1
|
Sun Q, He N, Yang P, Zhao X. Low dose computed tomography reconstruction with momentum-based frequency adjustment network. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 263:108673. [PMID: 40023964 DOI: 10.1016/j.cmpb.2025.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/29/2024] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND AND OBJECTIVE Recent investigations into Low-Dose Computed Tomography (LDCT) reconstruction methods have brought Model-Based Data-Driven (MBDD) approaches to the forefront. One prominent architecture within MBDD entails the integration of Model-Based Iterative Reconstruction (MBIR) with Deep Learning (DL). While this approach offers the advantage of harnessing information from sinogram and image domains, it also reveals several deficiencies. First and foremost, the efficacy of DL methods within the realm of MBDD necessitates meticulous enhancement, as it directly impacts the computational cost and the quality of reconstructed images. Next, high computational costs and a high number of iterations limit the development of MBDD methods. Last but not least, CT reconstruction is sensitive to pixel accuracy, and the role of loss functions within DL methods is crucial for meeting this requirement. METHODS This paper advances MBDD methods through three principal contributions. Firstly, we introduce an innovative Frequency Adjustment Network (FAN) that effectively adjusts both high and low-frequency components during the inference phase, resulting in substantial enhancements in reconstruction performance. Second, we develop the Momentum-based Frequency Adjustment Network (MFAN), which leverages momentum terms as an extrapolation strategy to facilitate the amplification of changes throughout successive iterations, culminating in a rapid convergence framework. Lastly, we delve into the visual properties of CT images and present a unique loss function named Focal Detail Loss (FDL). The FDL function preserves fine details throughout the training phase, significantly improving reconstruction quality. RESULTS Through a series of experiments validation on the AAPM-Mayo public dataset and real-world piglet datasets, the aforementioned three contributions demonstrated superior performance. MFAN achieved convergence in 10 iterations as an iteration method, faster than other methods. Ablation studies further highlight the advanced performance of each contribution. CONCLUSIONS This paper presents an MBDD-based LDCT reconstruction method using a momentum-based frequency adjustment network with a focal detail loss function. This approach significantly reduces the number of iterations required for convergence while achieving superior reconstruction results in visual and numerical analyses.
Collapse
Affiliation(s)
- Qixiang Sun
- School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China
| | - Ning He
- Smart City College, Beijing Union University, Beijing, 100101, China
| | - Ping Yang
- School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China
| | - Xing Zhao
- School of Mathematical Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
2
|
Li Z, Sun Z, Lv L, Liu Y, Wang X, Xu J, Xing J, Babyn P, Sun FR. Ultra-sparse view lung CT image reconstruction using generative adversarial networks and compressed sensing. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2025:8953996251329214. [PMID: 40296779 DOI: 10.1177/08953996251329214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
X-ray ionizing radiation from Computed Tomography (CT) scanning increases cancer risk for patients, thus making sparse view CT, which diminishes X-ray exposure by lowering the number of projections, highly significant in diagnostic imaging. However, reducing the number of projections inherently degrades image quality, negatively impacting clinical diagnosis. Consequently, attaining reconstructed images that meet diagnostic imaging criteria for sparse view CT is challenging. This paper presents a novel network (CSUF), specifically designed for ultra-sparse view lung CT image reconstruction. The CSUF network consists of three cohesive components including (1) a compressed sensing-based CT image reconstruction module (VdCS module), (2) a U-shaped end-to-end network, CT-RDNet, enhanced with a self-attention mechanism, acting as the generator in a Generative Adversarial Network (GAN) for CT image restoration and denoising, and (3) a feedback loop. The VdCS module enriches CT-RDNet with enhanced features, while CT-RDNet supplies the VdCS module with prior images infused with rich details and minimized artifacts, facilitated by the feedback loop. Engineering simulation experimental results demonstrate the robustness of the CSUF network and its potential to deliver lung CT images with diagnostic imaging quality even under ultra-sparse view conditions.
Collapse
Affiliation(s)
- Zhaoguang Li
- School of Integrated Circuits, Shandong University, Jinan, China
| | - Zhengxiang Sun
- Faculty of Science, The University of Sydney, NSW, Australia
| | - Lin Lv
- School of Integrated Circuits, Shandong University, Jinan, China
| | - Yuhan Liu
- School of Integrated Circuits, Shandong University, Jinan, China
| | - Xiuying Wang
- Faculty of Engineering, The University of Sydney, NSW, Australia
| | - Jingjing Xu
- School of Integrated Circuits, Shandong University, Jinan, China
| | - Jianping Xing
- School of Integrated Circuits, Shandong University, Jinan, China
| | - Paul Babyn
- Department of Medical Imaging, University of Saskatchewan and Saskatoon Health Region, Saskatoon, Canada
| | - Feng-Rong Sun
- School of Integrated Circuits, Shandong University, Jinan, China
| |
Collapse
|
3
|
Li L, Zhang Z, Li Y, Wang Y, Zhao W. DDoCT: Morphology preserved dual-domain joint optimization for fast sparse-view low-dose CT imaging. Med Image Anal 2025; 101:103420. [PMID: 39705821 DOI: 10.1016/j.media.2024.103420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/23/2024]
Abstract
Computed tomography (CT) is continuously becoming a valuable diagnostic technique in clinical practice. However, the radiation dose exposure in the CT scanning process is a public health concern. Within medical diagnoses, mitigating the radiation risk to patients can be achieved by reducing the radiation dose through adjustments in tube current and/or the number of projections. Nevertheless, dose reduction introduces additional noise and artifacts, which have extremely detrimental effects on clinical diagnosis and subsequent analysis. In recent years, the feasibility of applying deep learning methods to low-dose CT (LDCT) imaging has been demonstrated, leading to significant achievements. This article proposes a dual-domain joint optimization LDCT imaging framework (termed DDoCT) which uses noisy sparse-view projection to reconstruct high-performance CT images with joint optimization in projection and image domains. The proposed method not only addresses the noise introduced by reducing tube current, but also pays special attention to issues such as streak artifacts caused by a reduction in the number of projections, enhancing the applicability of DDoCT in practical fast LDCT imaging environments. Experimental results have demonstrated that DDoCT has made significant progress in reducing noise and streak artifacts and enhancing the contrast and clarity of the images.
Collapse
Affiliation(s)
- Linxuan Li
- School of Physics, Beihang University, Beijing, China.
| | - Zhijie Zhang
- School of Physics, Beihang University, Beijing, China.
| | - Yongqing Li
- School of Physics, Beihang University, Beijing, China.
| | - Yanxin Wang
- School of Physics, Beihang University, Beijing, China.
| | - Wei Zhao
- School of Physics, Beihang University, Beijing, China; Hangzhou International Innovation Institute, Beihang University, Hangzhou, China; Tianmushan Laboratory, Hangzhou, China.
| |
Collapse
|
4
|
Zhang J, Ye L, Gong W, Chen M, Liu G, Cheng Y. A Novel Network for Low-Dose CT Denoising Based on Dual-Branch Structure and Multi-Scale Residual Attention. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:1245-1264. [PMID: 39261373 PMCID: PMC11950452 DOI: 10.1007/s10278-024-01254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Deep learning-based denoising of low-dose medical CT images has received great attention both from academic researchers and physicians in recent years, and has shown important application value in clinical practice. In this work, a novel two-branch and multi-scale residual attention-based network for low-dose CT image denoising is proposed. It adopts a two-branch framework structure, to extract and fuse image features at shallow and deep levels respectively, to recover image texture and structure information as much as possible. We propose the adaptive dynamic convolution block (ADCB) in the local information extraction layer. It can effectively extract the detailed information of low-dose CT denoising and enables the network to better capture the local details and texture features of the image, thereby improving the denoising effect and image quality. Multi-scale edge enhancement attention block (MEAB) is proposed in the global information extraction layer, to perform feature fusion through dilated convolution and a multi-dimensional attention mechanism. A multi-scale residual convolution block (MRCB) is proposed to integrate feature information and improve the robustness and generalization of the network. To demonstrate the effectiveness of our method, extensive comparison experiments are conducted and the performances evaluated on two publicly available datasets. Our model achieves 29.3004 PSNR, 0.8659 SSIM, and 14.0284 RMSE on the AAPM-Mayo dataset. It is evaluated by adding four different noise levels σ = 15, 30, 45, and 60 on the Qin_LUNG_CT dataset and achieves the best results. Ablation studies show that the proposed ADCB, MEAB, and MRCB modules improve the denoising performances significantly. The source code is available at https://github.com/Ye111-cmd/LDMANet .
Collapse
Affiliation(s)
- Ju Zhang
- College of Information Science and Technology, Hangzhou Normal University, Hangzhou, 310030, China
| | - Lieli Ye
- College of Information Science and Technology, Hangzhou Normal University, Hangzhou, 310030, China
| | - Weiwei Gong
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Mingyang Chen
- College of Information Science and Technology, Hangzhou Normal University, Hangzhou, 310030, China
| | - Guangyu Liu
- College of Information Science and Technology, Hangzhou Normal University, Hangzhou, 310030, China
| | - Yun Cheng
- Department of Medical Imaging, Zhejiang Hospital, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Han Y. Low-dose CT reconstruction using cross-domain deep learning with domain transfer module. Phys Med Biol 2025; 70:065014. [PMID: 39983305 DOI: 10.1088/1361-6560/adb932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 02/23/2025]
Abstract
Objective. X-ray computed tomography employing low-dose x-ray source is actively researched to reduce radiation exposure. However, the reduced photon count in low-dose x-ray sources leads to severe noise artifacts in analytic reconstruction methods like filtered backprojection. Recently, deep learning (DL)-based approaches employing uni-domain networks, either in the image-domain or projection-domain, have demonstrated remarkable effectiveness in reducing image noise and Poisson noise caused by low-dose x-ray source. Furthermore, dual-domain networks that integrate image-domain and projection-domain networks are being developed to surpass the performance of uni-domain networks. Despite this advancement, dual-domain networks require twice the computational resources of uni-domain networks, even though their underlying network architectures are not substantially different.Approach. The U-Net architecture, a type of Hourglass network, comprises encoder and decoder modules. The encoder extracts meaningful representations from the input data, while the decoder uses these representations to reconstruct the target data. In dual-domain networks, however, encoders and decoders are redundantly utilized due to the sequential use of two networks, leading to increased computational demands. To address this issue, this study proposes a cross-domain DL approach that leverages analytical domain transfer functions. These functions enable the transfer of features extracted by an encoder trained in input domain to target domain, thereby reducing redundant computations. The target data is then reconstructed using a decoder trained in the corresponding domain, optimizing resource efficiency without compromising performance.Main results. The proposed cross-domain network, comprising a projection-domain encoder and an image-domain decoder, demonstrated effective performance by leveraging the domain transfer function, achieving comparable results with only half the trainable parameters of dual-domain networks. Moreover, the proposed method outperformed conventional iterative reconstruction techniques and existing DL approaches in reconstruction quality.Significance. The proposed network leverages the transfer function to bypass redundant encoder and decoder modules, enabling direct connections between different domains. This approach not only surpasses the performance of dual-domain networks but also significantly reduces the number of required parameters. By facilitating the transfer of primal representations across domains, the method achieves synergistic effects, delivering high quality reconstruction images with reduced radiation doses.
Collapse
Affiliation(s)
- Yoseob Han
- Department of Electronic Engineering, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Zhang R, Szczykutowicz TP, Toia GV. Artificial Intelligence in Computed Tomography Image Reconstruction: A Review of Recent Advances. J Comput Assist Tomogr 2025:00004728-990000000-00429. [PMID: 40008975 DOI: 10.1097/rct.0000000000001734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025]
Abstract
The development of novel image reconstruction algorithms has been pivotal in enhancing image quality and reducing radiation dose in computed tomography (CT) imaging. Traditional techniques like filtered back projection perform well under ideal conditions but fail to generate high-quality images under low-dose, sparse-view, and limited-angle conditions. Iterative reconstruction methods improve upon filtered back projection by incorporating system models and assumptions about the patient, yet they can suffer from patchy image textures. The emergence of artificial intelligence (AI), particularly deep learning, has further advanced CT reconstruction. AI techniques have demonstrated great potential in reducing radiation dose while preserving image quality and noise texture. Moreover, AI has exhibited unprecedented performance in addressing challenging CT reconstruction problems, including low-dose CT, sparse-view CT, limited-angle CT, and interior tomography. This review focuses on the latest advances in AI-based CT reconstruction under these challenging conditions.
Collapse
Affiliation(s)
- Ran Zhang
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, WI
| | | | | |
Collapse
|
7
|
Zhang J, Li Z, Pan J, Wang S, Wu W. Trustworthy Limited Data CT Reconstruction Using Progressive Artifact Image Learning. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2025; 34:1163-1178. [PMID: 40031253 DOI: 10.1109/tip.2025.3534559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The reconstruction of limited data computed tomography (CT) aims to obtain high-quality images from a reduced set of projection views acquired from sparse views or limited angles. This approach is utilized to reduce radiation exposure or expedite the scanning process. Deep Learning (DL) techniques have been incorporated into limited data CT reconstruction tasks and achieve remarkable performance. However, these DL methods suffer from various limitations. Firstly, the distribution inconsistency between the simulation data and the real data hinders the generalization of these DL-based methods. Secondly, these DL-based methods could be unstable due to lack of kernel awareness. This paper addresses these issues by proposing an unrolling framework called Progressive Artifact Image Learning (PAIL) for limited data CT reconstruction. The proposed PAIL primarily consists of three key modules, i.e., a residual domain module (RDM), an image domain module (IDM), and a wavelet domain module (WDM). The RDM is designed to refine features from residual images and suppress the observable artifacts from the reconstructed images. This module could effectively alleviate the effects of distribution inconsistency among different data sets by transferring the optimization space from the original data domain to the residual data domain. The IDM is designed to suppress the unobservable artifacts in the image space. The RDM and IDM collaborate with each other during the iterative optimization process, progressively removing artifacts and reconstructing the underlying CT image. Furthermore, in order to void the potential hallucinations generated by the RDM and IDM, an additional WDM is incorporated into the network to enhance its stability. This is achieved by making the network become kernel-aware via integrating wavelet-based compressed sensing. The effectiveness of the proposed PAIL method has been consistently verified on two simulated CT data sets, a clinical cardiac data set and a sheep lung data set. Compared to other state-of-the-art methods, the proposed PAIL method achieves superior performance in various limited data CT reconstruction tasks, demonstrating its promising generalization and stability.
Collapse
|
8
|
Zhou H, Liu W, Zhou Y, Song W, Zhang F, Zhu Y. Dual-domain Wasserstein Generative Adversarial Network with Hybrid Loss for Low-dose CT Imaging. Phys Med Biol 2025; 70:025018. [PMID: 39761646 DOI: 10.1088/1361-6560/ada687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/06/2025] [Indexed: 01/21/2025]
Abstract
Objective.Low-dose computed tomography (LDCT) has gained significant attention in hospitals and clinics as a popular imaging modality for reducing the risk of x-ray radiation. However, reconstructed LDCT images often suffer from undesired noise and artifacts, which can negatively impact diagnostic accuracy. This study aims to develop a novel approach to improve LDCT imaging performance.Approach.A dual-domain Wasserstein generative adversarial network (DWGAN) with hybrid loss is proposed as an effective and integrated deep neural network (DNN) for LDCT imaging. The DWGAN comprises two key components: a generator (G) network and a discriminator (D) network. TheGnetwork is a dual-domain DNN designed to predict high-quality images by integrating three essential components: the projection-domain denoising module, filtered back-projection-based reconstruction layer, and image-domain enhancement module. TheDnetwork is a shallow convolutional neural network used to differentiate between real (label) and generated images. To prevent the reconstructed images from becoming excessively smooth and to preserve both structural and textural details, a hybrid loss function with weighting coefficients is incorporated into the DWGAN.Main results.Numerical experiments demonstrate that the proposed DWGAN can effectively suppress noise and better preserve image details compared with existing methods. Moreover, its application to head CT data confirms the superior performance of the DWGAN in restoring structural and textural details.Significance.The proposed DWGAN framework exhibits excellent performance in recovering structural and textural details in LDCT images. Furthermore, the framework can be applied to other tomographic imaging techniques that suffer from image distortion problems.
Collapse
Affiliation(s)
- Haichuan Zhou
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Wei Liu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Yu Zhou
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Weidong Song
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Fengshou Zhang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang 471000, People's Republic of China
| | - Yining Zhu
- School of Mathematical Sciences, Capital Normal University, Beijing 100048, People's Republic of China
| |
Collapse
|
9
|
Wang S, Yang Y, Stevens GM, Yin Z, Wang AS. Emulating Low-Dose PCCT Image Pairs With Independent Noise for Self-Supervised Spectral Image Denoising. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:530-542. [PMID: 39196747 DOI: 10.1109/tmi.2024.3449817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Photon counting CT (PCCT) acquires spectral measurements and enables generation of material decomposition (MD) images that provide distinct advantages in various clinical situations. However, noise amplification is observed in MD images, and denoising is typically applied. Clean or high-quality references are rare in clinical scans, often making supervised learning (Noise2Clean) impractical. Noise2Noise is a self-supervised counterpart, using noisy images and corresponding noisy references with zero-mean, independent noise. PCCT counts transmitted photons separately, and raw measurements are assumed to follow a Poisson distribution in each energy bin, providing the possibility to create noise-independent pairs. The approach is to use binomial selection to split the counts into two low-dose scans with independent noise. We prove that the reconstructed spectral images inherit the noise independence from counts domain through noise propagation analysis and also validated it in numerical simulation and experimental phantom scans. The method offers the flexibility to split measurements into desired dose levels while ensuring the reconstructed images share identical underlying features, thereby strengthening the model's robustness for input dose levels and capability of preserving fine details. In both numerical simulation and experimental phantom scans, we demonstrated that Noise2Noise with binomial selection outperforms other common self-supervised learning methods based on different presumptive conditions.
Collapse
|
10
|
Chen X, Xia W, Yang Z, Chen H, Liu Y, Zhou J, Wang Z, Chen Y, Wen B, Zhang Y. SOUL-Net: A Sparse and Low-Rank Unrolling Network for Spectral CT Image Reconstruction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:18620-18634. [PMID: 37792650 DOI: 10.1109/tnnls.2023.3319408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Spectral computed tomography (CT) is an emerging technology, that generates a multienergy attenuation map for the interior of an object and extends the traditional image volume into a 4-D form. Compared with traditional CT based on energy-integrating detectors, spectral CT can make full use of spectral information, resulting in high resolution and providing accurate material quantification. Numerous model-based iterative reconstruction methods have been proposed for spectral CT reconstruction. However, these methods usually suffer from difficulties such as laborious parameter selection and expensive computational costs. In addition, due to the image similarity of different energy bins, spectral CT usually implies a strong low-rank prior, which has been widely adopted in current iterative reconstruction models. Singular value thresholding (SVT) is an effective algorithm to solve the low-rank constrained model. However, the SVT method requires a manual selection of thresholds, which may lead to suboptimal results. To relieve these problems, in this article, we propose a sparse and low-rank unrolling network (SOUL-Net) for spectral CT image reconstruction, that learns the parameters and thresholds in a data-driven manner. Furthermore, a Taylor expansion-based neural network backpropagation method is introduced to improve the numerical stability. The qualitative and quantitative results demonstrate that the proposed method outperforms several representative state-of-the-art algorithms in terms of detail preservation and artifact reduction.
Collapse
|
11
|
Liu C, Li S, Hu D, Zhong Y, Wang J, Zhang P. Hybrid plug-and-play CT image restoration using nonconvex low-rank group sparsity and deep denoiser priors. Phys Med Biol 2024; 69:235004. [PMID: 39564662 DOI: 10.1088/1361-6560/ad8c98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
Objective. Low-dose computed tomography (LDCT) is an imaging technique that can effectively help patients reduce radiation dose, which has attracted increasing interest from researchers in the field of medical imaging. Nevertheless, LDCT imaging is often affected by a large amount of noise, making it difficult to clearly display subtle abnormalities or lesions. Therefore, this paper proposes a multiple complementary priors CT image reconstruction method by simultaneously considering both the internal prior and external image information of CT images, thereby enhancing the reconstruction quality of CT images.Approach. Specifically, we propose a CT image reconstruction method based on weighted nonconvex low-rank regularized group sparse and deep image priors under hybrid plug-and-play framework by utilizing the weighted nonconvex low rankness and group sparsity of dictionary domain coefficients of each group of similar patches, and a convolutional neural network denoiser. To make the proposed reconstruction problem easier to tackle, we utilize the alternate direction method of multipliers for optimization.Main results. To verify the performance of the proposed method, we conduct detailed simulation experiments on the images of the abdominal, pelvic, and thoracic at projection views of 45, 65, and 85, and at noise levels of1×105and1×106, respectively. A large number of qualitative and quantitative experimental results indicate that the proposed method has achieved better results in texture preservation and noise suppression compared to several existing iterative reconstruction methods.Significance. The proposed method fully considers the internal nonlocal low rankness and sparsity, as well as the external local information of CT images, providing a more effective solution for CT image reconstruction. Consequently, this method enables doctors to diagnose and treat diseases more accurately by reconstructing high-quality CT images.
Collapse
Affiliation(s)
- Chunyan Liu
- School of Mathematics and Statistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Sui Li
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, People's Republic of China
| | - Dianlin Hu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China 999077, People's Republic of China
| | - Yuxiang Zhong
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518061, People's Republic of China
| | - Jianjun Wang
- School of Mathematics and Statistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Peng Zhang
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, People's Republic of China
| |
Collapse
|
12
|
Pan S, Su V, Peng J, Li J, Gao Y, Chang CW, Wang T, Tian Z, Yang X. Patient-Specific CBCT Synthesis for Real-time Tumor Tracking in Surface-guided Radiotherapy. ARXIV 2024:arXiv:2410.23582v2. [PMID: 39575119 PMCID: PMC11581104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
In this work, we present a new imaging system to support real-time tumor tracking for surface-guided radiotherapy (SGRT). SGRT uses optical surface imaging (OSI) to acquire real-time surface topography images of the patient on the treatment couch. This serves as a surrogate for intra-fractional tumor motion tracking to guide radiation delivery. However, OSI cannot visualize internal anatomy, leading to motion tracking uncertainties for internal tumors, as body surface motion often does not have a good correlation with the internal tumor motion, particularly for lung cancer. This study proposes an Advanced Surface Imaging (A-SI) framework to address this issue. In the proposed A-SI framework, a high-speed surface imaging camera consistently captures surface images during radiation delivery, and a CBCT imager captures single-angle X-ray projections at low frequency. The A-SI then utilizes a generative model to generate real-time volumetric images with full anatomy, referred to as Optical Surface-Derived cone beam computed tomography (OSD-CBCT), based on the real-time high-frequent surface images and the low-frequency collected single-angle X-ray projections. The generated OSD-CBCT can provide accurate tumor motion for precise radiation delivery. The A-SI framework uses a patient-specific generative model: physics-integrated consistency-refinement denoising diffusion probabilistic model (PC-DDPM). This model leverages patient-specific anatomical structures and respiratory motion patterns derived from four-dimensional CT (4DCT) during treatment planning. It then employs a geometric transformation module (GTM) to extract volumetric anatomy information from the single-angle X-ray projection. A physics-integrated and cycle-consistency refinement strategy uses this information and the surface images to guide the DDPM, generating high quality OSD-CBCTs throughout the entire radiation delivery. A simulation study with 22 lung cancer patients evaluated the A-SI framework supported by PC-DDPM. The results showed that the framework produced real-time OSD-CBCT with high reconstruction fidelity and precise tumor localization. These results were validated through comprehensive intensity-, structural-, visual-, and clinical-level assessments. This study demonstrates the potential of A-SI to enable real-time tumor tracking with minimal imaging dose, advancing SGRT for motion-associated cancers and interventional procedures.
Collapse
Affiliation(s)
- Shaoyan Pan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Computer Science and Informatics, Emory University, Atlanta, GA 30322, USA
| | - Vanessa Su
- Department of Computer Science and Informatics, Emory University, Atlanta, GA 30322, USA
| | - Junbo Peng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Junyuan Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205
| | - Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Zhen Tian
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, 60637
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Computer Science and Informatics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Shi Y, Gao Y, Xu Q, Li Y, Mou X, Liang Z. Learned Tensor Neural Network Texture Prior for Photon-Counting CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3830-3842. [PMID: 38753483 DOI: 10.1109/tmi.2024.3402079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Photon-counting computed tomography (PCCT) reconstructs multiple energy-channel images to describe the same object, where there exists a strong correlation among different channel images. In addition, reconstruction of each channel image suffers photon count starving problem. To make full use of the correlation among different channel images to suppress the data noise and enhance the texture details in reconstructing each channel image, this paper proposes a tensor neural network (TNN) architecture to learn a multi-channel texture prior for PCCT reconstruction. Specifically, we first learn a spatial texture prior in each individual channel image by modeling the relationship between the center pixels and its corresponding neighbor pixels using a neural network. Then, we merge the single channel spatial texture prior into multi-channel neural network to learn the spectral local correlation information among different channel images. Since our proposed TNN is trained on a series of unpaired small spatial-spectral cubes which are extracted from one single reference multi-channel image, the local correlation in the spatial-spectral cubes is considered by TNN. To boost the TNN performance, a low-rank representation is also employed to consider the global correlation among different channel images. Finally, we integrate the learned TNN and the low-rank representation as priors into Bayesian reconstruction framework. To evaluate the performance of the proposed method, four references are considered. One is simulated images from ultra-high-resolution CT. One is spectral images from dual-energy CT. The other two are animal tissue and preclinical mouse images from a custom-made PCCT systems. Our TNN prior Bayesian reconstruction demonstrated better performance than other state-of-the-art competing algorithms, in terms of not only preserving texture feature but also suppressing image noise in each channel image.
Collapse
|
14
|
Lu Y, Xu Z, Hyung Choi M, Kim J, Jung SW. Cross-Domain Denoising for Low-Dose Multi-Frame Spiral Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3949-3963. [PMID: 38787677 DOI: 10.1109/tmi.2024.3405024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Computed tomography (CT) has been used worldwide as a non-invasive test to assist in diagnosis. However, the ionizing nature of X-ray exposure raises concerns about potential health risks such as cancer. The desire for lower radiation doses has driven researchers to improve reconstruction quality. Although previous studies on low-dose computed tomography (LDCT) denoising have demonstrated the effectiveness of learning-based methods, most were developed on the simulated data. However, the real-world scenario differs significantly from the simulation domain, especially when using the multi-slice spiral scanner geometry. This paper proposes a two-stage method for the commercially available multi-slice spiral CT scanners that better exploits the complete reconstruction pipeline for LDCT denoising across different domains. Our approach makes good use of the high redundancy of multi-slice projections and the volumetric reconstructions while leveraging the over-smoothing issue in conventional cascaded frameworks caused by aggressive denoising. The dedicated design also provides a more explicit interpretation of the data flow. Extensive experiments on various datasets showed that the proposed method could remove up to 70% of noise without compromised spatial resolution, while subjective evaluations by two experienced radiologists further supported its superior performance against state-of-the-art methods in clinical practice. Code is available at https://github.com/YCL92/TMD-LDCT.
Collapse
|
15
|
Xu R, Liu Y, Li Z, Gui Z. Sparse-view CT reconstruction based on group-based sparse representation using weighted guided image filtering. BIOMED ENG-BIOMED TE 2024; 69:431-439. [PMID: 38598849 DOI: 10.1515/bmt-2023-0581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/21/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVES In the past, guided image filtering (GIF)-based methods often utilized total variation (TV)-based methods to reconstruct guidance images. And they failed to reconstruct the intricate details of complex clinical images accurately. To address these problems, we propose a new sparse-view CT reconstruction method based on group-based sparse representation using weighted guided image filtering. METHODS In each iteration of the proposed algorithm, the result constrained by the group-based sparse representation (GSR) is used as the guidance image. Then, the weighted guided image filtering (WGIF) was used to transfer the important features from the guidance image to the reconstruction of the SART method. RESULTS Three representative slices were tested under 64 projection views, and the proposed method yielded the best visual effect. For the shoulder case, the PSNR can achieve 48.82, which is far superior to other methods. CONCLUSIONS The experimental results demonstrate that our method is more effective in preserving structures, suppressing noise, and reducing artifacts compared to other methods.
Collapse
Affiliation(s)
- Rong Xu
- School of Information and Communication Engineering, 66291 North University of China , Taiyuan, China
| | - Yi Liu
- School of Information and Communication Engineering, 66291 North University of China , Taiyuan, China
| | - Zhiyuan Li
- School of Information and Communication Engineering, 66291 North University of China , Taiyuan, China
| | - Zhiguo Gui
- School of Information and Communication Engineering, 66291 North University of China , Taiyuan, China
| |
Collapse
|
16
|
Wu W, Pan J, Wang Y, Wang S, Zhang J. Multi-Channel Optimization Generative Model for Stable Ultra-Sparse-View CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3461-3475. [PMID: 38466593 DOI: 10.1109/tmi.2024.3376414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Score-based generative model (SGM) has risen to prominence in sparse-view CT reconstruction due to its impressive generation capability. The consistency of data is crucial in guiding the reconstruction process in SGM-based reconstruction methods. However, the existing data consistency policy exhibits certain limitations. Firstly, it employs partial data from the reconstructed image of the iteration process for image updates, which leads to secondary artifacts with compromising image quality. Moreover, the updates to the SGM and data consistency are considered as distinct stages, disregarding their interdependent relationship. Additionally, the reference image used to compute gradients in the reconstruction process is derived from the intermediate result rather than ground truth. Motivated by the fact that a typical SGM yields distinct outcomes with different random noise inputs, we propose a Multi-channel Optimization Generative Model (MOGM) for stable ultra-sparse-view CT reconstruction by integrating a novel data consistency term into the stochastic differential equation model. Notably, the unique aspect of this data consistency component is its exclusive reliance on original data for effectively confining generation outcomes. Furthermore, we pioneer an inference strategy that traces back from the current iteration result to ground truth, enhancing reconstruction stability through foundational theoretical support. We also establish a multi-channel optimization reconstruction framework, where conventional iterative techniques are employed to seek the reconstruction solution. Quantitative and qualitative assessments on 23 views datasets from numerical simulation, clinical cardiac and sheep's lung underscore the superiority of MOGM over alternative methods. Reconstructing from just 10 and 7 views, our method consistently demonstrates exceptional performance.
Collapse
|
17
|
Li Z, Chang D, Zhang Z, Luo F, Liu Q, Zhang J, Yang G, Wu W. Dual-Domain Collaborative Diffusion Sampling for Multi-Source Stationary Computed Tomography Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3398-3411. [PMID: 38941197 DOI: 10.1109/tmi.2024.3420411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The multi-source stationary CT, where both the detector and X-ray source are fixed, represents a novel imaging system with high temporal resolution that has garnered significant interest. Limited space within the system restricts the number of X-ray sources, leading to sparse-view CT imaging challenges. Recent diffusion models for reconstructing sparse-view CT have generally focused separately on sinogram or image domains. Sinogram-centric models effectively estimate missing projections but may introduce artifacts, lacking mechanisms to ensure image correctness. Conversely, image-domain models, while capturing detailed image features, often struggle with complex data distribution, leading to inaccuracies in projections. Addressing these issues, the Dual-domain Collaborative Diffusion Sampling (DCDS) model integrates sinogram and image domain diffusion processes for enhanced sparse-view reconstruction. This model combines the strengths of both domains in an optimized mathematical framework. A collaborative diffusion mechanism underpins this model, improving sinogram recovery and image generative capabilities. This mechanism facilitates feedback-driven image generation from the sinogram domain and uses image domain results to complete missing projections. Optimization of the DCDS model is further achieved through the alternative direction iteration method, focusing on data consistency updates. Extensive testing, including numerical simulations, real phantoms, and clinical cardiac datasets, demonstrates the DCDS model's effectiveness. It consistently outperforms various state-of-the-art benchmarks, delivering exceptional reconstruction quality and precise sinogram.
Collapse
|
18
|
Zhang J, Mao H, Wang X, Guo Y, Wu W. Wavelet-Inspired Multi-Channel Score-Based Model for Limited-Angle CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3436-3448. [PMID: 38373130 DOI: 10.1109/tmi.2024.3367167] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Score-based generative model (SGM) has demonstrated great potential in the challenging limited-angle CT (LA-CT) reconstruction. SGM essentially models the probability density of the ground truth data and generates reconstruction results by sampling from it. Nevertheless, direct application of the existing SGM methods to LA-CT suffers multiple limitations. Firstly, the directional distribution of the artifacts attributing to the missing angles is ignored. Secondly, the different distribution properties of the artifacts in different frequency components have not been fully explored. These drawbacks would inevitably degrade the estimation of the probability density and the reconstruction results. After an in-depth analysis of these factors, this paper proposes a Wavelet-Inspired Score-based Model (WISM) for LA-CT reconstruction. Specifically, besides training a typical SGM with the original images, the proposed method additionally performs the wavelet transform and models the probability density in each wavelet component with an extra SGM. The wavelet components preserve the spatial correspondence with the original image while performing frequency decomposition, thereby keeping the directional property of the artifacts for further analysis. On the other hand, different wavelet components possess more specific contents of the original image in different frequency ranges, simplifying the probability density modeling by decomposing the overall density into component-wise ones. The resulting two SGMs in the image-domain and wavelet-domain are integrated into a unified sampling process under the guidance of the observation data, jointly generating high-quality and consistent LA-CT reconstructions. The experimental evaluation on various datasets consistently verifies the superior performance of the proposed method over the competing method.
Collapse
|
19
|
Wang Y, Li Z, Wu W. Time-Reversion Fast-Sampling Score-Based Model for Limited-Angle CT Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3449-3460. [PMID: 38913528 DOI: 10.1109/tmi.2024.3418838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The score-based generative model (SGM) has received significant attention in the field of medical imaging, particularly in the context of limited-angle computed tomography (LACT). Traditional SGM approaches achieved robust reconstruction performance by incorporating a substantial number of sampling steps during the inference phase. However, these established SGM-based methods require large computational cost to reconstruct one case. The main challenge lies in achieving high-quality images with rapid sampling while preserving sharp edges and small features. In this study, we propose an innovative rapid-sampling strategy for SGM, which we have aptly named the time-reversion fast-sampling (TIFA) score-based model for LACT reconstruction. The entire sampling procedure adheres steadfastly to the principles of robust optimization theory and is firmly grounded in a comprehensive mathematical model. TIFA's rapid-sampling mechanism comprises several essential components, including jump sampling, time-reversion with re-sampling, and compressed sampling. In the initial jump sampling stage, multiple sampling steps are bypassed to expedite the attainment of preliminary results. Subsequently, during the time-reversion process, the initial results undergo controlled corruption by introducing small-scale noise. The re-sampling process then diligently refines the initially corrupted results. Finally, compressed sampling fine-tunes the refinement outcomes by imposing regularization term. Quantitative and qualitative assessments conducted on numerical simulations, real physical phantom, and clinical cardiac datasets, unequivocally demonstrate that TIFA method (using 200 steps) outperforms other state-of-the-art methods (using 2000 steps) from available [0°, 90°] and [0°, 60°]. Furthermore, experimental results underscore that our TIFA method continues to reconstruct high-quality images even with 10 steps. Our code at https://github.com/tianzhijiaoziA/TIFADiffusion.
Collapse
|
20
|
Liu Y, Zhou X, Wei C, Xu Q. Sparse-View Spectral CT Reconstruction and Material Decomposition Based on Multi-Channel SGM. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3425-3435. [PMID: 38865221 DOI: 10.1109/tmi.2024.3413085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In medical applications, the diffusion of contrast agents in tissue can reflect the physiological function of organisms, so it is valuable to quantify the distribution and content of contrast agents in the body over a period. Spectral CT has the advantages of multi-energy projection acquisition and material decomposition, which can quantify K-edge contrast agents. However, multiple repetitive spectral CT scans can cause excessive radiation doses. Sparse-view scanning is commonly used to reduce dose and scan time, but its reconstructed images are usually accompanied by streaking artifacts, which leads to inaccurate quantification of the contrast agents. To solve this problem, an unsupervised sparse-view spectral CT reconstruction and material decomposition algorithm based on the multi-channel score-based generative model (SGM) is proposed in this paper. First, multi-energy images and tissue images are used as multi-channel input data for SGM training. Secondly, the organism is multiply scanned in sparse views, and the trained SGM is utilized to generate multi-energy images and tissue images driven by sparse-view projections. After that, a material decomposition algorithm using tissue images generated by SGM as prior images for solving contrast agent images is established. Finally, the distribution and content of the contrast agents are obtained. The comparison and evaluation of this method are given in this paper, and a series of mouse scanning experiments are carried out to verify the effectiveness of the method.
Collapse
|
21
|
Bousse A, Kandarpa VSS, Rit S, Perelli A, Li M, Wang G, Zhou J, Wang G. Systematic Review on Learning-based Spectral CT. ARXIV 2024:arXiv:2304.07588v9. [PMID: 37461421 PMCID: PMC10350100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: dual-energy computed tomography (DECT) and photon-counting computed tomography (PCCT), which offer image improvement, material decomposition, and feature quantification relative to conventional CT. However, the inherent challenges of spectral CT, evidenced by data and image artifacts, remain a bottleneck for clinical applications. To address these problems, machine learning techniques have been widely applied to spectral CT. In this review, we present the state-of-the-art data-driven techniques for spectral CT.
Collapse
Affiliation(s)
| | | | - Simon Rit
- Univ. Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69373, Lyon, France
| | - Alessandro Perelli
- School of Science and Engineering, University of Dundee, DD1 4HN Dundee, U.K
| | - Mengzhou Li
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, CA 95817 USA
| | - Jian Zhou
- CTIQ, Canon Medical Research USA, Inc., Vernon Hills, IL 60061 USA
| | - Ge Wang
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| |
Collapse
|
22
|
Li G, Deng Z, Ge Y, Luo S. HEAL: High-Frequency Enhanced and Attention-Guided Learning Network for Sparse-View CT Reconstruction. Bioengineering (Basel) 2024; 11:646. [PMID: 39061728 PMCID: PMC11273693 DOI: 10.3390/bioengineering11070646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
X-ray computed tomography (CT) imaging technology has become an indispensable diagnostic tool in clinical examination. However, it poses a risk of ionizing radiation, making the reduction of radiation dose one of the current research hotspots in CT imaging. Sparse-view imaging, as one of the main methods for reducing radiation dose, has made significant progress in recent years. In particular, sparse-view reconstruction methods based on deep learning have shown promising results. Nevertheless, efficiently recovering image details under ultra-sparse conditions remains a challenge. To address this challenge, this paper proposes a high-frequency enhanced and attention-guided learning Network (HEAL). HEAL includes three optimization strategies to achieve detail enhancement: Firstly, we introduce a dual-domain progressive enhancement module, which leverages fidelity constraints within each domain and consistency constraints across domains to effectively narrow the solution space. Secondly, we incorporate both channel and spatial attention mechanisms to improve the network's feature-scaling process. Finally, we propose a high-frequency component enhancement regularization term that integrates residual learning with direction-weighted total variation, utilizing directional cues to effectively distinguish between noise and textures. The HEAL network is trained, validated and tested under different ultra-sparse configurations of 60 views and 30 views, demonstrating its advantages in reconstruction accuracy and detail enhancement.
Collapse
Affiliation(s)
- Guang Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (G.L.); (Z.D.)
| | - Zhenhao Deng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (G.L.); (Z.D.)
| | - Yongshuai Ge
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shouhua Luo
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; (G.L.); (Z.D.)
| |
Collapse
|
23
|
Cao P, Zhang S, Zhao J, Sun J. Joint reconstruction algorithm: combining synchrotron radiation with conventional X-ray computed tomography for improved imaging. OPTICS EXPRESS 2024; 32:23215-23226. [PMID: 39538789 DOI: 10.1364/oe.528416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 11/16/2024]
Abstract
Synchrotron radiation (SR) is an excellent light source for micro-CT (micro-computed tomography) applications due to its monochromaticity and high brightness, which are crucial for achieving high-resolution imaging. However, when scanning larger objects, the limited field of view (FOV) of SR will lead to data truncation, limiting its utilization efficiency. To address this limitation, this paper proposed a method to integrate conventional X-ray CT data to supplement the truncated SR data for joint reconstruction to improve imaging. We first employ a polynomial transformation to match the image gray levels from the two distinct light sources and then resample these to form joint data. Subsequently, the method derives noise images from the noise characteristics of the projection data to construct image weight constraint that accurately reflects different data quality from two sources. The flexibility of the image weight constraint also allows for its combination with various denoisers to further enhance the reconstruction quality. Experimental results demonstrate that the proposed method can leverage the strengths of both imaging modalities to facilitate larger scale and high-resolution imaging.
Collapse
|
24
|
Wang F, Wang R, Qiu H. Low-dose CT reconstruction using dataset-free learning. PLoS One 2024; 19:e0304738. [PMID: 38875181 PMCID: PMC11178168 DOI: 10.1371/journal.pone.0304738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
Low-Dose computer tomography (LDCT) is an ideal alternative to reduce radiation risk in clinical applications. Although supervised-deep-learning-based reconstruction methods have demonstrated superior performance compared to conventional model-driven reconstruction algorithms, they require collecting massive pairs of low-dose and norm-dose CT images for neural network training, which limits their practical application in LDCT imaging. In this paper, we propose an unsupervised and training data-free learning reconstruction method for LDCT imaging that avoids the requirement for training data. The proposed method is a post-processing technique that aims to enhance the initial low-quality reconstruction results, and it reconstructs the high-quality images by neural work training that minimizes the ℓ1-norm distance between the CT measurements and their corresponding simulated sinogram data, as well as the total variation (TV) value of the reconstructed image. Moreover, the proposed method does not require to set the weights for both the data fidelity term and the plenty term. Experimental results on the AAPM challenge data and LoDoPab-CT data demonstrate that the proposed method is able to effectively suppress the noise and preserve the tiny structures. Also, these results demonstrate the rapid convergence and low computational cost of the proposed method. The source code is available at https://github.com/linfengyu77/IRLDCT.
Collapse
Affiliation(s)
- Feng Wang
- College of Big Data and Software Engineering, Zhejiang Wanli University, Ningbo, Zhejiang, China
| | - Renfang Wang
- College of Big Data and Software Engineering, Zhejiang Wanli University, Ningbo, Zhejiang, China
| | - Hong Qiu
- College of Big Data and Software Engineering, Zhejiang Wanli University, Ningbo, Zhejiang, China
| |
Collapse
|
25
|
Fu M, Zhang N, Huang Z, Zhou C, Zhang X, Yuan J, He Q, Yang Y, Zheng H, Liang D, Wu FX, Fan W, Hu Z. OIF-Net: An Optical Flow Registration-Based PET/MR Cross-Modal Interactive Fusion Network for Low-Count Brain PET Image Denoising. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1554-1567. [PMID: 38096101 DOI: 10.1109/tmi.2023.3342809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The short frames of low-count positron emission tomography (PET) images generally cause high levels of statistical noise. Thus, improving the quality of low-count images by using image postprocessing algorithms to achieve better clinical diagnoses has attracted widespread attention in the medical imaging community. Most existing deep learning-based low-count PET image enhancement methods have achieved satisfying results, however, few of them focus on denoising low-count PET images with the magnetic resonance (MR) image modality as guidance. The prior context features contained in MR images can provide abundant and complementary information for single low-count PET image denoising, especially in ultralow-count (2.5%) cases. To this end, we propose a novel two-stream dual PET/MR cross-modal interactive fusion network with an optical flow pre-alignment module, namely, OIF-Net. Specifically, the learnable optical flow registration module enables the spatial manipulation of MR imaging inputs within the network without any extra training supervision. Registered MR images fundamentally solve the problem of feature misalignment in the multimodal fusion stage, which greatly benefits the subsequent denoising process. In addition, we design a spatial-channel feature enhancement module (SC-FEM) that considers the interactive impacts of multiple modalities and provides additional information flexibility in both the spatial and channel dimensions. Furthermore, instead of simply concatenating two extracted features from these two modalities as an intermediate fusion method, the proposed cross-modal feature fusion module (CM-FFM) adopts cross-attention at multiple feature levels and greatly improves the two modalities' feature fusion procedure. Extensive experimental assessments conducted on real clinical datasets, as well as an independent clinical testing dataset, demonstrate that the proposed OIF-Net outperforms the state-of-the-art methods.
Collapse
|
26
|
Li M, Niu C, Wang G, Amma MR, Chapagain KM, Gabrielson S, Li A, Jonker K, de Ruiter N, Clark JA, Butler P, Butler A, Yu H. Deep Few-view High-resolution Photon-counting Extremity CT at Halved Dose for a Clinical Trial. ARXIV 2024:arXiv:2403.12331v1. [PMID: 38562444 PMCID: PMC10984006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The latest X-ray photon-counting computed tomography (PCCT) for extremity allows multi-energy high-resolution (HR) imaging for tissue characterization and material decomposition. However, both radiation dose and imaging speed need improvement for contrast-enhanced and other studies. Despite the success of deep learning methods for 2D few-view reconstruction, applying them to HR volumetric reconstruction of extremity scans for clinical diagnosis has been limited due to GPU memory constraints, training data scarcity, and domain gap issues. In this paper, we propose a deep learning-based approach for PCCT image reconstruction at halved dose and doubled speed in a New Zealand clinical trial. Particularly, we present a patch-based volumetric refinement network to alleviate the GPU memory limitation, train network with synthetic data, and use model-based iterative refinement to bridge the gap between synthetic and real-world data. The simulation and phantom experiments demonstrate consistently improved results under different acquisition conditions on both in- and off-domain structures using a fixed network. The image quality of 8 patients from the clinical trial are evaluated by three radiologists in comparison with the standard image reconstruction with a full-view dataset. It is shown that our proposed approach is essentially identical to or better than the clinical benchmark in terms of diagnostic image quality scores. Our approach has a great potential to improve the safety and efficiency of PCCT without compromising image quality.
Collapse
Affiliation(s)
- Mengzhou Li
- Biomedical Imaging Center, Rensselaer Polytechnic, Troy, NY, 12180 USA
| | - Chuang Niu
- Biomedical Imaging Center, Rensselaer Polytechnic, Troy, NY, 12180 USA
| | - Ge Wang
- Biomedical Imaging Center, Rensselaer Polytechnic, Troy, NY, 12180 USA
| | - Maya R Amma
- MARS Bioimaging Limited, Christchurch, New Zealand, 8041
| | - Krishna M Chapagain
- MARS Bioimaging Limited, Christchurch, New Zealand, 8041
- Department of Radiology, University of Otago, Christchurch, New Zealand, 8011
| | | | - Andrew Li
- Pacific Radiology, Christchurch, New Zealand, 8013
| | - Kevin Jonker
- MARS Bioimaging Limited, Christchurch, New Zealand, 8041
- University of Canterbury, Christchurch, New Zealand, 8041
| | | | - Jennifer A Clark
- MARS Bioimaging Limited, Christchurch, New Zealand, 8041
- Department of Radiology, University of Otago, Christchurch, New Zealand, 8011
| | - Phil Butler
- MARS Bioimaging Limited, Christchurch, New Zealand, 8041
| | - Anthony Butler
- MARS Bioimaging Limited, Christchurch, New Zealand, 8041
- Department of Radiology, University of Otago, Christchurch, New Zealand, 8011
- Canterbury District Health Board, Christchurch, New Zealand, 8011
| | - Hengyong Yu
- Department of ECE, University of Massachusetts Lowell, Lowell, MA, USA, 01854
| |
Collapse
|
27
|
Chen H, Li Q, Zhou L, Li F. Deep learning-based algorithms for low-dose CT imaging: A review. Eur J Radiol 2024; 172:111355. [PMID: 38325188 DOI: 10.1016/j.ejrad.2024.111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
The computed tomography (CT) technique is extensively employed as an imaging modality in clinical settings. The radiation dose of CT, however, is significantly high, thereby raising concerns regarding the potential radiation damage it may cause. The reduction of X-ray exposure dose in CT scanning may result in a significant decline in imaging quality, thereby elevating the risk of missed diagnosis and misdiagnosis. The reduction of CT radiation dose and acquisition of high-quality images to meet clinical diagnostic requirements have always been a critical research focus and challenge in the field of CT. Over the years, scholars have conducted extensive research on enhancing low-dose CT (LDCT) imaging algorithms, among which deep learning-based algorithms have demonstrated superior performance. In this review, we initially introduced the conventional algorithms for CT image reconstruction along with their respective advantages and disadvantages. Subsequently, we provided a detailed description of four aspects concerning the application of deep neural networks in LDCT imaging process: preprocessing in the projection domain, post-processing in the image domain, dual-domain processing imaging, and direct deep learning-based reconstruction (DLR). Furthermore, an analysis was conducted to evaluate the merits and demerits of each method. The commercial and clinical applications of the LDCT-DLR algorithm were also presented in an overview. Finally, we summarized the existing issues pertaining to LDCT-DLR and concluded the paper while outlining prospective trends for algorithmic advancement.
Collapse
Affiliation(s)
- Hongchi Chen
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Qiuxia Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Lazhen Zhou
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Fangzuo Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China; Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
28
|
Zhang J, Gong W, Ye L, Wang F, Shangguan Z, Cheng Y. A Review of deep learning methods for denoising of medical low-dose CT images. Comput Biol Med 2024; 171:108112. [PMID: 38387380 DOI: 10.1016/j.compbiomed.2024.108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
To prevent patients from being exposed to excess of radiation in CT imaging, the most common solution is to decrease the radiation dose by reducing the X-ray, and thus the quality of the resulting low-dose CT images (LDCT) is degraded, as evidenced by more noise and streaking artifacts. Therefore, it is important to maintain high quality CT image while effectively reducing radiation dose. In recent years, with the rapid development of deep learning technology, deep learning-based LDCT denoising methods have become quite popular because of their data-driven and high-performance features to achieve excellent denoising results. However, to our knowledge, no relevant article has so far comprehensively introduced and reviewed advanced deep learning denoising methods such as Transformer structures in LDCT denoising tasks. Therefore, based on the literatures related to LDCT image denoising published from year 2016-2023, and in particular from 2020 to 2023, this study presents a systematic survey of current situation, and challenges and future research directions in LDCT image denoising field. Four types of denoising networks are classified according to the network structure: CNN-based, Encoder-Decoder-based, GAN-based, and Transformer-based denoising networks, and each type of denoising network is described and summarized from the perspectives of structural features and denoising performances. Representative deep-learning denoising methods for LDCT are experimentally compared and analyzed. The study results show that CNN-based denoising methods capture image details efficiently through multi-level convolution operation, demonstrating superior denoising effects and adaptivity. Encoder-decoder networks with MSE loss, achieve outstanding results in objective metrics. GANs based methods, employing innovative generators and discriminators, obtain denoised images that exhibit perceptually a closeness to NDCT. Transformer-based methods have potential for improving denoising performances due to their powerful capability in capturing global information. Challenges and opportunities for deep learning based LDCT denoising are analyzed, and future directions are also presented.
Collapse
Affiliation(s)
- Ju Zhang
- College of Information Science and Technology, Hangzhou Normal University, Hangzhou, China.
| | - Weiwei Gong
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Lieli Ye
- College of Information Science and Technology, Hangzhou Normal University, Hangzhou, China.
| | - Fanghong Wang
- Zhijiang College, Zhejiang University of Technology, Shaoxing, China.
| | - Zhibo Shangguan
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Yun Cheng
- Department of Medical Imaging, Zhejiang Hospital, Hangzhou, China.
| |
Collapse
|
29
|
Kang Y, Liu J, Wu F, Wang K, Qiang J, Hu D, Zhang Y. Deep convolutional dictionary learning network for sparse view CT reconstruction with a group sparse prior. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:108010. [PMID: 38199137 DOI: 10.1016/j.cmpb.2024.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Purpose Numerous techniques based on deep learning have been utilized in sparse view computed tomography (CT) imaging. Nevertheless, the majority of techniques are instinctively constructed utilizing state-of-the-art opaque convolutional neural networks (CNNs) and lack interpretability. Moreover, CNNs tend to focus on local receptive fields and neglect nonlocal self-similarity prior information. Obtaining diagnostically valuable images from sparsely sampled projections is a challenging and ill-posed task. Method To address this issue, we propose a unique and understandable model named DCDL-GS for sparse view CT imaging. This model relies on a network comprised of convolutional dictionary learning and a nonlocal group sparse prior. To enhance the quality of image reconstruction, we utilize a neural network in conjunction with a statistical iterative reconstruction framework and perform a set number of iterations. Inspired by group sparsity priors, we adopt a novel group thresholding operation to improve the feature representation and constraint ability and obtain a theoretical interpretation. Furthermore, our DCDL-GS model incorporates filtered backprojection (FBP) reconstruction, fast sliding window nonlocal self-similarity operations, and a lightweight and interpretable convolutional dictionary learning network to enhance the applicability of the model. Results The efficiency of our proposed DCDL-GS model in preserving edges and recovering features is demonstrated by the visual results obtained on the LDCT-P and UIH datasets. Compared to the results of the most advanced techniques, the quantitative results are enhanced, with increases of 0.6-0.8 dB for the peak signal-to-noise ratio (PSNR), 0.005-0.01 for the structural similarity index measure (SSIM), and 1-1.3 for the regulated Fréchet inception distance (rFID) on the test dataset. The quantitative results also show the effectiveness of our proposed deep convolution iterative reconstruction module and nonlocal group sparse prior. Conclusion In this paper, we create a consolidated and enhanced mathematical model by integrating projection data and prior knowledge of images into a deep iterative model. The model is more practical and interpretable than existing approaches. The results from the experiment show that the proposed model performs well in comparison to the others.
Collapse
Affiliation(s)
- Yanqin Kang
- College of Computer and Information, Anhui Polytechnic University, Wuhu, China; Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education Nanjing, China
| | - Jin Liu
- College of Computer and Information, Anhui Polytechnic University, Wuhu, China; Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education Nanjing, China.
| | - Fan Wu
- College of Computer and Information, Anhui Polytechnic University, Wuhu, China
| | - Kun Wang
- College of Computer and Information, Anhui Polytechnic University, Wuhu, China
| | - Jun Qiang
- College of Computer and Information, Anhui Polytechnic University, Wuhu, China
| | - Dianlin Hu
- Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education Nanjing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Yikun Zhang
- Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education Nanjing, China; School of Computer Science and Engineering, Southeast University, Nanjing, China
| |
Collapse
|
30
|
Bousse A, Kandarpa VSS, Rit S, Perelli A, Li M, Wang G, Zhou J, Wang G. Systematic Review on Learning-based Spectral CT. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2024; 8:113-137. [PMID: 38476981 PMCID: PMC10927029 DOI: 10.1109/trpms.2023.3314131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Spectral computed tomography (CT) has recently emerged as an advanced version of medical CT and significantly improves conventional (single-energy) CT. Spectral CT has two main forms: dual-energy computed tomography (DECT) and photon-counting computed tomography (PCCT), which offer image improvement, material decomposition, and feature quantification relative to conventional CT. However, the inherent challenges of spectral CT, evidenced by data and image artifacts, remain a bottleneck for clinical applications. To address these problems, machine learning techniques have been widely applied to spectral CT. In this review, we present the state-of-the-art data-driven techniques for spectral CT.
Collapse
Affiliation(s)
- Alexandre Bousse
- LaTIM, Inserm UMR 1101, Université de Bretagne Occidentale, 29238 Brest, France
| | | | - Simon Rit
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Étienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69373, Lyon, France
| | - Alessandro Perelli
- Department of Biomedical Engineering, School of Science and Engineering, University of Dundee, DD1 4HN, UK
| | - Mengzhou Li
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Guobao Wang
- Department of Radiology, University of California Davis Health, Sacramento, USA
| | - Jian Zhou
- CTIQ, Canon Medical Research USA, Inc., Vernon Hills, 60061, USA
| | - Ge Wang
- Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
31
|
Lu C, Han Z, Zou J. Projection domain decomposition denoising algorithm based on low rank and similarity-based regularization. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:549-568. [PMID: 38640141 DOI: 10.3233/xst-230248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
BACKGROUND Projection Domain Decomposition (PDD) is a dual energy reconstruction method which implements the decomposition process before image reconstruction. The advantage of PDD is that it can alleviate beam hardening artifacts and metal artifacts effectively as energy spectra estimation is considered in PDD. However, noise amplification occurs during the decomposition process, which significantly impacts the accuracy of effective atomic number and electron density. Therefore, effective noise reduction techniques are required in PDD. OBJECTIVE This study aims to develop a new algorithm capable of minimizing noise while simultaneously preserving edges and fine details. METHODS In this study, a denoising algorithm based on low rank and similarity-based regularization (LRSBR) is presented. This algorithm incorporates the low-rank characteristic of tensors into similarity-based regularization (SBR) framework. This method effectively addresses the issue of instability in edge pixels within the SBR algorithm and enhances the structural consistency of dual-energy images. RESULTS A series of simulation and practical experiments were conducted on a dual-layer dual-energy CT system. Experiments demonstrate that the proposed method outperforms exiting noise removal methods in Peak Signal-to-noise Ratio (PSNR), Root Mean Square Error (RMSE), and Structural Similarity (SSIM). Meanwhile, there has been a notable enhancement in the visual quality of CT images. CONCLUSIONS The proposed algorithm has a significantly improved noise reduction compared to other competing approach in dual-energy CT. Meanwhile, the LRSBR method exhibits outstanding performance in preserving edges and fine structures, making it practical for PDD applications.
Collapse
Affiliation(s)
- Chang Lu
- The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Zhenye Han
- The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Jing Zou
- The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| |
Collapse
|
32
|
Song Q, Li X, Zhang M, Zhang X, Thanh DNH. APNet: Adaptive projection network for medical image denoising. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:1-15. [PMID: 37927293 DOI: 10.3233/xst-230181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
BACKGROUND In clinical medicine, low-dose radiographic image noise reduces the quality of the detected image features and may have a negative impact on disease diagnosis. OBJECTIVE In this study, Adaptive Projection Network (APNet) is proposed to reduce noise from low-dose medical images. METHODS APNet is developed based on an architecture of the U-shaped network to capture multi-scale data and achieve end-to-end image denoising. To adaptively calibrate important features during information transmission, a residual block of the dual attention method throughout the encoding and decoding phases is integrated. A non-local attention module to separate the noise and texture of the image details by using image adaptive projection during the feature fusion. RESULTS To verify the effectiveness of APNet, experiments on lung CT images with synthetic noise are performed, and the results demonstrate that the proposed approach outperforms recent methods in both quantitative index and visual quality. In addition, the denoising experiment on the dental CT image is also carried out and it verifies that the network has a certain generalization. CONCLUSIONS The proposed APNet is an effective method that can reduce image noise and preserve the required image details in low-dose radiographic images.
Collapse
Affiliation(s)
- Qiyi Song
- Department of Endodontics and Periodontics, College of Stomatology, Dalian Medical University, Dalian, China
| | - Xiang Li
- Dalian Neusoft University of Information, Dalian, China
| | - Mingbao Zhang
- Dalian Neusoft University of Information, Dalian, China
| | - Xiangyi Zhang
- Dalian Neusoft University of Information, Dalian, China
| | - Dang N H Thanh
- College of Technology and Design, University of Economics Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
33
|
Gao Y, Tan J, Shi Y, Zhang H, Lu S, Gupta A, Li H, Reiter M, Liang Z. Machine Learned Texture Prior From Full-Dose CT Database via Multi-Modality Feature Selection for Bayesian Reconstruction of Low-Dose CT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3129-3139. [PMID: 34968178 PMCID: PMC9243192 DOI: 10.1109/tmi.2021.3139533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In our earlier study, we proposed a regional Markov random field type tissue-specific texture prior from previous full-dose computed tomography (FdCT) scan for current low-dose CT (LdCT) imaging, which showed clinical benefits through task-based evaluation. Nevertheless, two assumptions were made for early study. One assumption is that the center pixel has a linear relationship with its nearby neighbors and the other is previous FdCT scans of the same subject are available. To eliminate the two assumptions, we proposed a database assisted end-to-end LdCT reconstruction framework which includes a deep learning texture prior model and a multi-modality feature based candidate selection model. A convolutional neural network-based texture prior is proposed to eliminate the linear relationship assumption. And for scenarios in which the concerned subject has no previous FdCT scans, we propose to select one proper prior candidate from the FdCT database using multi-modality features. Features from three modalities are used including the subjects' physiological factors, the CT scan protocol, and a novel feature named Lung Mark which is deliberately proposed to reflect the z-axial property of human anatomy. Moreover, a majority vote strategy is designed to overcome the noise effect from LdCT scans. Experimental results showed the effectiveness of Lung Mark. The selection model has accuracy of 84% testing on 1,470 images from 49 subjects. The learned texture prior from FdCT database provided reconstruction comparable to the subjects having corresponding FdCT. This study demonstrated the feasibility of bringing clinically relevant textures from available FdCT database to perform Bayesian reconstruction of any current LdCT scan.
Collapse
|
34
|
Cheng CC, Chiang MH, Yeh CH, Lee TT, Ching YT, Hwu Y, Chiang AS. Sparse-view synchrotron X-ray tomographic reconstruction with learning-based sinogram synthesis. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:1135-1142. [PMID: 37850562 PMCID: PMC10624031 DOI: 10.1107/s1600577523008032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Synchrotron radiation can be used as a light source in X-ray microscopy to acquire a high-resolution image of a microscale object for tomography. However, numerous projections must be captured for a high-quality tomographic image to be reconstructed; thus, image acquisition is time consuming. Such dense imaging is not only expensive and time consuming but also results in the target receiving a large dose of radiation. To resolve these problems, sparse acquisition techniques have been proposed; however, the generated images often have many artefacts and are noisy. In this study, a deep-learning-based approach is proposed for the tomographic reconstruction of sparse-view projections that are acquired with a synchrotron light source; this approach proceeds as follows. A convolutional neural network (CNN) is used to first interpolate sparse X-ray projections and then synthesize a sufficiently large set of images to produce a sinogram. After the sinogram is constructed, a second CNN is used for error correction. In experiments, this method successfully produced high-quality tomography images from sparse-view projections for two data sets comprising Drosophila and mouse tomography images. However, the initial results for the smaller mouse data set were poor; therefore, transfer learning was used to apply the Drosophila model to the mouse data set, greatly improving the quality of the reconstructed sinogram. The method could be used to achieve high-quality tomography while reducing the radiation dose to imaging subjects and the imaging time and cost.
Collapse
Affiliation(s)
- Chang-Chieh Cheng
- Information Technology Service Center, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
| | - Ming-Hsuan Chiang
- Department of Computer Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
| | - Chao-Hong Yeh
- Institute of Data Science and Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
| | - Tsung-Tse Lee
- Institute of Physics, Academia Sinica, 128 Academia Road, Nankang, Taipei, Taiwan
| | - Yu-Tai Ching
- Department of Computer Science, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu, Taiwan
| | - Yeukuang Hwu
- Institute of Physics, Academia Sinica, 128 Academia Road, Nankang, Taipei, Taiwan
| | - Ann-Shyn Chiang
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
35
|
Choi K, Kim SH, Kim S. Self-supervised denoising of projection data for low-dose cone-beam CT. Med Phys 2023; 50:6319-6333. [PMID: 37079443 DOI: 10.1002/mp.16421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Convolutional neural networks (CNNs) have shown promising results in image denoising tasks. While most existing CNN-based methods depend on supervised learning by directly mapping noisy inputs to clean targets, high-quality references are often unavailable for interventional radiology such as cone-beam computed tomography (CBCT). PURPOSE In this paper, we propose a novel self-supervised learning method that reduces noise in projections acquired by ordinary CBCT scans. METHODS With a network that partially blinds input, we are able to train the denoising model by mapping the partially blinded projections to the original projections. Additionally, we incorporate noise-to-noise learning into the self-supervised learning by mapping the adjacent projections to the original projections. With standard image reconstruction methods such as FDK-type algorithms, we can reconstruct high-quality CBCT images from the projections denoised by our projection-domain denoising method. RESULTS In the head phantom study, we measure peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) values of the proposed method along with the other denoising methods and uncorrected low-dose CBCT data for a quantitative comparison both in projection and image domains. The PSNR and SSIM values of our self-supervised denoising approach are 27.08 and 0.839, whereas those of uncorrected CBCT images are 15.68 and 0.103, respectively. In the retrospective study, we assess the quality of interventional patient CBCT images to evaluate the projection-domain and image-domain denoising methods. Both qualitative and quantitative results indicate that our approach can effectively produce high-quality CBCT images with low-dose projections in the absence of duplicate clean or noisy references. CONCLUSIONS Our self-supervised learning strategy is capable of restoring anatomical information while efficiently removing noise in CBCT projection data.
Collapse
Affiliation(s)
- Kihwan Choi
- Bionics Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Seung Hyoung Kim
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungwon Kim
- Department of Radiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
36
|
Park JC, Song B, Liang X, Lu B, Tan J, Parisi A, Denbeigh J, Yaddanpudi S, Choi B, Kim JS, Furutani KM, Beltran CJ. A high-resolution cone beam computed tomography (HRCBCT) reconstruction framework for CBCT-guided online adaptive therapy. Med Phys 2023; 50:6490-6501. [PMID: 37690458 DOI: 10.1002/mp.16734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Kilo-voltage cone-beam computed tomography (CBCT) is a prevalent modality used for adaptive radiotherapy (ART) due to its compatibility with linear accelerators and ability to provide online imaging. However, the widely-used Feldkamp-Davis-Kress (FDK) reconstruction algorithm has several limitations, including potential streak aliasing artifacts and elevated noise levels. Iterative reconstruction (IR) techniques, such as total variation (TV) minimization, dictionary-based methods, and prior information-based methods, have emerged as viable solutions to address these limitations and improve the quality and applicability of CBCT in ART. PURPOSE One of the primary challenges in IR-based techniques is finding the right balance between minimizing image noise and preserving image resolution. To overcome this challenge, we have developed a new reconstruction technique called high-resolution CBCT (HRCBCT) that specifically focuses on improving image resolution while reducing noise levels. METHODS The HRCBCT reconstruction technique builds upon the conventional IR approach, incorporating three components: the data fidelity term, the resolution preservation term, and the regularization term. The data fidelity term ensures alignment between reconstructed values and measured projection data, while the resolution preservation term exploits the high resolution of the initial Feldkamp-Davis-Kress (FDK) algorithm. The regularization term mitigates noise during the IR process. To enhance convergence and resolution at each iterative stage, we applied Iterative Filtered Backprojection (IFBP) to the data fidelity minimization process. RESULTS We evaluated the performance of the proposed HRCBCT algorithm using data from two physical phantoms and one head and neck patient. The HRCBCT algorithm outperformed all four different algorithms; FDK, Iterative Filtered Back Projection (IFBP), Compressed Sensing based Iterative Reconstruction (CSIR), and Prior Image Constrained Compressed Sensing (PICCS) methods in terms of resolution and noise reduction for all data sets. Line profiles across three line pairs of resolution revealed that the HRCBCT algorithm delivered the highest distinguishable line pairs compared to the other algorithms. Similarly, the Modulation Transfer Function (MTF) measurements, obtained from the tungsten wire insert on the CatPhan 600 physical phantom, showed a significant improvement with HRCBCT over traditional algorithms. CONCLUSION The proposed HRCBCT algorithm offers a promising solution for enhancing CBCT image quality in adaptive radiotherapy settings. By addressing the challenges inherent in traditional IR methods, the algorithm delivers high-definition CBCT images with improved resolution and reduced noise throughout each iterative step. Implementing the HR CBCT algorithm could significantly impact the accuracy of treatment planning during online adaptive therapy.
Collapse
Affiliation(s)
- Justin C Park
- Department of Radiation Oncology, Mayo Clinic, Florida, USA
| | - Bongyong Song
- Department of Radiation Oncology, University of California San Diego, San Diego, California, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Florida, USA
| | - Bo Lu
- Department of Radiation Oncology, Mayo Clinic, Florida, USA
| | - Jun Tan
- Department of Radiation Oncology, Mayo Clinic, Florida, USA
| | - Alessio Parisi
- Department of Radiation Oncology, Mayo Clinic, Florida, USA
| | - Janet Denbeigh
- Department of Radiation Oncology, Mayo Clinic, Florida, USA
| | | | - Byongsu Choi
- Department of Radiation Oncology, Mayo Clinic, Florida, USA
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
37
|
Chen L, Yang X, Huang Z, Long Y, Ravishankar S. Multi-layer clustering-based residual sparsifying transform for low-dose CT image reconstruction. Med Phys 2023; 50:6096-6117. [PMID: 37535932 DOI: 10.1002/mp.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 08/05/2023] Open
Abstract
PURPOSE The recently proposed sparsifying transform (ST) models incur low computational cost and have been applied to medical imaging. Meanwhile, deep models with nested network structure reveal great potential for learning features in different layers. In this study, we propose a network-structured ST learning approach for X-ray computed tomography (CT), which we refer to as multi-layer clustering-based residual sparsifying transform (MCST) learning. The proposed MCST scheme learns multiple different unitary transforms in each layer by dividing each layer's input into several classes. We apply the MCST model to low-dose CT (LDCT) reconstruction by deploying the learned MCST model into the regularizer in penalized weighted least squares (PWLS) reconstruction. METHODS The proposed MCST model combines a multi-layer sparse representation structure with multiple clusters for the features in each layer that are modeled by a rich collection of transforms. We train the MCST model in an unsupervised manner via a block coordinate descent (BCD) algorithm. Since our method is patch-based, the training can be performed with a limited set of images. For CT image reconstruction, we devise a novel algorithm called PWLS-MCST by integrating the pre-learned MCST signal model with PWLS optimization. RESULTS We conducted LDCT reconstruction experiments on XCAT phantom data, Numerical Mayo Clinical CT dataset and "LDCT image and projection dataset" (Clinical LDCT dataset). We trained the MCST model with two (or three) layers and with five clusters in each layer. The learned transforms in the same layer showed rich features while additional information is extracted from representation residuals. Our simulation results and clinical results demonstrate that PWLS-MCST achieves better image reconstruction quality than the conventional filtered back-projection (FBP) method and PWLS with edge-preserving (EP) regularizer. It also outperformed recent advanced methods like PWLS with a learned multi-layer residual sparsifying transform (MARS) prior and PWLS with a union of learned transforms (ULTRA), especially for displaying clear edges and preserving subtle details. CONCLUSIONS In this work, a multi-layer sparse signal model with a nested network structure is proposed. We refer this novel model as the MCST model that exploits multi-layer residual maps to sparsify the underlying image and clusters the inputs in each layer for accurate sparsification. We presented a new PWLS framework with a learned MCST regularizer for LDCT reconstruction. Experimental results show that the proposed PWLS-MCST provides clearer reconstructions than several baseline methods. The code for PWLS-MCST is released at https://github.com/Xikai97/PWLS-MCST.
Collapse
Affiliation(s)
- Ling Chen
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xikai Yang
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhishen Huang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Yong Long
- University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Saiprasad Ravishankar
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
38
|
Xia Z, Liu J, Kang Y, Wang Y, Hu D, Zhang Y. Dynamic controllable residual generative adversarial network for low-dose computed tomography imaging. Quant Imaging Med Surg 2023; 13:5271-5293. [PMID: 37581059 PMCID: PMC10423351 DOI: 10.21037/qims-22-1384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/14/2023] [Indexed: 08/16/2023]
Abstract
Background Computed tomography (CT) imaging technology has become an indispensable auxiliary method in medical diagnosis and treatment. In mitigating the radiation damage caused by X-rays, low-dose computed tomography (LDCT) scanning is becoming more widely applied. However, LDCT scanning reduces the signal-to-noise ratio of the projection, and the resulting images suffer from serious streak artifacts and spot noise. In particular, the intensity of noise and artifacts varies significantly across different body parts under a single low-dose protocol. Methods To improve the quality of different degraded LDCT images in a unified framework, we developed a generative adversarial learning framework with a dynamic controllable residual. First, the generator network consists of the basic subnetwork and the conditional subnetwork. Inspired by the dynamic control strategy, we designed the basic subnetwork to adopt a residual architecture, with the conditional subnetwork providing weights to control the residual intensity. Second, we chose the Visual Geometry Group Network-128 (VGG-128) as the discriminator to improve the noise artifact suppression and feature retention ability of the generator. Additionally, a hybrid loss function was specifically designed, including the mean square error (MSE) loss, structural similarity index metric (SSIM) loss, adversarial loss, and gradient penalty (GP) loss. Results The results obtained on two datasets show the competitive performance of the proposed framework, with a 3.22 dB peak signal-to-noise ratio (PSNR) margin, 0.03 SSIM margin, and 0.2 contrast-to-noise ratio margin on the Challenge data and a 1.0 dB PSNR margin and 0.01 SSIM margin on the real data. Conclusions Experimental results demonstrated the competitive performance of the proposed method in terms of noise decrease, structural retention, and visual impression improvement.
Collapse
Affiliation(s)
- Zhenyu Xia
- School of Computer and Information, Anhui Polytechnic University, Wuhu, China
| | - Jin Liu
- School of Computer and Information, Anhui Polytechnic University, Wuhu, China
- Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education, Nanjing, China
| | - Yanqin Kang
- School of Computer and Information, Anhui Polytechnic University, Wuhu, China
- Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education, Nanjing, China
| | - Yong Wang
- School of Computer and Information, Anhui Polytechnic University, Wuhu, China
| | - Dianlin Hu
- Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education, Nanjing, China
- School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Yikun Zhang
- Key Laboratory of Computer Network and Information Integration (Southeast University) Ministry of Education, Nanjing, China
- School of Computer Science and Engineering, Southeast University, Nanjing, China
| |
Collapse
|
39
|
Heaton H, Fung SW. Explainable AI via learning to optimize. Sci Rep 2023; 13:10103. [PMID: 37344533 DOI: 10.1038/s41598-023-36249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Indecipherable black boxes are common in machine learning (ML), but applications increasingly require explainable artificial intelligence (XAI). The core of XAI is to establish transparent and interpretable data-driven algorithms. This work provides concrete tools for XAI in situations where prior knowledge must be encoded and untrustworthy inferences flagged. We use the "learn to optimize" (L2O) methodology wherein each inference solves a data-driven optimization problem. Our L2O models are straightforward to implement, directly encode prior knowledge, and yield theoretical guarantees (e.g. satisfaction of constraints). We also propose use of interpretable certificates to verify whether model inferences are trustworthy. Numerical examples are provided in the applications of dictionary-based signal recovery, CT imaging, and arbitrage trading of cryptoassets. Code and additional documentation can be found at https://xai-l2o.research.typal.academy .
Collapse
Affiliation(s)
| | - Samy Wu Fung
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, USA.
| |
Collapse
|
40
|
Valat E, Farrahi K, Blumensath T. Sinogram Inpainting with Generative Adversarial Networks and Shape Priors. Tomography 2023; 9:1137-1152. [PMID: 37368546 DOI: 10.3390/tomography9030094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
X-ray computed tomography is a widely used, non-destructive imaging technique that computes cross-sectional images of an object from a set of X-ray absorption profiles (the so-called sinogram). The computation of the image from the sinogram is an ill-posed inverse problem, which becomes underdetermined when we are only able to collect insufficiently many X-ray measurements. We are here interested in solving X-ray tomography image reconstruction problems where we are unable to scan the object from all directions, but where we have prior information about the object's shape. We thus propose a method that reduces image artefacts due to limited tomographic measurements by inferring missing measurements using shape priors. Our method uses a Generative Adversarial Network that combines limited acquisition data and shape information. While most existing methods focus on evenly spaced missing scanning angles, we propose an approach that infers a substantial number of consecutive missing acquisitions. We show that our method consistently improves image quality compared to images reconstructed using the previous state-of-the-art sinogram-inpainting techniques. In particular, we demonstrate a 7 dB Peak Signal-to-Noise Ratio improvement compared to other methods.
Collapse
Affiliation(s)
- Emilien Valat
- Cambridge Image Analysis Group, Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd., Cambridge CB3 0WA, UK
| | - Katayoun Farrahi
- Vision, Learning and Control Group, Department of Electronics and Computer Science, University of Southampton, University Rd., Southampton SO17 1BJ, UK
| | - Thomas Blumensath
- Institute of Sound and Vibration Research, Department of Engineering and the Environment, University of Southampton, University Rd., Southampton SO17 1BJ, UK
| |
Collapse
|
41
|
Wang J, Tang Y, Wu Z, Du Q, Yao L, Yang X, Li M, Zheng J. A self-supervised guided knowledge distillation framework for unpaired low-dose CT image denoising. Comput Med Imaging Graph 2023; 107:102237. [PMID: 37116340 DOI: 10.1016/j.compmedimag.2023.102237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
Low-dose computed tomography (LDCT) can significantly reduce the damage of X-ray to the human body, but the reduction of CT dose will produce images with severe noise and artifacts, which will affect the diagnosis of doctors. Recently, deep learning has attracted more and more attention from researchers. However, most of the denoising networks applied to deep learning-based LDCT imaging are supervised methods, which require paired data for network training. In a realistic imaging scenario, obtaining well-aligned image pairs is challenging due to the error in the table re-positioning and the patient's physiological movement during data acquisition. In contrast, the unpaired learning method can overcome the drawbacks of supervised learning, making it more feasible to collect unpaired training data in most real-world imaging applications. In this study, we develop a novel unpaired learning framework, Self-Supervised Guided Knowledge Distillation (SGKD), which enables the guidance of supervised learning using the results generated by self-supervised learning. The proposed SGKD scheme contains two stages of network training. First, we can achieve the LDCT image quality improvement by the designed self-supervised cycle network. Meanwhile, it can also produce two complementary training datasets from the unpaired LDCT and NDCT images. Second, a knowledge distillation strategy with the above two datasets is exploited to further improve the LDCT image denoising performance. To evaluate the effectiveness and feasibility of the proposed method, extensive experiments were performed on the simulated AAPM challenging and real-world clinical LDCT datasets. The qualitative and quantitative results show that the proposed SGKD achieves better performance in terms of noise suppression and detail preservation compared with some state-of-the-art network models.
Collapse
Affiliation(s)
- Jiping Wang
- Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yufei Tang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhongyi Wu
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Du
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Libing Yao
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Yang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Ming Li
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Jian Zheng
- Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
42
|
Wang D, Fan F, Wu Z, Liu R, Wang F, Yu H. CTformer: convolution-free Token2Token dilated vision transformer for low-dose CT denoising. Phys Med Biol 2023; 68:065012. [PMID: 36854190 DOI: 10.1088/1361-6560/acc000] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
Objective. Low-dose computed tomography (LDCT) denoising is an important problem in CT research. Compared to the normal dose CT, LDCT images are subjected to severe noise and artifacts. Recently in many studies, vision transformers have shown superior feature representation ability over the convolutional neural networks (CNNs). However, unlike CNNs, the potential of vision transformers in LDCT denoising was little explored so far. Our paper aims to further explore the power of transformer for the LDCT denoising problem.Approach. In this paper, we propose a Convolution-free Token2Token Dilated Vision Transformer (CTformer) for LDCT denoising. The CTformer uses a more powerful token rearrangement to encompass local contextual information and thus avoids convolution. It also dilates and shifts feature maps to capture longer-range interaction. We interpret the CTformer by statically inspecting patterns of its internal attention maps and dynamically tracing the hierarchical attention flow with an explanatory graph. Furthermore, overlapped inference mechanism is employed to effectively eliminate the boundary artifacts that are common for encoder-decoder-based denoising models.Main results. Experimental results on Mayo dataset suggest that the CTformer outperforms the state-of-the-art denoising methods with a low computational overhead.Significance. The proposed model delivers excellent denoising performance on LDCT. Moreover, low computational cost and interpretability make the CTformer promising for clinical applications.
Collapse
Affiliation(s)
- Dayang Wang
- Department of Electrical and Computer Engineering, University of Massachusetts, Lowell, MA, United States of America
| | - Fenglei Fan
- Weill Cornell Medicine, Cornell University, New York City, NY, United States of America
| | - Zhan Wu
- School of Cyberspace Security, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Rui Liu
- 3920 Mystic Valley Parkway, Medford, MA, United States of America
| | - Fei Wang
- Weill Cornell Medicine, Cornell University, New York City, NY, United States of America
| | - Hengyong Yu
- Department of Electrical and Computer Engineering, University of Massachusetts, Lowell, MA, United States of America
| |
Collapse
|
43
|
Gao X, Su T, Zhang Y, Zhu J, Tan Y, Cui H, Long X, Zheng H, Liang D, Ge Y. Attention-based dual-branch deep network for sparse-view computed tomography image reconstruction. Quant Imaging Med Surg 2023; 13:1360-1374. [PMID: 36915341 PMCID: PMC10006128 DOI: 10.21037/qims-22-609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/01/2022] [Indexed: 02/25/2023]
Abstract
Background The widespread application of X-ray computed tomography (CT) imaging in medical screening makes radiation safety a major concern for public health. Sparse-view CT is a promising solution to reduce the radiation dose. However, the reconstructed CT images obtained using sparse-view CT may suffer severe streaking artifacts and structural information loss. Methods In this study, a novel attention-based dual-branch network (ADB-Net) is proposed to solve the ill-posed problem of sparse-view CT image reconstruction. In this network, downsampled sinogram input is processed through 2 parallel branches (CT branch and signogram branch) of the ADB-Net to independently extract the distinct, high-level feature maps. These feature maps are fused in a specified attention module from 3 perspectives (channel, plane, and spatial) to allow complementary optimizations that can mitigate the streaking artifacts and the structure loss in sparse-view CT imaging. Results Numerical simulations, an anthropomorphic thorax phantom, and in vivo preclinical experiments were conducted to verify the sparse-view CT imaging performance of the ADB-Net. The proposed network achieved a root-mean-square error (RMSE) of 20.6160, a structural similarity (SSIM) of 0.9257, and a peak signal-to-noise ratio (PSNR) of 38.8246 on numerical data. The visualization results demonstrate that this newly developed network can consistently remove the streaking artifacts while maintaining the fine structures. Conclusions The proposed attention-based dual-branch deep network, ADB-Net, provides a promising alternative to reconstruct high-quality sparse-view CT images for low-dose CT imaging.
Collapse
Affiliation(s)
- Xiang Gao
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ting Su
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yunxin Zhang
- Department of Vascular Surgery, Beijing Jishuitan Hospital, Beijing, China
| | - Jiongtao Zhu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yuhang Tan
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Han Cui
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaojing Long
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dong Liang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yongshuai Ge
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
44
|
Zhang P, Ren S, Liu Y, Gui Z, Shangguan H, Wang Y, Shu H, Chen Y. A total variation prior unrolling approach for computed tomography reconstruction. Med Phys 2023; 50:2816-2834. [PMID: 36791315 DOI: 10.1002/mp.16307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND With the rapid development of deep learning technology, deep neural networks can effectively enhance the performance of computed tomography (CT) reconstructions. One kind of commonly used method to construct CT reconstruction networks is to unroll the conventional iterative reconstruction (IR) methods to convolutional neural networks (CNNs). However, most unrolling methods primarily unroll the fidelity term of IR methods to CNNs, without unrolling the prior terms. The prior terms are always directly replaced by neural networks. PURPOSE In conventional IR methods, the prior terms play a vital role in improving the visual quality of reconstructed images. Unrolling the hand-crafted prior terms to CNNs may provide a more specialized unrolling approach to further improve the performance of CT reconstruction. In this work, a primal-dual network (PD-Net) was proposed by unrolling both the data fidelity term and the total variation (TV) prior term, which effectively preserves the image edges and textures in the reconstructed images. METHODS By further deriving the Chambolle-Pock (CP) algorithm instance for CT reconstruction, we discovered that the TV prior updates the reconstructed images with its divergences in each iteration of the solution process. Based on this discovery, CNNs were applied to yield the divergences of the feature maps for the reconstructed image generated in each iteration. Additionally, a loss function was applied to the predicted divergences of the reconstructed image to guarantee that the CNNs' results were the divergences of the corresponding feature maps in the iteration. In this manner, the proposed CNNs seem to play the same roles in the PD-Net as the TV prior in the IR methods. Thus, the TV prior in the CP algorithm instance can be directly unrolled to CNNs. RESULTS The datasets from the Low-Dose CT Image and Projection Data and the Piglet dataset were employed to assess the effectiveness of our proposed PD-Net. Compared with conventional CT reconstruction methods, our proposed method effectively preserves the structural and textural information in reference to ground truth. CONCLUSIONS The experimental results show that our proposed PD-Net framework is feasible for the implementation of CT reconstruction tasks. Owing to the promising results yielded by our proposed neural network, this study is intended to inspire further development of unrolling approaches by enabling the direct unrolling of hand-crafted prior terms to CNNs.
Collapse
Affiliation(s)
- Pengcheng Zhang
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China
| | - Shuhui Ren
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China
| | - Yi Liu
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China
| | - Zhiguo Gui
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan, China
| | - Hong Shangguan
- School of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan, China
| | - Yanling Wang
- School of Information, Shanxi University of Finance and Economics, Taiyuan, China
| | - Huazhong Shu
- Laboratory of Image Science and Technology, Southeast University, Nanjing, China
| | - Yang Chen
- Laboratory of Image Science and Technology, Southeast University, Nanjing, China.,Centre de Recherche en Information Biomedicale Sino-Francais (LIA CRIBs), Rennes, France.,Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing, China.,Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, Southeast University, Nanjing, China
| |
Collapse
|
45
|
Yu X, Cai A, Li L, Jiao Z, Yan B. Low-dose spectral reconstruction with global, local, and nonlocal priors based on subspace decomposition. Quant Imaging Med Surg 2023; 13:889-911. [PMID: 36819241 PMCID: PMC9929412 DOI: 10.21037/qims-22-647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/02/2022] [Indexed: 01/08/2023]
Abstract
Background Multienergy computed tomography (MECT) is a promising imaging modality for material decomposition, lesion detection, and other clinical applications. However, there is an urgent need to design efficient and accurate algorithms to solve the inverse problems related to spectral reconstruction and improve image quality, especially under low-dose and incomplete datasets. The key issue for MECT reconstruction is how to efficiently describe the interchannel and intrachannel priors in multichannel images. Methods In this model, in order to correlate the similarities of interchannel images and regularize the multichannel images, the global, local, and nonlocal priors are jointly integrated into the low-dose MECT reconstruction model. First, the subspace decomposition method first employs the global low-rankness to map the original MECT images to the low-dimensional eigenimages. Then, nonlocal self-similarity of the eigenimages is cascaded into the optimization model. Additionally, the L0 quasi-norm on gradient images is incorporated into the proposed method to further enhance the local sparsity of intrachannel images. The alternating direction method is applied to solve the optimization model in an iterative scheme. Results Simulation, preclinical, and real datasets were applied to validate the effectiveness of the proposed method. From the simulation dataset, the new method was found to reduce the root-mean-square error (RMSE) by 42.31% compared with the latest research fourth-order nonlocal tensor decomposition MECT reconstruction (FONT-SIR) method under 160 projection views. The calculation time of an iteration for the proposed method was 23.07% of the FONT-SIR method. The results of material decomposition in real mouse data further confirmed the accuracy of the proposed method for different materials. Conclusions We developed a method in which the global, local, and nonlocal priors are jointly used to develop the reconstruction model for low-dose MECT, where the global low-rankness and nonlocal prior are cascaded by subspace decomposition and block-matching, and the L0 sparsity is applied to express the local prior. The results of the experiments demonstrate that the proposed method based on subspace improves computational efficiency and has advantages in noise suppression and structure preservation over competing algorithms.
Collapse
Affiliation(s)
- Xiaohuan Yu
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Ailong Cai
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Lei Li
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Zhiyong Jiao
- Beijing Science and Technology Information Research Center, Beijing, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| |
Collapse
|
46
|
Wang J, Tang Y, Wu Z, Tsui BMW, Chen W, Yang X, Zheng J, Li M. Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning. Med Phys 2023; 50:74-88. [PMID: 36018732 DOI: 10.1002/mp.15952] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND In recent years, low-dose computed tomography (LDCT) has played an important role in the diagnosis CT to reduce the potential adverse effects of X-ray radiation on patients, while maintaining the same diagnostic image quality. PURPOSE Deep learning (DL)-based methods have played an increasingly important role in the field of LDCT imaging. However, its performance is highly dependent on the consistency of feature distributions between training data and test data. Due to patient's breathing movements during data acquisition, the paired LDCT and normal dose CT images are difficult to obtain from realistic imaging scenarios. Moreover, LDCT images from simulation or clinical CT examination often have different feature distributions due to the pollution by different amounts and types of image noises. If a network model trained with a simulated dataset is used to directly test clinical patients' LDCT data, its denoising performance may be degraded. Based on this, we propose a novel domain-adaptive denoising network (DADN) via noise estimation and transfer learning to resolve the out-of-distribution problem in LDCT imaging. METHODS To overcome the previous adaptation issue, a novel network model consisting of a reconstruction network and a noise estimation network was designed. The noise estimation network based on a double branch structure is used for image noise extraction and adaptation. Meanwhile, the U-Net-based reconstruction network uses several spatially adaptive normalization modules to fuse multi-scale noise input. Moreover, to facilitate the adaptation of the proposed DADN network to new imaging scenarios, we set a two-stage network training plan. In the first stage, the public simulated dataset is used for training. In the second transfer training stage, we will continue to fine-tune the network model with a torso phantom dataset, while some parameters are frozen. The main reason using the two-stage training scheme is based on the fact that the feature distribution of image content from the public dataset is complex and diverse, whereas the feature distribution of noise pattern from the torso phantom dataset is closer to realistic imaging scenarios. RESULTS In an evaluation study, the trained DADN model is applied to both the public and clinical patient LDCT datasets. Through the comparison of visual inspection and quantitative results, it is shown that the proposed DADN network model can perform well in terms of noise and artifact suppression, while effectively preserving image contrast and details. CONCLUSIONS In this paper, we have proposed a new DL network to overcome the domain adaptation problem in LDCT image denoising. Moreover, the results demonstrate the feasibility and effectiveness of the application of our proposed DADN network model as a new DL-based LDCT image denoising method.
Collapse
Affiliation(s)
- Jiping Wang
- Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China.,Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yufei Tang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhongyi Wu
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Benjamin M W Tsui
- Department of Radiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Wei Chen
- Minfound Medical Systems Co. Ltd., Shaoxing, Zhejiang, China
| | - Xiaodong Yang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jian Zheng
- Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun, China.,Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming Li
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
47
|
X-ray CT image denoising with MINF: A modularized iterative network framework for data from multiple dose levels. Comput Biol Med 2023; 152:106419. [PMID: 36527781 DOI: 10.1016/j.compbiomed.2022.106419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
In clinical applications, multi-dose scan protocols will cause the noise levels of computed tomography (CT) images to fluctuate widely. The popular low-dose CT (LDCT) denoising network outputs denoised images through an end-to-end mapping between an LDCT image and its corresponding ground truth. The limitation of this method is that the reduced noise level of the image may not meet the diagnostic needs of doctors. To establish a denoising model adapted to the multi-noise levels robustness, we proposed a novel and efficient modularized iterative network framework (MINF) to learn the feature of the original LDCT and the outputs of the previous modules, which can be reused in each following module. The proposed network can achieve the goal of gradual denoising, outputting clinical images with different denoising levels, and providing the reviewing physicians with increased confidence in their diagnosis. Moreover, a multi-scale convolutional neural network (MCNN) module is designed to extract as much feature information as possible during the network's training. Extensive experiments on public and private clinical datasets were carried out, and comparisons with several state-of-the-art methods show that the proposed method can achieve satisfactory results for noise suppression of LDCT images. In further comparisons with modularized adaptive processing neural network (MAP-NN), the proposed network shows superior step-by-step or gradual denoising performance. Considering the high quality of gradual denoising results, the proposed method can obtain satisfactory performance in terms of image contrast and detail protection as the level of denoising increases, which shows its potential to be suitable for a multi-dose levels denoising task.
Collapse
|
48
|
Retraction notice. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:1163. [PMID: 37599555 DOI: 10.3233/xst-190469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
|
49
|
Deep learning tomographic reconstruction through hierarchical decomposition of domain transforms. Vis Comput Ind Biomed Art 2022; 5:30. [PMID: 36484980 PMCID: PMC9733764 DOI: 10.1186/s42492-022-00127-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Deep learning (DL) has shown unprecedented performance for many image analysis and image enhancement tasks. Yet, solving large-scale inverse problems like tomographic reconstruction remains challenging for DL. These problems involve non-local and space-variant integral transforms between the input and output domains, for which no efficient neural network models are readily available. A prior attempt to solve tomographic reconstruction problems with supervised learning relied on a brute-force fully connected network and only allowed reconstruction with a 1284 system matrix size. This cannot practically scale to realistic data sizes such as 5124 and 5126 for three-dimensional datasets. Here we present a novel framework to solve such problems with DL by casting the original problem as a continuum of intermediate representations between the input and output domains. The original problem is broken down into a sequence of simpler transformations that can be well mapped onto an efficient hierarchical network architecture, with exponentially fewer parameters than a fully connected network would need. We applied the approach to computed tomography (CT) image reconstruction for a 5124 system matrix size. This work introduces a new kind of data-driven DL solver for full-size CT reconstruction without relying on the structure of direct (analytical) or iterative (numerical) inversion techniques. This work presents a feasibility demonstration of full-scale learnt reconstruction, whereas more developments will be needed to demonstrate superiority relative to traditional reconstruction approaches. The proposed approach is also extendable to other imaging problems such as emission and magnetic resonance reconstruction. More broadly, hierarchical DL opens the door to a new class of solvers for general inverse problems, which could potentially lead to improved signal-to-noise ratio, spatial resolution and computational efficiency in various areas.
Collapse
|
50
|
Jia Y, McMichael N, Mokarzel P, Thompson B, Si D, Humphries T. Superiorization-inspired unrolled SART algorithm with U-Net generated perturbations for sparse-view and limited-angle CT reconstruction. Phys Med Biol 2022; 67. [PMID: 36541524 DOI: 10.1088/1361-6560/aca513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
Objective.Unrolled algorithms are a promising approach for reconstruction of CT images in challenging scenarios, such as low-dose, sparse-view and limited-angle imaging. In an unrolled algorithm, a fixed number of iterations of a reconstruction method are unrolled into multiple layers of a neural network, and interspersed with trainable layers. The entire network is then trained end-to-end in a supervised fashion, to learn an appropriate regularizer from training data. In this paper we propose a novel unrolled algorithm, and compare its performance with several other approaches on sparse-view and limited-angle CT.Approach.The proposed algorithm is inspired by the superiorization methodology, an optimization heuristic in which iterates of a feasibility-seeking method are perturbed between iterations, typically using descent directions of a model-based penalty function. Our algorithm instead uses a modified U-net architecture to introduce the perturbations, allowing a network to learn beneficial perturbations to the image at various stages of the reconstruction, based on the training data.Main Results.In several numerical experiments modeling sparse-view and limited angle CT scenarios, the algorithm provides excellent results. In particular, it outperforms several competing unrolled methods in limited-angle scenarios, while providing comparable or better performance on sparse-view scenarios.Significance.This work represents a first step towards exploiting the power of deep learning within the superiorization methodology. Additionally, it studies the effect of network architecture on the performance of unrolled methods, as well as the effectiveness of the unrolled approach on both limited-angle CT, where previous studies have primarily focused on the sparse-view and low-dose cases.
Collapse
Affiliation(s)
- Yiran Jia
- School of STEM, University of Washington Bothell, Bothell, WA 98011, United States of America
| | - Noah McMichael
- School of STEM, University of Washington Bothell, Bothell, WA 98011, United States of America
| | - Pedro Mokarzel
- School of STEM, University of Washington Bothell, Bothell, WA 98011, United States of America
| | - Brandon Thompson
- School of STEM, University of Washington Bothell, Bothell, WA 98011, United States of America
| | - Dong Si
- School of STEM, University of Washington Bothell, Bothell, WA 98011, United States of America
| | - Thomas Humphries
- School of STEM, University of Washington Bothell, Bothell, WA 98011, United States of America
| |
Collapse
|