1
|
Benko N, Luke E, Alsanea Y, Coats B. Mechanical characterization of the human pia-arachnoid complex. J Mech Behav Biomed Mater 2021; 120:104579. [PMID: 34020233 DOI: 10.1016/j.jmbbm.2021.104579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury (TBI) is a significant problem in global health that affects a wide variety of patients. Mild forms of TBI, commonly referred to as concussion, are a result of rapid accelerations of the head from either direct or indirect impacts. Kinetic energy from the impact is transferred into deformation of the brain, leading to cellular disruption. This transfer of energy is in part mediated by the pia-arachnoid complex (PAC), a layer of anatomical structures that forms the physical connection between the brain and the skull. The importance of properly quantifying the mechanics of the PAC for use in computational models of TBI has been understood for some time, but data from human subjects has been unavailable. In this study, we quantify the normal traction modulus of the PAC in five post-mortem human subjects using hydrostatic fluid pressurization in combination with optical coherence tomography. Testing at multiple locations across each brain reveals that brain-skull stiffness is heterogeneously distributed. The material response to traction loading was linear, with a mean normal traction modulus of 12.6 ± 4.8 kPa. Modulus was 21% greater in superior regions of the brain compared to inferior regions. Comparisons with regional microstructural data suggests a potential relationship between the volume fraction of arachnoid trabeculae and modulus. Comparisons to coincident measurements of microstructural properties showed a positive correlation between arachnoid membrane thickness and normal traction modulus. This study is the first to characterize the mechanics of the human pia-arachnoid complex and quantify material properties in situ. These findings suggest implementing a heterogeneous model of the brain-skull interface in computational models of TBI may lead to more realistic injury prediction.
Collapse
Affiliation(s)
- Nikolaus Benko
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Emma Luke
- Department of Biomedical Engineering, University of Rochester Rochester, NY, USA
| | - Yousef Alsanea
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Brittany Coats
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Walsh DR, Zhou Z, Li X, Kearns J, Newport DT, Mulvihill JJE. Mechanical Properties of the Cranial Meninges: A Systematic Review. J Neurotrauma 2021; 38:1748-1761. [PMID: 33191848 DOI: 10.1089/neu.2020.7288] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The meninges are membranous tissues that are pivotal in maintaining homeostasis of the central nervous system. Despite the importance of the cranial meninges in nervous system physiology and in head injury mechanics, our knowledge of the tissues' mechanical behavior and structural composition is limited. This systematic review analyzes the existing literature on the mechanical properties of the meningeal tissues. Publications were identified from a search of Scopus, Academic Search Complete, and Web of Science and screened for eligibility according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The review details the wide range of testing techniques employed to date and the significant variability in the observed experimental findings. Our findings identify many gaps in the current literature that can serve as a guide for future work for meningeal mechanics investigators. The review identifies no peer-reviewed mechanical data on the falx and tentorium tissues, both of which have been identified as key structures in influencing brain injury mechanics. A dearth of mechanical data for the pia-arachnoid complex also was identified (no experimental mechanics studies on the human pia-arachnoid complex were identified), which is desirable for biofidelic modeling of human head injuries. Finally, this review provides recommendations on how experiments can be conducted to allow for standardization of test methodologies, enabling simplified comparisons and conclusions on meningeal mechanics.
Collapse
Affiliation(s)
- Darragh R Walsh
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland
| | - Zhou Zhou
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Huddinge, Sweden
| | - Xiaogai Li
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Huddinge, Sweden
| | - Jamie Kearns
- Munster Rugby High Performance Center, University of Limerick, Limerick, Ireland
| | - David T Newport
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland
| | - John J E Mulvihill
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
3
|
Walsh DR, Lynch JJ, O' Connor DT, Newport DT, Mulvihill JJE. Mechanical and structural characterisation of the dural venous sinuses. Sci Rep 2020; 10:21763. [PMID: 33303894 PMCID: PMC7729903 DOI: 10.1038/s41598-020-78694-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
The dural venous sinuses play an integral role in draining venous blood from the cranial cavity. As a result of the sinuses anatomical location, they are of significant importance when evaluating the mechanopathology of traumatic brain injury (TBI). Despite the importance of the dural venous sinuses in normal neurophysiology, no mechanical analyses have been conducted on the tissues. In this study, we conduct mechanical and structural analysis on porcine dural venous sinus tissue to help elucidate the tissues’ function in healthy and diseased conditions. With longitudinal elastic moduli values ranging from 33 to 58 MPa, we demonstrate that the sinuses exhibit higher mechanical stiffness than that of native dural tissue, which may be of interest to the field of TBI modelling. Furthermore, by employing histological staining and a colour deconvolution protocol, we show that the sinuses have a collagen-dominant extracellular matrix, with collagen area fractions ranging from 84 to 94%, which likely explains the tissue’s large mechanical stiffness. In summary, we provide the first investigation of the dural venous sinus mechanical behaviour with accompanying structural analysis, which may aid in understanding TBI mechanopathology.
Collapse
Affiliation(s)
- Darragh R Walsh
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland
| | - James J Lynch
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland
| | - David T O' Connor
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - David T Newport
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland
| | - John J E Mulvihill
- Bernal Institute, University of Limerick, Limerick, Ireland. .,School of Engineering, University of Limerick, Limerick, Ireland. .,Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
4
|
Ex-vivo quantification of ovine pia arachnoid complex biomechanical properties under uniaxial tension. Fluids Barriers CNS 2020; 17:68. [PMID: 33183314 PMCID: PMC7664091 DOI: 10.1186/s12987-020-00229-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background The pia arachnoid complex (PAC) is a cerebrospinal fluid-filled tissue conglomerate that surrounds the brain and spinal cord. Pia mater adheres directly to the surface of the brain while the arachnoid mater adheres to the deep surface of the dura mater. Collagen fibers, known as subarachnoid trabeculae (SAT) fibers, and microvascular structure lie intermediately to the pia and arachnoid meninges. Due to its structural role, alterations to the biomechanical properties of the PAC may change surface stress loading in traumatic brain injury (TBI) caused by sub-concussive hits. The aim of this study was to quantify the mechanical and morphological properties of ovine PAC. Methods Ovine brain samples (n = 10) were removed from the skull and tissue was harvested within 30 min post-mortem. To access the PAC, ovine skulls were split medially from the occipital region down the nasal bone on the superior and inferior aspects of the skull. A template was used to remove arachnoid samples from the left and right sides of the frontal and occipital regions of the brain. 10 ex-vivo samples were tested with uniaxial tension at 2 mm s−1, average strain rate of 0.59 s−1, until failure at < 5 h post extraction. The force and displacement data were acquired at 100 Hz. PAC tissue collagen fiber microstructure was characterized using second-harmonic generation (SHG) imaging on a subset of n = 4 stained tissue samples. To differentiate transverse blood vessels from SAT by visualization of cell nuclei and endothelial cells, samples were stained with DAPI and anti-von Willebrand Factor, respectively. The Mooney-Rivlin model for average stress–strain curve fit was used to model PAC material properties. Results The elastic modulus, ultimate stress, and ultimate strain were found to be 7.7 ± 3.0, 2.7 ± 0.76 MPa, and 0.60 ± 0.13, respectively. No statistical significance was found across brain dissection locations in terms of biomechanical properties. SHG images were post-processed to obtain average SAT fiber intersection density, concentration, porosity, tortuosity, segment length, orientation, radial counts, and diameter as 0.23, 26.14, 73.86%, 1.07 ± 0.28, 17.33 ± 15.25 µm, 84.66 ± 49.18°, 8.15%, 3.46 ± 1.62 µm, respectively. Conclusion For the sizes, strain, and strain rates tested, our results suggest that ovine PAC mechanical behavior is isotropic, and that the Mooney-Rivlin model is an appropriate curve-fitting constitutive equation for obtaining material parameters of PAC tissues.
Collapse
|
5
|
Lee C, Rohr J, Sass A, Sater S, Zahid A, Macias B, Stenger MB, Samuels BC, Martin BA, Oshinski JN, Ethier CR. In vivo estimation of optic nerve sheath stiffness using noninvasive MRI measurements and finite element modeling. J Mech Behav Biomed Mater 2020; 110:103924. [PMID: 32957219 DOI: 10.1016/j.jmbbm.2020.103924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022]
Abstract
The optic nerve sheath (ONS) is biomechanically important. It is acted on by tension due to ocular movements, and by fluid shifts and/or alterations in intracranial pressure (ICP) in human disease, specifically in pathologies leading to intracranial hypertension. It has also been hypothesized that the ONS is acted on by altered ICP in astronauts exposed chronically to microgravity. However, a non-invasive method to quantify ONS biomechanical properties is not presently available; knowledge of such properties is desirable to allow characterization of the biomechanical forces exerted on the optic nerve head and other ocular structures due to the ONS. Thus, the primary objective of this study was to characterize the biomechanical properties (stiffness) of the human ONS in vivo as a necessary step towards investigating the role of ICP in various conditions, including Spaceflight Associated Neuro-ocular Syndrome (SANS). We acquired non-invasive magnetic resonance imaging (MRI) scans of ostensibly healthy subjects (n = 18, age = 30.4 ± 11.6 [mean ± SD] years) during supine and 15-degree head-down-tilt (HDT) postures, and extracted ONS contours from these scans. We then used finite element modeling to quantify ONS expansion due to postural changes and an inverse approach to estimate ONS stiffness. Using this non-invasive procedure, we estimated an in vivo ONS stiffness of 39.2 ± 21.9 kPa (mean ± SD), although a small subset of individuals had very stiff ONS that precluded accurate estimates of their stiffness values. ONS stiffness was not correlated with age and was higher in males than females.
Collapse
Affiliation(s)
- Chanyoung Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jesse Rohr
- Department of Biological Engineering, University of Idaho, Moscow, ID, USA
| | - Austin Sass
- Department of Biological Engineering, University of Idaho, Moscow, ID, USA
| | - Stuart Sater
- Department of Biological Engineering, University of Idaho, Moscow, ID, USA
| | - Arslan Zahid
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Brandon Macias
- Cardiovascular and Vision Laboratory, KBR, Houston, TX, USA
| | | | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bryn A Martin
- Department of Biological Engineering, University of Idaho, Moscow, ID, USA
| | - John N Oshinski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - C Ross Ethier
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
6
|
Saboori P. Subarachnoid space trabeculae architecture. Clin Anat 2020; 34:40-50. [PMID: 32519396 DOI: 10.1002/ca.23635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 11/08/2022]
Abstract
INTRODUCTION The motion of the brain relative to the skull is influenced by the architecture of the subarachnoid space (SAS), and in particular, by the arachnoid trabeculae. In previous studies of these structures, specific shapes were identified. However, the work presented here shows much finer detail of the SAS geometries using SEM and TEM. MATERIALS AND METHODS These images were acquired by maintaining the SAS structure of a rat using glutaraldehyde formaldehyde to strengthen the tissues via crosslinking with the biological proteins. RESULTS The results showed the detailed shape of five dominant arachnoid trabeculae structures: single strands, branched strands, tree like shapes, sheets, and trabecular networks. Each of these architectures would provide a different response when exposed to a tensile load and would provide different levels of resistance to the flow of the cerebrospinal fluid (CSF) within the SAS. CONCLUSION This very detailed level of geometric information will therefore allow more accurate finite element models of the SAS to be developed.
Collapse
Affiliation(s)
- Parisa Saboori
- Department of Mechanical Engineering, Manhattan College, New York, New York, USA
| |
Collapse
|
7
|
Bae IS, Kim JM, Cheong JH, Ryu JI, Choi KS, Han MH. Does the skull Hounsfield unit predict shunt dependent hydrocephalus after decompressive craniectomy for traumatic acute subdural hematoma? PLoS One 2020; 15:e0232631. [PMID: 32353054 PMCID: PMC7192490 DOI: 10.1371/journal.pone.0232631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022] Open
Abstract
Background and purpose Posttraumatic hydrocephalus affects 11.9%–36% of patients undergoing decompressive craniectomy (DC) after traumatic brain injury and necessitates a ventriculo-peritoneal shunt placement. As bone and arachnoid trabeculae share the same collagen type, we investigated possible connections between the skull Hounsfield unit (HU) values and shunt-dependent hydrocephalus (SDHC) in patients that received cranioplasty after DC for traumatic acute subdural hematoma (SDH). Methods We measured HU values in the frontal bone and internal occipital protuberance from admission brain CT. Receiver operating characteristic curve analysis was performed to identify the optimal cut-off skull HU values for predicting SDHC in patients receiving cranioplasty after DC due to traumatic acute SDH. We investigated independent predictive factors for SDHC occurrence using multivariable logistic regression analysis. Results A total of 162 patients (>15 years of age) were enrolled in the study over an 11-year period from two university hospitals. Multivariable logistic analysis revealed that the group with simultaneous frontal skull HU ≤797.4 and internal occipital protuberance HU ≤586.5 (odds ratio, 8.57; 95% CI, 3.05 to 24.10; P<0.001) was the only independent predictive factor for SDHC in patients who received cranioplasty after DC for traumatic acute SDH. Conclusions Our study reveals a potential relationship between possible low bone mineral density and development of SDHC in traumatic acute SDH patients who had undergone DC. Our findings provide deeper insight into the association between low bone mineral density and hydrocephalus after DC for traumatic acute SDH.
Collapse
Affiliation(s)
- In-Suk Bae
- Department of Neurosurgery, Eulji University Eulji Hospital, Seoul, Korea
| | - Jae Min Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Gyonggi-do, Korea
| | - Jin Hwan Cheong
- Department of Neurosurgery, Hanyang University Guri Hospital, Gyonggi-do, Korea
| | - Je Il Ryu
- Department of Neurosurgery, Hanyang University Guri Hospital, Gyonggi-do, Korea
| | - Kyu-Sun Choi
- Department of Neurosurgery, Hanyang University Medical Center, Seoul, Korea
| | - Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Gyonggi-do, Korea
- * E-mail:
| |
Collapse
|
8
|
Benko N, Luke E, Alsanea Y, Coats B. Spatial distribution of human arachnoid trabeculae. J Anat 2020; 237:275-284. [PMID: 32202332 DOI: 10.1111/joa.13186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/20/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Traumatic brain injury (TBI) is a common injury modality affecting a diverse patient population. Axonal injury occurs when the brain experiences excessive deformation as a result of head impact. Previous studies have shown that the arachnoid trabeculae (AT) in the subarachnoid space significantly influence the magnitude and distribution of brain deformation during impact. However, the quantity and spatial distribution of cranial AT in humans is unknown. Quantification of these microstructural features will improve understanding of force transfer during TBI, and may be a valuable dataset for microneurosurgical procedures. In this study, we quantify the spatial distribution of cranial AT in seven post-mortem human subjects. Optical coherence tomography (OCT) was used to conduct in situ imaging of AT microstructure across the surface of the human brain. OCT images were segmented to quantify the relative amounts of trabecular structures through a volume fraction (VF) measurement. The average VF for each brain ranged from 22.0% to 29.2%. Across all brains, there was a positive spatial correlation, with VF significantly greater by 12% near the superior aspect of the brain (p < .005), and significantly greater by 5%-10% in the frontal lobes (p < .005). These findings suggest that the distribution of AT between the brain and skull is heterogeneous, region-dependent, and likely contributes to brain deformation patterns. This study is the first to image and quantify human AT across the cerebrum and identify region-dependencies. Incorporation of this spatial heterogeneity may improve the accuracy of computational models of human TBI and enhance understanding of brain dynamics.
Collapse
Affiliation(s)
- Nikolaus Benko
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Emma Luke
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Yousef Alsanea
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Brittany Coats
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
9
|
Micromechanical heterogeneity of the rat pia-arachnoid complex. Acta Biomater 2019; 100:29-37. [PMID: 31585202 DOI: 10.1016/j.actbio.2019.09.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/06/2019] [Accepted: 09/26/2019] [Indexed: 11/20/2022]
Abstract
To better understand the onset of damage occurring in the brain upon traumatic events, it is essential to analyze how external mechanical loads propagate through the skull and meninges and down to the brain cortex. However, despite their crucial role as structural dampers protecting the brain, the mechanical properties and dynamic behavior of the meningeal layers are still poorly understood. Here, we characterized the local mechanical heterogeneity of rat pia-arachnoid complex (PAC) at the microscale via atomic force microscopy (AFM) indentation experiments to understand how microstructural variations at the tissue level can differentially affect load propagation. By coupling AFM mechanical testing with fresh tissue immunofluorescent staining, we could directly observe the effect of specific anatomical features on the local mechanical properties of tissue. We observed a two-fold stiffening of vascularized tissue when compared to non-vascularized PAC (with instantaneous Young's modulus distribution means of 1.32 ± 0.03 kPa and 2.79 ± 0.08 kPa, respectively), and statistically significant differences between regions of low- and high-vimentin density, reflecting trabecular density (with means of 0.67 ± 0.05 kPa and 1.29 ± 0.06 kPa, respectively). No significant differences were observed between cortical and cerebellar PAC. Additionally, by performing force relaxation experiments at the AFM, we identified the characteristic time constant τ1 of PAC tissue to be in the range of 2.7 ± 1.2 s to 3.1 ± 0.9 s for the different PAC regions analyzed. Taken together, the results presented point at the complex biomechanical nature of the meningeal tissue, and underscore the need to account for its heterogeneity when modeling its behavior into finite element simulations or other computational methods enabling the prediction of load propagation during injury events. STATEMENT OF SIGNIFICANCE: The meningeal layers are pivotal in shielding the brain during injury events, yet the mechanical properties of this complex biological interface are still under investigation. Here, we present the first anatomically-informed micromechanical characterization of mammalian pia-arachnoid complex (PAC). We developed a protocol for the isolation and fresh immunostaining of rat PAC and subjected the tissue to AFM indentation and relaxation experiments, while visualizing the local anatomy via fluorescence microscopy. We found statistically significant variations in regional PAC stiffness according to the degree of vascularization and trabecular cell density, besides identifying the tissue's characteristic relaxation constant. In essence, this study captures the relationship between anatomy and mechanical heterogeneity in a key component of the brain-skull interface for the first time.
Collapse
|
10
|
Keith Sharp M, Carare RO, Martin BA. Dispersion in porous media in oscillatory flow between flat plates: applications to intrathecal, periarterial and paraarterial solute transport in the central nervous system. Fluids Barriers CNS 2019; 16:13. [PMID: 31056079 PMCID: PMC6512764 DOI: 10.1186/s12987-019-0132-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/16/2019] [Indexed: 01/22/2023] Open
Abstract
Background As an alternative to advection, solute transport by shear-augmented dispersion within oscillatory cerebrospinal fluid flow was investigated in small channels representing the basement membranes located between cerebral arterial smooth muscle cells, the paraarterial space surrounding the vessel wall and in large channels modeling the spinal subarachnoid space (SSS). Methods Geometries were modeled as two-dimensional. Fully developed flows in the channels were modeled by the Darcy–Brinkman momentum equation and dispersion by the passive transport equation. Scaling of the enhancement of axial dispersion relative to molecular diffusion was developed for regimes of flow including quasi-steady, porous and unsteady, and for regimes of dispersion including diffusive and unsteady. Results Maximum enhancement occurs when the characteristic time for lateral dispersion is matched to the cycle period. The Darcy–Brinkman model represents the porous media as a continuous flow resistance, and also imposes no-slip boundary conditions at the walls of the channel. Consequently, predicted dispersion is always reduced relative to that of a channel without porous media, except when the flow and dispersion are both unsteady. Discussion/conclusions In the basement membranes, flow and dispersion are both quasi-steady and enhancement of dispersion is small even if lateral dispersion is reduced by the porous media to achieve maximum enhancement. In the paraarterial space, maximum enhancement Rmax = 73,200 has the potential to be significant. In the SSS, the dispersion is unsteady and the flow is in the transition zone between porous and unsteady. Enhancement is 5.8 times that of molecular diffusion, and grows to a maximum of 1.6E+6 when lateral dispersion is increased. The maximum enhancement produces rostral transport time in agreement with experiments. Electronic supplementary material The online version of this article (10.1186/s12987-019-0132-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Keith Sharp
- Biofluid Mechanics Laboratory, Department of Mechanical Engineering, University of Louisville, Louisville, KY, 40292, USA.
| | - Roxana O Carare
- Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK
| | - Bryn A Martin
- Department of Biological Engineering, University of Idaho, Moscow, ID, 83844, USA
| |
Collapse
|
11
|
Hartmann K, Stein KP, Neyazi B, Sandalcioglu IE. First in vivo visualization of the human subarachnoid space and brain cortex via optical coherence tomography. Ther Adv Neurol Disord 2019; 12:1756286419843040. [PMID: 31447933 PMCID: PMC6689907 DOI: 10.1177/1756286419843040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/10/2019] [Indexed: 11/17/2022] Open
Abstract
The present work explores optical coherence tomography (OCT) as a suitable in vivo neuroimaging modality of the subarachnoid space (SAS). Patients (n = 26) with frontolateral craniotomy were recruited. The temporal and frontal arachnoid mater and adjacent anatomical structures were scanned using microscope-integrated three-dimensional OCT, (iOCT). Analysis revealed a detailed depiction of the SAS (76.9%) with delineation of the internal microanatomical structures such as the arachnoid barrier cell membrane (ABCM; 96.2%), trabecular system (50.2%), internal blood vessels (96.2%), pia mater (26.9%) and the brain cortex (96.2%). Orthogonal distance measuring was possible. The SAS showed a mean depth of 570 µm frontotemporal. The ABCM showed a mean depth of 74 µm frontotemporal. These results indicate that OCT provides a dynamic, non-invasive tool for real-time imaging of the SAS and adjacent anatomical structures at micrometer spatial resolution. Further studies are necessary to evaluate the value of OCT during microsurgical procedures.
Collapse
Affiliation(s)
- Karl Hartmann
- Department of Neurosurgery, KRH Klinikum Nordstadt, Haltenhoffstraße 41, Hanover 30167, Germany
| | - Klaus-Peter Stein
- Department of Neurosurgery, KRH Klinikum Nordstadt, Hanover, Germany
| | - Belal Neyazi
- Department of Neurosurgery, KRH Klinikum Nordstadt, Hanover, Germany
| | | |
Collapse
|
12
|
Walsh DR, Ross AM, Malijauskaite S, Flanagan BD, Newport DT, McGourty KD, Mulvihill JJ. Regional mechanical and biochemical properties of the porcine cortical meninges. Acta Biomater 2018; 80:237-246. [PMID: 30208332 DOI: 10.1016/j.actbio.2018.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/05/2018] [Accepted: 09/05/2018] [Indexed: 01/14/2023]
Abstract
The meninges are pivotal in protecting the brain against traumatic brain injury (TBI), an ongoing issue in most mainstream sports. Improved understanding of TBI biomechanics and pathophysiology is desirable to improve preventative measures, such as protective helmets, and advance our TBI diagnostic/prognostic capabilities. This study mechanically characterised the porcine meninges by performing uniaxial tensile testing on the dura mater (DM) tissue adjacent to the frontal, parietal, temporal, and occipital lobes of the cerebellum and superior sagittal sinus region of the DM. Mechanical characterisation revealed a significantly higher elastic modulus for the superior sagittal sinus region when compared to other regions in the DM. The superior sagittal sinus and parietal regions of the DM also displayed local mechanical anisotropy. Further, fatigue was noted in the DM following ten preconditioning cycles, which could have important implications in the context of repetitive TBI. To further understand differences in regional mechanical properties, regional variations in protein content (collagen I, collagen III, fibronectin and elastin) were examined by immunoblot analysis. The superior sagittal sinus was found to have significantly higher collagen I, elastin, and fibronectin content. The frontal region was also identified to have significantly higher collagen I and fibronectin content while the temporal region had increased elastin and fibronectin content. Regional differences in the mechanical and biochemical properties along with regional tissue thickness differences within the DM reveal that the tissue is a non-homogeneous structure. In particular, the potentially influential role of the superior sagittal sinus in TBI biomechanics warrants further investigation. STATEMENT OF SIGNIFICANCE: This study addresses the lack of regional mechanical analysis of the cortical meninges, particularly the dura mater (DM), with accompanying biochemical analysis. To mechanically characterise the stiffness of the DM by region, uniaxial tensile testing was carried out on the DM tissue adjacent to the frontal, parietal, temporal and occipital lobes along with the DM tissue associated with the superior sagittal sinus. To the best of the authors' knowledge, the work presented here identifies, for the first time, the heterogeneous nature of the DM's mechanical stiffness by region. In particular, this study identifies the significant difference in the stiffness of the DM tissue associated with the superior sagittal sinus when compared to the other DM regions. Constitutive modelling was carried out on the regional mechanical testing data for implementation in Finite Element models with improved biofidelity. This work also presents the first biochemical analysis of the collagen I and III, elastin, and fibronectin content within DM tissue by region, providing useful insights into the accompanying macro-scale biomechanical data.
Collapse
|
13
|
Zhou Z, Li X, Kleiven S. Fluid-structure interaction simulation of the brain-skull interface for acute subdural haematoma prediction. Biomech Model Mechanobiol 2018; 18:155-173. [PMID: 30151812 PMCID: PMC6373285 DOI: 10.1007/s10237-018-1074-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/20/2018] [Indexed: 10/31/2022]
Abstract
Traumatic brain injury is a leading cause of disability and mortality. Finite element-based head models are promising tools for enhanced head injury prediction, mitigation and prevention. The reliability of such models depends heavily on adequate representation of the brain-skull interaction. Nevertheless, the brain-skull interface has been largely simplified in previous three-dimensional head models without accounting for the fluid behaviour of the cerebrospinal fluid (CSF) and its mechanical interaction with the brain and skull. In this study, the brain-skull interface in a previously developed head model is modified as a fluid-structure interaction (FSI) approach, in which the CSF is treated on a moving mesh using an arbitrary Lagrangian-Eulerian multi-material formulation and the brain on a deformable mesh using a Lagrangian formulation. The modified model is validated against brain-skull relative displacement and intracranial pressure responses and subsequently imposed to an experimentally determined loading known to cause acute subdural haematoma (ASDH). Compared to the original model, the modified model achieves an improved validation performance in terms of brain-skull relative motion and is able to predict the occurrence of ASDH more accurately, indicating the superiority of the FSI approach for brain-skull interface modelling. The introduction of the FSI approach to represent the fluid behaviour of the CSF and its interaction with the brain and skull is crucial for more accurate head injury predictions.
Collapse
Affiliation(s)
- Zhou Zhou
- Neuronic Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden.
| | - Xiaogai Li
- Neuronic Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Svein Kleiven
- Neuronic Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden
| |
Collapse
|
14
|
Yin Z, Sui Y, Trzasko JD, Rossman PJ, Manduca A, Ehman RL, Huston J. In vivo characterization of 3D skull and brain motion during dynamic head vibration using magnetic resonance elastography. Magn Reson Med 2018; 80:2573-2585. [PMID: 29774594 DOI: 10.1002/mrm.27347] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE To introduce newly developed MR elastography (MRE)-based dual-saturation imaging and dual-sensitivity motion encoding schemes to directly measure in vivo skull-brain motion, and to study the skull-brain coupling in volunteers with these approaches. METHODS Six volunteers were scanned with a high-performance compact 3T-MRI scanner. The skull-brain MRE images were obtained with a dual-saturation imaging where the skull and brain motion were acquired with fat- and water-suppression scans, respectively. A dual-sensitivity motion encoding scheme was applied to estimate the heavily wrapped phase in skull by the simultaneous acquisition of both low- and high-sensitivity phase during a single MRE exam. The low-sensitivity phase was used to guide unwrapping of the high-sensitivity phase. The amplitude and temporal phase delay of the rigid-body motion between the skull and brain was measured, and the skull-brain interface was visualized by slip interface imaging (SII). RESULTS Both skull and brain motion can be successfully acquired and unwrapped. The skull-brain motion analysis demonstrated the motion transmission from the skull to the brain is attenuated in amplitude and delayed. However, this attenuation (%) and delay (rad) were considerably greater with rotation (59 ± 7%, 0.68 ± 0.14 rad) than with translation (92 ± 5%, 0.04 ± 0.02 rad). With SII the skull-brain slip interface was not completely evident, and the slip pattern was spatially heterogeneous. CONCLUSION This study provides a framework for acquiring in vivo voxel-based skull and brain displacement using MRE that can be used to characterize the skull-brain coupling system for understanding of mechanical brain protection mechanisms, which has potential to facilitate risk management for future injury.
Collapse
Affiliation(s)
- Ziying Yin
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yi Sui
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Joshua D Trzasko
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Phillip J Rossman
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Richard L Ehman
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - John Huston
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
15
|
Pasquesi SA, Margulies SS. Measurement and Finite Element Model Validation of Immature Porcine Brain-Skull Displacement during Rapid Sagittal Head Rotations. Front Bioeng Biotechnol 2018. [PMID: 29515995 PMCID: PMC5826385 DOI: 10.3389/fbioe.2018.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Computational models are valuable tools for studying tissue-level mechanisms of traumatic brain injury, but to produce more accurate estimates of tissue deformation, these models must be validated against experimental data. In this study, we present in situ measurements of brain-skull displacement in the neonatal piglet head (n = 3) at the sagittal midline during six rapid non-impact rotations (two rotations per specimen) with peak angular velocities averaging 51.7 ± 1.4 rad/s. Marks on the sagittally cut brain and skull/rigid potting surfaces were tracked, and peak values of relative brain-skull displacement were extracted and found to be significantly less than values extracted from a previous axial plane model. In a finite element model of the sagittally transected neonatal porcine head, the brain-skull boundary condition was matched to the measured physical experiment data. Despite smaller sagittal plane displacements at the brain-skull boundary, the corresponding finite element boundary condition optimized for sagittal plane rotations is far less stiff than its axial counterpart, likely due to the prominent role of the boundary geometry in restricting interface movement. Finally, bridging veins were included in the finite element model. Varying the bridging vein mechanical behavior over a previously reported range had no influence on the brain-skull boundary displacements. This direction-specific sagittal plane boundary condition can be employed in finite element models of rapid sagittal head rotations.
Collapse
Affiliation(s)
- Stephanie A Pasquesi
- Injury Biomechanics Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Susan S Margulies
- Injury Biomechanics Laboratory, Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
Mortazavi MM, Quadri SA, Khan MA, Gustin A, Suriya SS, Hassanzadeh T, Fahimdanesh KM, Adl FH, Fard SA, Taqi MA, Armstrong I, Martin BA, Tubbs RS. Subarachnoid Trabeculae: A Comprehensive Review of Their Embryology, Histology, Morphology, and Surgical Significance. World Neurosurg 2017; 111:279-290. [PMID: 29269062 DOI: 10.1016/j.wneu.2017.12.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Brain is suspended in cerebrospinal fluid (CSF)-filled subarachnoid space by subarachnoid trabeculae (SAT), which are collagen-reinforced columns stretching between the arachnoid and pia maters. Much neuroanatomic research has been focused on the subarachnoid cisterns and arachnoid matter but reported data on the SAT are limited. This study provides a comprehensive review of subarachnoid trabeculae, including their embryology, histology, morphologic variations, and surgical significance. METHODS A literature search was conducted with no date restrictions in PubMed, Medline, EMBASE, Wiley Online Library, Cochrane, and Research Gate. Terms for the search included but were not limited to subarachnoid trabeculae, subarachnoid trabecular membrane, arachnoid mater, subarachnoid trabeculae embryology, subarachnoid trabeculae histology, and morphology. Articles with a high likelihood of bias, any study published in nonpopular journals (not indexed in PubMed or MEDLINE), and studies with conflicting data were excluded. RESULTS A total of 1113 articles were retrieved. Of these, 110 articles including 19 book chapters, 58 original articles, 31 review articles, and 2 case reports met our inclusion criteria. CONCLUSIONS SAT provide mechanical support to neurovascular structures through cell-to-cell interconnections and specific junctions between the pia and arachnoid maters. They vary widely in appearance and configuration among different parts of the brain. The complex network of SAT is inhomogeneous and mainly located in the vicinity of blood vessels. Microsurgical procedures should be performed with great care, and sharp rather than blunt trabecular dissection is recommended because of the close relationship to neurovascular structures. The significance of SAT for cerebrospinal fluid flow and hydrocephalus is to be determined.
Collapse
Affiliation(s)
- Martin M Mortazavi
- National Skull Base Center, Thousand Oaks, California, USA; California Institute of Neuroscience, Thousand Oaks, California, USA.
| | - Syed A Quadri
- National Skull Base Center, Thousand Oaks, California, USA; California Institute of Neuroscience, Thousand Oaks, California, USA
| | - Muhammad A Khan
- National Skull Base Center, Thousand Oaks, California, USA; California Institute of Neuroscience, Thousand Oaks, California, USA
| | - Aaron Gustin
- Advocate BroMenn Medical Center, Normal, Illinois, USA
| | - Sajid S Suriya
- National Skull Base Center, Thousand Oaks, California, USA; California Institute of Neuroscience, Thousand Oaks, California, USA
| | | | | | - Farzad H Adl
- National Skull Base Center, Thousand Oaks, California, USA; California Institute of Neuroscience, Thousand Oaks, California, USA
| | - Salman A Fard
- National Skull Base Center, Thousand Oaks, California, USA; California Institute of Neuroscience, Thousand Oaks, California, USA
| | - M Asif Taqi
- National Skull Base Center, Thousand Oaks, California, USA; California Institute of Neuroscience, Thousand Oaks, California, USA
| | - Ian Armstrong
- National Skull Base Center, Thousand Oaks, California, USA; California Institute of Neuroscience, Thousand Oaks, California, USA
| | - Bryn A Martin
- National Skull Base Center, Thousand Oaks, California, USA; University of Idaho, Moscow, Idaho, USA
| | - R Shane Tubbs
- National Skull Base Center, Thousand Oaks, California, USA; Seattle Science Foundation, Seattle, Washington, USA
| |
Collapse
|
17
|
Lucke-Wold BP, Turner RC, Logsdon AF, Rosen CL, Qaiser R. Blast Scaling Parameters: Transitioning from Lung to Skull Base Metrics. JOURNAL OF SURGERY AND EMERGENCY MEDICINE 2017; 1. [PMID: 28386605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/28/2022]
Abstract
Neurotrauma from blast exposure is one of the single most characteristic injuries of modern warfare. Understanding blast traumatic brain injury is critical for developing new treatment options for warfighters and civilians exposed to improvised explosive devices. Unfortunately, the pre-clinical models that are widely utilized to investigate blast exposure are based on archaic lung based parameters developed in the early 20th century. Improvised explosive devices produce a different type of injury paradigm than the typical mortar explosion. Protective equipment for the chest cavity has also improved over the past 100 years. In order to improve treatments, it is imperative to develop models that are based more on skull-based parameters. In this mini-review, we discuss the important anatomical and biochemical features necessary to develop a skull-based model.
Collapse
Affiliation(s)
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| | | | - Charles L Rosen
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| | - Rabia Qaiser
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
18
|
Scott GG, Margulies SS, Coats B. Utilizing multiple scale models to improve predictions of extra-axial hemorrhage in the immature piglet. Biomech Model Mechanobiol 2015; 15:1101-19. [DOI: 10.1007/s10237-015-0747-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/06/2015] [Indexed: 12/11/2022]
|