1
|
Zöllner FG, Šerifović-Trbalić A, Kabelitz G, Kociński M, Materka A, Rogelj P. Image registration in dynamic renal MRI-current status and prospects. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:33-48. [PMID: 31598799 PMCID: PMC7210245 DOI: 10.1007/s10334-019-00782-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022]
Abstract
Magnetic resonance imaging (MRI) modalities have achieved an increasingly important role in the clinical work-up of chronic kidney diseases (CKD). This comprises among others assessment of hemodynamic parameters by arterial spin labeling (ASL) or dynamic contrast-enhanced (DCE-) MRI. Especially in the latter, images or volumes of the kidney are acquired over time for up to several minutes. Therefore, they are hampered by motion, e.g., by pulsation, peristaltic, or breathing motion. This motion can hinder subsequent image analysis to estimate hemodynamic parameters like renal blood flow or glomerular filtration rate (GFR). To overcome motion artifacts in time-resolved renal MRI, a wide range of strategies have been proposed. Renal image registration approaches could be grouped into (1) image acquisition techniques, (2) post-processing methods, or (3) a combination of image acquisition and post-processing approaches. Despite decades of progress, the translation in clinical practice is still missing. The aim of the present article is to discuss the existing literature on renal image registration techniques and show today’s limitations of the proposed techniques that hinder clinical translation. This paper includes transformation, criterion function, and search types as traditional components and emerging registration technologies based on deep learning. The current trend points towards faster registrations and more accurate results. However, a standardized evaluation of image registration in renal MRI is still missing.
Collapse
Affiliation(s)
- Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | | | - Gordian Kabelitz
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Marek Kociński
- Institute of Electronics, Lodz University of Technology, Lodz, Poland
| | - Andrzej Materka
- Institute of Electronics, Lodz University of Technology, Lodz, Poland
| | - Peter Rogelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| |
Collapse
|
2
|
Lassau N, Estienne T, de Vomecourt P, Azoulay M, Cagnol J, Garcia G, Majer M, Jehanno E, Renard-Penna R, Balleyguier C, Bidault F, Caramella C, Jacques T, Dubrulle F, Behr J, Poussange N, Bocquet J, Montagne S, Cornelis F, Faruch M, Bresson B, Brunelle S, Jalaguier-Coudray A, Amoretti N, Blum A, Paisant A, Herreros V, Rouviere O, Si-Mohamed S, Di Marco L, Hauger O, Garetier M, Pigneur F, Bergère A, Cyteval C, Fournier L, Malhaire C, Drape JL, Poncelet E, Bordonne C, Cauliez H, Budzik JF, Boisserie M, Willaume T, Molière S, Peyron Faure N, Caius Giurca S, Juhan V, Caramella T, Perrey A, Desmots F, Faivre-Pierre M, Abitbol M, Lotte R, Istrati D, Guenoun D, Luciani A, Zins M, Meder JF, Cotten A. Five simultaneous artificial intelligence data challenges on ultrasound, CT, and MRI. Diagn Interv Imaging 2019; 100:199-209. [DOI: 10.1016/j.diii.2019.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/04/2019] [Indexed: 12/18/2022]
|
3
|
Torres HR, Queirós S, Morais P, Oliveira B, Fonseca JC, Vilaça JL. Kidney segmentation in ultrasound, magnetic resonance and computed tomography images: A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 157:49-67. [PMID: 29477435 DOI: 10.1016/j.cmpb.2018.01.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/07/2017] [Accepted: 01/10/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Segmentation is an essential step in computer-aided diagnosis and treatment planning of kidney diseases. In recent years, several researchers proposed multiple techniques to segment the kidney in medical images from distinct imaging acquisition systems, namely ultrasound, magnetic resonance, and computed tomography. This article aims to present a systematic review of the different methodologies developed for kidney segmentation. METHODS With this work, it is intended to analyze and categorize the different kidney segmentation algorithms, establishing a comparison between them and discussing the most appropriate methods for each modality. For that, articles published between 2010 and 2016 were analyzed. The search was performed in Scopus and Web of Science using the expressions "kidney segmentation" and "renal segmentation". RESULTS A total of 1528 articles were retrieved from the databases, and 95 articles were selected for this review. After analysis of the selected articles, the reviewed segmentation techniques were categorized according to their theoretical approach. CONCLUSIONS Based on the performed analysis, it was possible to identify segmentation approaches based on distinct image processing classes that can be used to accurately segment the kidney in images of different imaging modalities. Nevertheless, further research on kidney segmentation must be conducted to overcome the current drawbacks of the state-of-the-art methods. Moreover, a standardization of the evaluation database and metrics is needed to allow a direct comparison between methods.
Collapse
Affiliation(s)
- Helena R Torres
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal.
| | - Sandro Queirós
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal; Lab on Cardiovascular Imaging & Dynamics, Department of Cardiovascular Sciences, KULeuven-University of Leuven, Leuven, Belgium
| | - Pedro Morais
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal; Lab on Cardiovascular Imaging & Dynamics, Department of Cardiovascular Sciences, KULeuven-University of Leuven, Leuven, Belgium; Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Faculdade de Engenharia, Universidade do Porto, Portugal
| | - Bruno Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal
| | - Jaime C Fonseca
- Algoritmi Center, School of Engineering, University of Minho, Guimarães, Portugal
| | - João L Vilaça
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal; 2Ai-Polytechnic Institute of Cávado and Ave, Barcelos, Portugal
| |
Collapse
|
4
|
Xiang D, Bagci U, Jin C, Shi F, Zhu W, Yao J, Sonka M, Chen X. CorteXpert: A model-based method for automatic renal cortex segmentation. Med Image Anal 2017; 42:257-273. [DOI: 10.1016/j.media.2017.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 05/17/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
|
5
|
Yoruk U, Hargreaves BA, Vasanawala SS. Automatic renal segmentation for MR urography using 3D-GrabCut and random forests. Magn Reson Med 2017; 79:1696-1707. [PMID: 28656614 DOI: 10.1002/mrm.26806] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/07/2017] [Accepted: 05/30/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children. METHODS An image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time-resolved 3D dynamic contrast-enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1-score metric. A two-compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps. RESULTS Segmentation maps generated automatically showed high similarity to the manually drawn maps for the whole-kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole-kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient. CONCLUSION The automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696-1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Umit Yoruk
- Stanford University, Stanford, California, USA
| | | | | |
Collapse
|
6
|
Gloger O, Tönnies K, Laqua R, Völzke H. Fully Automated Renal Tissue Volumetry in MR Volume Data Using Prior-Shape-Based Segmentation in Subject-Specific Probability Maps. IEEE Trans Biomed Eng 2015; 62:2338-51. [DOI: 10.1109/tbme.2015.2425935] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Zhou Z, Zheng J, Dai Y, Zhou Z, Chen S. Robust non-rigid point set registration using student's-t mixture model. PLoS One 2014; 9:e91381. [PMID: 24618749 PMCID: PMC3950182 DOI: 10.1371/journal.pone.0091381] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/07/2014] [Indexed: 11/18/2022] Open
Abstract
The Student's-t mixture model, which is heavily tailed and more robust than the Gaussian mixture model, has recently received great attention on image processing. In this paper, we propose a robust non-rigid point set registration algorithm using the Student's-t mixture model. Specifically, first, we consider the alignment of two point sets as a probability density estimation problem and treat one point set as Student's-t mixture model centroids. Then, we fit the Student's-t mixture model centroids to the other point set which is treated as data. Finally, we get the closed-form solutions of registration parameters, leading to a computationally efficient registration algorithm. The proposed algorithm is especially effective for addressing the non-rigid point set registration problem when significant amounts of noise and outliers are present. Moreover, less registration parameters have to be set manually for our algorithm compared to the popular coherent points drift (CPD) algorithm. We have compared our algorithm with other state-of-the-art registration algorithms on both 2D and 3D data with noise and outliers, where our non-rigid registration algorithm showed accurate results and outperformed the other algorithms.
Collapse
Affiliation(s)
- Zhiyong Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jian Zheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Zhe Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Shi Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|