted via some morphological operations and manual reforms. Finally, all the prepared images with the corresponding ground truth are fed into a modified U-Net in which the encoder is replaced with a pre-trained ResNet-34 network (referred to as Res BCDU-Net). In the architecture, we employ BConvLSTM (Bidirectional Convolutional Long Short-term Memory)as an advanced integrator module instead of simple traditional concatenators. This is to merge the extracted feature maps of the corresponding contracting path into the previous expansion of the up-convolutional layer. Finally, a densely connected convolutional layer is utilized for the contracting path. The results of our extensive experiments on lung CT images (LIDC-IDRI database) confirm the effectiveness of the proposed method where a dice coefficient index of 97.31% is achieved.
Collapse
Affiliation(s)
- Yeganeh Jalali
- Faculty of Computer Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran; (Y.J.); (M.R.)
| | - Mansoor Fateh
- Faculty of Computer Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran; (Y.J.); (M.R.)
| | - Mohsen Rezvani
- Faculty of Computer Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran; (Y.J.); (M.R.)
| | - Vahid Abolghasemi
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK;
| | - Mohammad Hossein Anisi
- School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK;
| |
Collapse
|
27
|
Tan J, Jing L, Huo Y, Li L, Akin O, Tian Y. LGAN: Lung segmentation in CT scans using generative adversarial network. Comput Med Imaging Graph 2021; 87:101817. [PMID: 33278767 PMCID: PMC8477299 DOI: 10.1016/j.compmedimag.2020.101817] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022]
Abstract
Lung segmentation in Computerized Tomography (CT) images plays an important role in various lung disease diagnosis. Most of the current lung segmentation approaches are performed through a series of procedures with manually empirical parameter adjustments in each step. Pursuing an automatic segmentation method with fewer steps, we propose a novel deep learning Generative Adversarial Network (GAN)-based lung segmentation schema, which we denote as LGAN. The proposed schema can be generalized to different kinds of neural networks for lung segmentation in CT images. We evaluated the proposed LGAN schema on datasets including Lung Image Database Consortium image collection (LIDC-IDRI) and Quantitative Imaging Network (QIN) collection with two metrics: segmentation quality and shape similarity. Also, we compared our work with current state-of-the-art methods. The experimental results demonstrated that the proposed LGAN schema can be used as a promising tool for automatic lung segmentation due to its simplified procedure as well as its improved performance and efficiency.
Collapse
Affiliation(s)
- Jiaxing Tan
- The City University of New York, New York 10016, USA
| | - Longlong Jing
- The City University of New York, New York 10016, USA
| | - Yumei Huo
- The City University of New York, New York 10016, USA
| | - Lihong Li
- The City University of New York, New York 10016, USA
| | - Oguz Akin
- Memorial Sloan Kettering Cancer Center, New York 10065, USA
| | - Yingli Tian
- The City University of New York, New York 10016, USA.
| |
Collapse
|
28
|
Hofmanninger J, Prayer F, Pan J, Röhrich S, Prosch H, Langs G. Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. Eur Radiol Exp 2020; 4:50. [PMID: 32814998 PMCID: PMC7438418 DOI: 10.1186/s41747-020-00173-2] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/30/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Automated segmentation of anatomical structures is a crucial step in image analysis. For lung segmentation in computed tomography, a variety of approaches exists, involving sophisticated pipelines trained and validated on different datasets. However, the clinical applicability of these approaches across diseases remains limited. METHODS We compared four generic deep learning approaches trained on various datasets and two readily available lung segmentation algorithms. We performed evaluation on routine imaging data with more than six different disease patterns and three published data sets. RESULTS Using different deep learning approaches, mean Dice similarity coefficients (DSCs) on test datasets varied not over 0.02. When trained on a diverse routine dataset (n = 36), a standard approach (U-net) yields a higher DSC (0.97 ± 0.05) compared to training on public datasets such as the Lung Tissue Research Consortium (0.94 ± 0.13, p = 0.024) or Anatomy 3 (0.92 ± 0.15, p = 0.001). Trained on routine data (n = 231) covering multiple diseases, U-net compared to reference methods yields a DSC of 0.98 ± 0.03 versus 0.94 ± 0.12 (p = 0.024). CONCLUSIONS The accuracy and reliability of lung segmentation algorithms on demanding cases primarily relies on the diversity of the training data, highlighting the importance of data diversity compared to model choice. Efforts in developing new datasets and providing trained models to the public are critical. By releasing the trained model under General Public License 3.0, we aim to foster research on lung diseases by providing a readily available tool for segmentation of pathological lungs.
Collapse
Affiliation(s)
- Johannes Hofmanninger
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel, 18-20, Vienna, Austria.
| | - Forian Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel, 18-20, Vienna, Austria
| | - Jeanny Pan
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel, 18-20, Vienna, Austria
| | - Sebastian Röhrich
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel, 18-20, Vienna, Austria
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel, 18-20, Vienna, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel, 18-20, Vienna, Austria.
| |
Collapse
|
29
|
Gerard SE, Herrmann J, Kaczka DW, Musch G, Fernandez-Bustamante A, Reinhardt JM. Multi-resolution convolutional neural networks for fully automated segmentation of acutely injured lungs in multiple species. Med Image Anal 2020; 60:101592. [PMID: 31760194 PMCID: PMC6980773 DOI: 10.1016/j.media.2019.101592] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/09/2019] [Accepted: 10/25/2019] [Indexed: 12/27/2022]
Abstract
Segmentation of lungs with acute respiratory distress syndrome (ARDS) is a challenging task due to diffuse opacification in dependent regions which results in little to no contrast at the lung boundary. For segmentation of severely injured lungs, local intensity and texture information, as well as global contextual information, are important factors for consistent inclusion of intrapulmonary structures. In this study, we propose a deep learning framework which uses a novel multi-resolution convolutional neural network (ConvNet) for automated segmentation of lungs in multiple mammalian species with injury models similar to ARDS. The multi-resolution model eliminates the need to tradeoff between high-resolution and global context by using a cascade of low-resolution to high-resolution networks. Transfer learning is used to accommodate the limited number of training datasets. The model was initially pre-trained on human CT images, and subsequently fine-tuned on canine, porcine, and ovine CT images with lung injuries similar to ARDS. The multi-resolution model was compared to both high-resolution and low-resolution networks alone. The multi-resolution model outperformed both the low- and high-resolution models, achieving an overall mean Jacaard index of 0.963 ± 0.025 compared to 0.919 ± 0.027 and 0.950 ± 0.036, respectively, for the animal dataset (N=287). The multi-resolution model achieves an overall average symmetric surface distance of 0.438 ± 0.315 mm, compared to 0.971 ± 0.368 mm and 0.657 ± 0.519 mm for the low-resolution and high-resolution models, respectively. We conclude that the multi-resolution model produces accurate segmentations in severely injured lungs, which is attributed to the inclusion of both local and global features.
Collapse
Affiliation(s)
- Sarah E Gerard
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Anesthesia, University of Iowa, Iowa City, IA, USA
| | - David W Kaczka
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA; Department of Anesthesia, University of Iowa, Iowa City, IA, USA
| | - Guido Musch
- Department of Anesthesiology, Washington University, St. Louis, MO, USA
| | | | - Joseph M Reinhardt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA; Department of Radiology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
30
|
Dong X, Lei Y, Tian S, Wang T, Patel P, Curran WJ, Jani AB, Liu T, Yang X. Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network. Radiother Oncol 2019; 141:192-199. [PMID: 31630868 DOI: 10.1016/j.radonc.2019.09.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/24/2019] [Accepted: 09/29/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE Manual contouring is labor intensive, and subject to variations in operator knowledge, experience and technique. This work aims to develop an automated computed tomography (CT) multi-organ segmentation method for prostate cancer treatment planning. METHODS AND MATERIALS The proposed method exploits the superior soft-tissue information provided by synthetic MRI (sMRI) to aid the multi-organ segmentation on pelvic CT images. A cycle generative adversarial network (CycleGAN) was used to estimate sMRIs from CT images. A deep attention U-Net (DAUnet) was trained on sMRI and corresponding multi-organ contours for auto-segmentation. The deep attention strategy was introduced to identify the most relevant features to differentiate different organs. Deep supervision was incorporated into the DAUnet to enhance the features' discriminative ability. Segmented contours of a patient were obtained by feeding CT image into the trained CycleGAN to generate sMRI, which was then fed to the trained DAUnet to generate organ contours. We trained and evaluated our model with 140 datasets from prostate patients. RESULTS The Dice similarity coefficient and mean surface distance between our segmented and bladder, prostate, and rectum manual contours were 0.95 ± 0.03, 0.52 ± 0.22 mm; 0.87 ± 0.04, 0.93 ± 0.51 mm; and 0.89 ± 0.04, 0.92 ± 1.03 mm, respectively. CONCLUSION We proposed a sMRI-aided multi-organ automatic segmentation method on pelvic CT images. By integrating deep attention and deep supervision strategy, the proposed network provides accurate and consistent prostate, bladder and rectum segmentation, and has the potential to facilitate routine prostate-cancer radiotherapy treatment planning.
Collapse
Affiliation(s)
- Xue Dong
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, GA, United States
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, GA, United States
| | - Sibo Tian
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, GA, United States
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, GA, United States
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, GA, United States
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, GA, United States
| | - Ashesh B Jani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, GA, United States
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, GA, United States
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, GA, United States.
| |
Collapse
|
31
|
Ma J, Wang A, Lin F, Wesarg S, Erdt M. A novel robust kernel principal component analysis for nonlinear statistical shape modeling from erroneous data. Comput Med Imaging Graph 2019; 77:101638. [PMID: 31550670 DOI: 10.1016/j.compmedimag.2019.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/13/2019] [Accepted: 05/31/2019] [Indexed: 10/25/2022]
Abstract
Statistical Shape Models (SSMs) have achieved considerable success in medical image segmentation. A high quality SSM is able to approximate the main plausible variances of a given anatomical structure to guide segmentation. However, it is technically challenging to derive such a quality model because: (1) the distribution of shape variance is often nonlinear or multi-modal which cannot be modeled by standard approaches assuming Gaussian distribution; (2) as the quality of annotations in training data usually varies, heavy corruption will degrade the quality of the model as a whole. In this work, these challenges are addressed by introducing a generic SSM that is able to model nonlinear distribution and is robust to outliers in training data. Without losing generality and assuming a sparsity in nonlinear distribution, a novel Robust Kernel Principal Component Analysis (RKPCA) for statistical shape modeling is proposed with the aim of constructing a low-rank nonlinear subspace where outliers are discarded. The proposed approach is validated on two different datasets: a set of 30 public CT kidney pairs and a set of 49 MRI ankle bones volumes. Experimental results demonstrate a significantly better performance on outlier recovery and a higher quality of the proposed model as well as lower segmentation errors compared to the state-of-the-art techniques.
Collapse
Affiliation(s)
- Jingting Ma
- Nanyang Technological University, Nanyang Avenue 50, Singapore 639798, Singapore.
| | - Anqi Wang
- Fraunhofer IGD, Darmstadt 64283, Germany
| | - Feng Lin
- Nanyang Technological University, Nanyang Avenue 50, Singapore 639798, Singapore
| | | | - Marius Erdt
- Nanyang Technological University, Nanyang Avenue 50, Singapore 639798, Singapore; Fraunhofer Singapore, Nanyang Avenue 50, Singapore 639798, Singapore
| |
Collapse
|
32
|
Sousa AM, Martins SB, Falcão AX, Reis F, Bagatin E, Irion K. ALTIS: A fast and automatic lung and trachea CT‐image segmentation method. Med Phys 2019; 46:4970-4982. [DOI: 10.1002/mp.13773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/22/2019] [Accepted: 07/30/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Azael M. Sousa
- Laboratory of Image Data Science Institute of Computing University of Campinas Campinas Brazil
| | - Samuel B. Martins
- Laboratory of Image Data Science Institute of Computing University of Campinas Campinas Brazil
| | - Alexandre X. Falcão
- Laboratory of Image Data Science Institute of Computing University of Campinas Campinas Brazil
| | - Fabiano Reis
- School of Medical Sciences University of Campinas Campinas Brazil
| | - Ericson Bagatin
- School of Medical Sciences University of Campinas Campinas Brazil
| | - Klaus Irion
- Department of Radiology Manchester University NHS Campinas Brazil
| |
Collapse
|
33
|
Chen G, Xiang D, Zhang B, Tian H, Yang X, Shi F, Zhu W, Tian B, Chen X. Automatic Pathological Lung Segmentation in Low-Dose CT Image Using Eigenspace Sparse Shape Composition. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1736-1749. [PMID: 30605097 DOI: 10.1109/tmi.2018.2890510] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The segmentation of lungs with severe pathology is a nontrivial problem in the clinical application. Due to complex structures, pathological changes, individual differences, and low image quality, accurate lung segmentation in clinical 3-D computed tomography (CT) images is still a challenging task. To overcome these problems, a novel dictionary-based approach is introduced to automatically segment pathological lungs in 3-D low-dose CT images. Sparse shape composition is integrated with the eigenvector space shape prior model, called eigenspace sparse shape composition, to reduce local shape reconstruction error caused by the weak and misleading appearance prior information. To initialize the shape model, a landmark recognition method based on discriminative appearance dictionary is introduced to handle lesions and local details. Furthermore, a new vertex search strategy based on the gradient vector flow field is also proposed to drive the shape deformation to the target boundary. The proposed algorithm is tested on 78 3-D low-dose CT images with lung tumors. Compared to the state-of-the-art methods, the proposed approach can robustly and accurately detect pathological lung surface.
Collapse
|
34
|
Shaukat F, Raja G, Frangi AF. Computer-aided detection of lung nodules: a review. J Med Imaging (Bellingham) 2019. [DOI: 10.1117/1.jmi.6.2.020901] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Furqan Shaukat
- University of Engineering and Technology, Department of Electrical Engineering, Taxila
| | - Gulistan Raja
- University of Engineering and Technology, Department of Electrical Engineering, Taxila
| | - Alejandro F. Frangi
- University of Leeds Woodhouse Lane, School of Computing and School of Medicine, Leeds
| |
Collapse
|
35
|
Dong X, Lei Y, Wang T, Thomas M, Tang L, Curran WJ, Liu T, Yang X. Automatic multiorgan segmentation in thorax CT images using U-net-GAN. Med Phys 2019; 46:2157-2168. [PMID: 30810231 DOI: 10.1002/mp.13458] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Accurate and timely organs-at-risk (OARs) segmentation is key to efficient and high-quality radiation therapy planning. The purpose of this work is to develop a deep learning-based method to automatically segment multiple thoracic OARs on chest computed tomography (CT) for radiotherapy treatment planning. METHODS We propose an adversarial training strategy to train deep neural networks for the segmentation of multiple organs on thoracic CT images. The proposed design of adversarial networks, called U-Net-generative adversarial network (U-Net-GAN), jointly trains a set of U-Nets as generators and fully convolutional networks (FCNs) as discriminators. Specifically, the generator, composed of U-Net, produces an image segmentation map of multiple organs by an end-to-end mapping learned from CT image to multiorgan-segmented OARs. The discriminator, structured as an FCN, discriminates between the ground truth and segmented OARs produced by the generator. The generator and discriminator compete against each other in an adversarial learning process to produce the optimal segmentation map of multiple organs. Our segmentation results were compared with manually segmented OARs (ground truth) for quantitative evaluations in geometric difference, as well as dosimetric performance by investigating the dose-volume histogram in 20 stereotactic body radiation therapy (SBRT) lung plans. RESULTS This segmentation technique was applied to delineate the left and right lungs, spinal cord, esophagus, and heart using 35 patients' chest CTs. The averaged dice similarity coefficient for the above five OARs are 0.97, 0.97, 0.90, 0.75, and 0.87, respectively. The mean surface distance of the five OARs obtained with proposed method ranges between 0.4 and 1.5 mm on average among all 35 patients. The mean dose differences on the 20 SBRT lung plans are -0.001 to 0.155 Gy for the five OARs. CONCLUSION We have investigated a novel deep learning-based approach with a GAN strategy to segment multiple OARs in the thorax using chest CT images and demonstrated its feasibility and reliability. This is a potentially valuable method for improving the efficiency of chest radiotherapy treatment planning.
Collapse
Affiliation(s)
- Xue Dong
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Matthew Thomas
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Leonardo Tang
- Department of Undeclared Engineering, University of California, Berkeley, CA, 94720, USA
| | - Walter J Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
36
|
Xu M, Qi S, Yue Y, Teng Y, Xu L, Yao Y, Qian W. Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Biomed Eng Online 2019; 18:2. [PMID: 30602393 PMCID: PMC6317251 DOI: 10.1186/s12938-018-0619-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 12/19/2018] [Indexed: 11/24/2022] Open
Abstract
Background Lung segmentation constitutes a critical procedure for any clinical-decision supporting system aimed to improve the early diagnosis and treatment of lung diseases. Abnormal lungs mainly include lung parenchyma with commonalities on CT images across subjects, diseases and CT scanners, and lung lesions presenting various appearances. Segmentation of lung parenchyma can help locate and analyze the neighboring lesions, but is not well studied in the framework of machine learning. Methods We proposed to segment lung parenchyma using a convolutional neural network (CNN) model. To reduce the workload of manually preparing the dataset for training the CNN, one clustering algorithm based method is proposed firstly. Specifically, after splitting CT slices into image patches, the k-means clustering algorithm with two categories is performed twice using the mean and minimum intensity of image patch, respectively. A cross-shaped verification, a volume intersection, a connected component analysis and a patch expansion are followed to generate final dataset. Secondly, we design a CNN architecture consisting of only one convolutional layer with six kernels, followed by one maximum pooling layer and two fully connected layers. Using the generated dataset, a variety of CNN models are trained and optimized, and their performances are evaluated by eightfold cross-validation. A separate validation experiment is further conducted using a dataset of 201 subjects (4.62 billion patches) with lung cancer or chronic obstructive pulmonary disease, scanned by CT or PET/CT. The segmentation results by our method are compared with those yielded by manual segmentation and some available methods. Results A total of 121,728 patches are generated to train and validate the CNN models. After the parameter optimization, our CNN model achieves an average F-score of 0.9917 and an area of curve up to 0.9991 for classification of lung parenchyma and non-lung-parenchyma. The obtain model can segment the lung parenchyma accurately for 201 subjects with heterogeneous lung diseases and CT scanners. The overlap ratio between the manual segmentation and the one by our method reaches 0.96. Conclusions The results demonstrated that the proposed clustering algorithm based method can generate the training dataset for CNN models. The obtained CNN model can segment lung parenchyma with very satisfactory performance and have the potential to locate and analyze lung lesions.
Collapse
Affiliation(s)
- Mingjie Xu
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, No. 195 Chuangxin Avenue, Hunnan District, Shenyang, 110169, China
| | - Shouliang Qi
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, No. 195 Chuangxin Avenue, Hunnan District, Shenyang, 110169, China. .,Key Laboratory of Medical Image Computing of Northeastern University (Ministry of Education), Shenyang, China.
| | - Yong Yue
- Department of Radiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Yueyang Teng
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, No. 195 Chuangxin Avenue, Hunnan District, Shenyang, 110169, China
| | - Lisheng Xu
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, No. 195 Chuangxin Avenue, Hunnan District, Shenyang, 110169, China
| | - Yudong Yao
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, No. 195 Chuangxin Avenue, Hunnan District, Shenyang, 110169, China.,Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Wei Qian
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, No. 195 Chuangxin Avenue, Hunnan District, Shenyang, 110169, China.,College of Engineering, University of Texas at El Paso, 500 W University, El Paso, TX, 79902, USA
| |
Collapse
|
37
|
Palani D, Venkatalakshmi K. An IoT Based Predictive Modelling for Predicting Lung Cancer Using Fuzzy Cluster Based Segmentation and Classification. J Med Syst 2018; 43:21. [PMID: 30564924 DOI: 10.1007/s10916-018-1139-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/09/2018] [Indexed: 01/22/2023]
Abstract
In this paper, we propose a new Internet of Things (IoT) based predictive modelling by using fuzzy cluster based augmentation and classification for predicting the lung cancer disease through continuous monitoring and also to improve the healthcare by providing medical instructions. Here, the fuzzy clustering method is used and which is based on transition region extraction for effective image segmentation. Moreover, Fuzzy C-Means Clustering algorithm is used to categorize the transitional region features from the feature of lung cancer image. In this work, Otsu thresholding method is used for extracting the transition region from lung cancer image. Moreover, the right edge image and the morphological thinning operation are used for enhancing the performance of segmentation. In addition, the morphological cleaning and the image region filling operations are performed over an edge lung cancer image for getting the object regions. In addition, we also propose a new incremental classification algorithm which combines the existing Association Rule Mining (ARM), the standard Decision Tree (DT) with temporal features and the CNN. The experiments have been conducted by using the standard images that are collected from database and the current health data which are collected from patient through IoT devices. The results proved that the performance of the proposed prediction model which is able to achieve the better accuracy when it is compared with other existing prediction model.
Collapse
Affiliation(s)
- D Palani
- Department of Electronics and Communication Engineering, University College of Engineering Villupuram, Villupuram, Tamilnadu, 605103, India.
| | - K Venkatalakshmi
- Department of Electronics and Communication Engineering, University College of Engineering Tindivanam, Tindivanam, Tamilnadu, 604001, India
| |
Collapse
|
38
|
Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, Bellomi M. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp 2018; 2:36. [PMID: 30426318 PMCID: PMC6234198 DOI: 10.1186/s41747-018-0068-z;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Radiomics is an emerging translational field of research aiming to extract mineable high-dimensional data from clinical images. The radiomic process can be divided into distinct steps with definable inputs and outputs, such as image acquisition and reconstruction, image segmentation, features extraction and qualification, analysis, and model building. Each step needs careful evaluation for the construction of robust and reliable models to be transferred into clinical practice for the purposes of prognosis, non-invasive disease tracking, and evaluation of disease response to treatment. After the definition of texture parameters (shape features; first-, second-, and higher-order features), we briefly discuss the origin of the term radiomics and the methods for selecting the parameters useful for a radiomic approach, including cluster analysis, principal component analysis, random forest, neural network, linear/logistic regression, and other. Reproducibility and clinical value of parameters should be firstly tested with internal cross-validation and then validated on independent external cohorts. This article summarises the major issues regarding this multi-step process, focussing in particular on challenges of the extraction of radiomic features from data sets provided by computed tomography, positron emission tomography, and magnetic resonance imaging.
Collapse
Affiliation(s)
- Stefania Rizzo
- 0000 0004 1757 0843grid.15667.33Department of Radiology, IEO, European Institute of Oncology, IRCCS, Milan, IT Italy
| | - Francesca Botta
- 0000 0004 1757 0843grid.15667.33Medical Physics, European Institute of Oncology, Milan, Italy
| | - Sara Raimondi
- 0000 0004 1757 0843grid.15667.33Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Daniela Origgi
- 0000 0004 1757 0843grid.15667.33Medical Physics, European Institute of Oncology, Milan, Italy
| | - Cristiana Fanciullo
- 0000 0004 1757 2822grid.4708.bUniversità degli Studi di Milano, Postgraduate School in Radiodiagnostics, Milan, Italy
| | - Alessio Giuseppe Morganti
- 0000 0004 1757 1758grid.6292.fRadiation Oncology Center, School of Medicine, Department of Experimental, Diagnostic and Specialty Medicine – DIMES, University of Bologna, Bologna, Italy
| | - Massimo Bellomi
- 0000 0004 1757 2822grid.4708.bDepartment of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
39
|
Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, Bellomi M. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp 2018; 2:36. [PMID: 30426318 PMCID: PMC6234198 DOI: 10.1186/s41747-018-0068-z] [Citation(s) in RCA: 660] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022] Open
Abstract
Radiomics is an emerging translational field of research aiming to extract mineable high-dimensional data from clinical images. The radiomic process can be divided into distinct steps with definable inputs and outputs, such as image acquisition and reconstruction, image segmentation, features extraction and qualification, analysis, and model building. Each step needs careful evaluation for the construction of robust and reliable models to be transferred into clinical practice for the purposes of prognosis, non-invasive disease tracking, and evaluation of disease response to treatment. After the definition of texture parameters (shape features; first-, second-, and higher-order features), we briefly discuss the origin of the term radiomics and the methods for selecting the parameters useful for a radiomic approach, including cluster analysis, principal component analysis, random forest, neural network, linear/logistic regression, and other. Reproducibility and clinical value of parameters should be firstly tested with internal cross-validation and then validated on independent external cohorts. This article summarises the major issues regarding this multi-step process, focussing in particular on challenges of the extraction of radiomic features from data sets provided by computed tomography, positron emission tomography, and magnetic resonance imaging.
Collapse
Affiliation(s)
- Stefania Rizzo
- Department of Radiology, IEO, European Institute of Oncology, IRCCS, Milan, IT, Italy.
| | - Francesca Botta
- Medical Physics, European Institute of Oncology, Milan, Italy
| | - Sara Raimondi
- Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Daniela Origgi
- Medical Physics, European Institute of Oncology, Milan, Italy
| | - Cristiana Fanciullo
- Università degli Studi di Milano, Postgraduate School in Radiodiagnostics, Milan, Italy
| | - Alessio Giuseppe Morganti
- Radiation Oncology Center, School of Medicine, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Bologna, Italy
| | - Massimo Bellomi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
40
|
Automatic nodule detection for lung cancer in CT images: A review. Comput Biol Med 2018; 103:287-300. [PMID: 30415174 DOI: 10.1016/j.compbiomed.2018.10.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022]
Abstract
Automatic lung nodule detection has great significance for treating lung cancer and increasing patient survival. This work summarizes a critical review of recent techniques for automatic lung nodule detection in computed tomography images. This review indicates the current tendency and obtained progress as well as future challenges in this field. This research covered the databases including Web of Science, PubMed, and the Press, including IEEE Xplore and Science Direct, up to May 2018. Each part of the paper is summarized carefully in terms of the method and validation results for better comparison. Based on the results, some techniques show better performance for lung nodule detection. However, researchers should pay attention to the existing challenges, such as high sensitivity with a low false positive rate, large and different patient databases, developing or optimizing the detection technique of various types of lung nodules with different sizes, shapes, textures and locations, combining electronic medical records and picture archiving and communication systems, building efficient feature sets for better classification and promoting the cooperation and communication between academic institutions and medical organizations. We believe that automatic computer-aided detection systems will be developed with strong robustness, high efficiency and security assurance. This review will be helpful for professional researchers and radiologists to further learn about the latest techniques in computer-aided detection systems.
Collapse
|
41
|
Afshar P, Ahmadi A, Mohebi A, Fazel Zarandi M. A hierarchical stochastic modelling approach for reconstructing lung tumour geometry from 2D CT images. J EXP THEOR ARTIF IN 2018. [DOI: 10.1080/0952813x.2018.1509894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Parnian Afshar
- Industrial Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Abbas Ahmadi
- Industrial Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Azadeh Mohebi
- Information Technology, Iranian Research Institute for Information Science and Technology (IranDoc), Tehran, Iran
| | - M.H. Fazel Zarandi
- Industrial Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
42
|
Zhang W, Wang X, Zhang P, Chen J. Global optimal hybrid geometric active contour for automated lung segmentation on CT images. Comput Biol Med 2017; 91:168-180. [DOI: 10.1016/j.compbiomed.2017.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 11/27/2022]
|
43
|
Morales Pinzón A, Orkisz M, Richard JC, Hernández Hoyos M. Lung Segmentation by Cascade Registration. Ing Rech Biomed 2017. [DOI: 10.1016/j.irbm.2017.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
K JD, R G, A M. Fuzzy-C-Means Clustering Based Segmentation and CNN-Classification for Accurate Segmentation of Lung Nodules. Asian Pac J Cancer Prev 2017; 18:1869-1874. [PMID: 28749127 PMCID: PMC5648392 DOI: 10.22034/apjcp.2017.18.7.1869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: Accurate segmentation of abnormal and healthy lungs is very crucial for a steadfast computer-aided
disease diagnostics. Methods: For this purpose a stack of chest CT scans are processed. In this paper, novel methods are
proposed for segmentation of the multimodal grayscale lung CT scan. In the conventional methods using Markov–Gibbs
Random Field (MGRF) model the required regions of interest (ROI) are identified. Result: The results of proposed FCM
and CNN based process are compared with the results obtained from the conventional method using MGRF model.
The results illustrate that the proposed method can able to segment the various kinds of complex multimodal medical
images precisely. Conclusion: However, in this paper, to obtain an exact boundary of the regions, every empirical
dispersion of the image is computed by Fuzzy C-Means Clustering segmentation. A classification process based on
the Convolutional Neural Network (CNN) classifier is accomplished to distinguish the normal tissue and the abnormal
tissue. The experimental evaluation is done using the Interstitial Lung Disease (ILD) database.
Collapse
Affiliation(s)
- Jalal Deen K
- Department of Electronics and Instrumentation Engineering, Sethu Institute of Technology, Virudhunagar, Madurai Tamilnadu, India.
| | | | | |
Collapse
|
45
|
Low-rank and sparse decomposition based shape model and probabilistic atlas for automatic pathological organ segmentation. Med Image Anal 2017; 38:30-49. [PMID: 28279915 DOI: 10.1016/j.media.2017.02.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/21/2022]
|
46
|
Soliman A, Khalifa F, Elnakib A, Abou El-Ghar M, Dunlap N, Wang B, Gimel'farb G, Keynton R, El-Baz A. Accurate Lungs Segmentation on CT Chest Images by Adaptive Appearance-Guided Shape Modeling. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:263-276. [PMID: 27705854 DOI: 10.1109/tmi.2016.2606370] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To accurately segment pathological and healthy lungs for reliable computer-aided disease diagnostics, a stack of chest CT scans is modeled as a sample of a spatially inhomogeneous joint 3D Markov-Gibbs random field (MGRF) of voxel-wise lung and chest CT image signals (intensities). The proposed learnable MGRF integrates two visual appearance sub-models with an adaptive lung shape submodel. The first-order appearance submodel accounts for both the original CT image and its Gaussian scale space (GSS) filtered version to specify local and global signal properties, respectively. Each empirical marginal probability distribution of signals is closely approximated with a linear combination of discrete Gaussians (LCDG), containing two positive dominant and multiple sign-alternate subordinate DGs. The approximation is separated into two LCDGs to describe individually the lungs and their background, i.e., all other chest tissues. The second-order appearance submodel quantifies conditional pairwise intensity dependencies in the nearest voxel 26-neighborhood in both the original and GSS-filtered images. The shape submodel is built for a set of training data and is adapted during segmentation using both the lung and chest appearances. The accuracy of the proposed segmentation framework is quantitatively assessed using two public databases (ISBI VESSEL12 challenge and MICCAI LOLA11 challenge) and our own database with, respectively, 20, 55, and 30 CT images of various lung pathologies acquired with different scanners and protocols. Quantitative assessment of our framework in terms of Dice similarity coefficients, 95-percentile bidirectional Hausdorff distances, and percentage volume differences confirms the high accuracy of our model on both our database (98.4±1.0%, 2.2±1.0 mm, 0.42±0.10%) and the VESSEL12 database (99.0±0.5%, 2.1±1.6 mm, 0.39±0.20%), respectively. Similarly, the accuracy of our approach is further verified via a blind evaluation by the organizers of the LOLA11 competition, where an average overlap of 98.0% with the expert's segmentation is yielded on all 55 subjects with our framework being ranked first among all the state-of-the-art techniques compared.
Collapse
|
47
|
Automatic Approach for Lung Segmentation with Juxta-Pleural Nodules from Thoracic CT Based on Contour Tracing and Correction. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:2962047. [PMID: 27974907 PMCID: PMC5128731 DOI: 10.1155/2016/2962047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022]
Abstract
This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD) 11.15 ± 69.63 cm3, volume overlap error (VOE) 3.5057 ± 1.3719%, average surface distance (ASD) 0.7917 ± 0.2741 mm, root mean square distance (RMSD) 1.6957 ± 0.6568 mm, maximum symmetric absolute surface distance (MSD) 21.3430 ± 8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.
Collapse
|
48
|
Joint Lung CT Image Segmentation: A Hierarchical Bayesian Approach. PLoS One 2016; 11:e0162211. [PMID: 27611188 PMCID: PMC5017654 DOI: 10.1371/journal.pone.0162211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/18/2016] [Indexed: 11/30/2022] Open
Abstract
Accurate lung CT image segmentation is of great clinical value, especially when it comes to delineate pathological regions including lung tumor. In this paper, we present a novel framework that jointly segments multiple lung computed tomography (CT) images via hierarchical Dirichlet process (HDP). In specifics, based on the assumption that lung CT images from different patients share similar image structure (organ sets and relative positioning), we derive a mathematical model to segment them simultaneously so that shared information across patients could be utilized to regularize each individual segmentation. Moreover, compared to many conventional models, the algorithm requires little manual involvement due to the nonparametric nature of Dirichlet process (DP). We validated proposed model upon clinical data consisting of healthy and abnormal (lung cancer) patients. We demonstrate that, because of the joint segmentation fashion, more accurate and consistent segmentations could be obtained.
Collapse
|
49
|
Rebouças Filho PP, Cortez PC, da Silva Barros AC, C Albuquerque VH, R S Tavares JM. Novel and powerful 3D adaptive crisp active contour method applied in the segmentation of CT lung images. Med Image Anal 2016; 35:503-516. [PMID: 27614793 DOI: 10.1016/j.media.2016.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 10/21/2022]
Abstract
The World Health Organization estimates that 300 million people have asthma, 210 million people have Chronic Obstructive Pulmonary Disease (COPD), and, according to WHO, COPD will become the third major cause of death worldwide in 2030. Computational Vision systems are commonly used in pulmonology to address the task of image segmentation, which is essential for accurate medical diagnoses. Segmentation defines the regions of the lungs in CT images of the thorax that must be further analyzed by the system or by a specialist physician. This work proposes a novel and powerful technique named 3D Adaptive Crisp Active Contour Method (3D ACACM) for the segmentation of CT lung images. The method starts with a sphere within the lung to be segmented that is deformed by forces acting on it towards the lung borders. This process is performed iteratively in order to minimize an energy function associated with the 3D deformable model used. In the experimental assessment, the 3D ACACM is compared against three approaches commonly used in this field: the automatic 3D Region Growing, the level-set algorithm based on coherent propagation and the semi-automatic segmentation by an expert using the 3D OsiriX toolbox. When applied to 40 CT scans of the chest the 3D ACACM had an average F-measure of 99.22%, revealing its superiority and competency to segment lungs in CT images.
Collapse
Affiliation(s)
- Pedro Pedrosa Rebouças Filho
- Laboratório de Processamento de Imagens e Simulação Computacional, Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Maracanau, CE, Brazil.
| | - Paulo César Cortez
- Departamento de Engenharia de Teleinformática, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| | - Antônio C da Silva Barros
- Programa de Pós-Graduação em Informática Aplicada, Laboratório de Bioinformática, Universidade de Fortaleza, Fortaleza, Ceará, Brazil.
| | - Victor Hugo C Albuquerque
- Programa de Pós-Graduação em Informática Aplicada, Laboratório de Bioinformática, Universidade de Fortaleza, Fortaleza, Ceará, Brazil.
| | - João Manuel R S Tavares
- Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
50
|
Many Is Better Than One: An Integration of Multiple Simple Strategies for Accurate Lung Segmentation in CT Images. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1480423. [PMID: 27635395 PMCID: PMC5011243 DOI: 10.1155/2016/1480423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/19/2016] [Indexed: 11/28/2022]
Abstract
Accurate lung segmentation is an essential step in developing a computer-aided lung disease diagnosis system. However, because of the high variability of computerized tomography (CT) images, it remains a difficult task to accurately segment lung tissue in CT slices using a simple strategy. Motived by the aforementioned, a novel CT lung segmentation method based on the integration of multiple strategies was proposed in this paper. Firstly, in order to avoid noise, the input CT slice was smoothed using the guided filter. Then, the smoothed slice was transformed into a binary image using an optimized threshold. Next, a region growing strategy was employed to extract thorax regions. Then, lung regions were segmented from the thorax regions using a seed-based random walk algorithm. The segmented lung contour was then smoothed and corrected with a curvature-based correction method on each axis slice. Finally, with the lung masks, the lung region was automatically segmented from a CT slice. The proposed method was validated on a CT database consisting of 23 scans, including a number of 883 2D slices (the number of slices per scan is 38 slices), by comparing it to the commonly used lung segmentation method. Experimental results show that the proposed method accurately segmented lung regions in CT slices.
Collapse
|