1
|
Zhang R, Jiang G. Exploring a multi-path U-net with probability distribution attention and cascade dilated convolution for precise retinal vessel segmentation in fundus images. Sci Rep 2025; 15:13428. [PMID: 40251298 PMCID: PMC12008375 DOI: 10.1038/s41598-025-98021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
While deep learning has become the go-to method for image denoising due to its impressive noise removal Retinal blood vessel segmentation presents several challenges, including limited labeled image data, complex multi-scale vessel structures, and susceptibility to interference from lesion areas. To confront these challenges, this work offers a novel technique that integrates attention mechanisms and a cascaded dilated convolution module (CDCM) within a multi-path U-Net architecture. First, a dual-path U-Net is developed to extract both coarse and fine-grained vessel structures through separate texture and structural branches. A CDCM is integrated to gather multi-scale vessel features, enhancing the model's ability to extract deep semantic features. Second, a boosting algorithm that incorporates probability distribution attention (PDA) within the upscaling blocks is employed. This approach adjusts the probability distribution, increasing the contribution of shallow information, thereby enhancing segmentation performance in complex backgrounds and reducing the risk of overfitting. Finally, the output from the dual-path U-Net is processed through a feature refinement module. This step further refines the vessel segmentation by integrating and extracting relevant features. Results from experiments on three benchmark datasets, including CHASEDB1, DRIVE, and STARE, demonstrate that the proposed method delivers improved segmentation accuracy compared to existing techniques.
Collapse
Affiliation(s)
- Ruihong Zhang
- School of Computer, Huanggang Normal University, Huanggang, Hubei, 438000, China
| | - Guosong Jiang
- School of Computer, Huanggang Normal University, Huanggang, Hubei, 438000, China.
| |
Collapse
|
2
|
Kansal I, Khullar V, Sharma P, Singh S, Hamid JA, Santhosh AJ. Multiple model visual feature embedding and selection method for an efficient oncular disease classification. Sci Rep 2025; 15:5157. [PMID: 39934192 PMCID: PMC11814330 DOI: 10.1038/s41598-024-84922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
Early detection of ocular diseases is vital to preventing severe complications, yet it remains challenging due to the need for skilled specialists, complex imaging processes, and limited resources. Automated solutions are essential to enhance diagnostic precision and support clinical workflows. This study presents a deep learning-based system for automated classification of ocular diseases using the Ocular Disease Intelligent Recognition (ODIR) dataset. The dataset includes 5,000 patient fundus images labeled into eight categories of ocular diseases. Initial experiments utilized transfer learning models such as DenseNet201, EfficientNetB3, and InceptionResNetV2. To optimize computational efficiency, a novel two-level feature selection framework combining Linear Discriminant Analysis (LDA) and advanced neural network classifiers-Deep Neural Networks (DNN), Long Short-Term Memory (LSTM), and Bidirectional LSTM (BiLSTM)-was introduced. Among the tested approaches, the "Combined Data" strategy utilizing features from all three models achieved the best results, with the BiLSTM classifier attaining 100% accuracy, precision, and recall on the training set, and over 98% performance on the validation set. The LDA-based framework significantly reduced computational complexity while enhancing classification accuracy. The proposed system demonstrates a scalable, efficient solution for ocular disease detection, offering robust support for clinical decision-making. By bridging the gap between clinical demands and technological capabilities, it has the potential to alleviate the workload of ophthalmologists, particularly in resource-constrained settings, and improve patient outcomes globally.
Collapse
Affiliation(s)
- Isha Kansal
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Vikas Khullar
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Preeti Sharma
- Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Supreet Singh
- School of Computer Science, UPES, Dehradun, Uttarakhand, India
| | | | - A Johnson Santhosh
- Faculty of Mechanical Engineering, Jimma Institute of Technology, Jimma, Ethiopia.
| |
Collapse
|
3
|
Yagis E, Aslani S, Jain Y, Zhou Y, Rahmani S, Brunet J, Bellier A, Werlein C, Ackermann M, Jonigk D, Tafforeau P, Lee PD, Walsh CL. Deep learning for 3D vascular segmentation in hierarchical phase contrast tomography: a case study on kidney. Sci Rep 2024; 14:27258. [PMID: 39516256 PMCID: PMC11549215 DOI: 10.1038/s41598-024-77582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Automated blood vessel segmentation is critical for biomedical image analysis, as vessel morphology changes are associated with numerous pathologies. Still, precise segmentation is difficult due to the complexity of vascular structures, anatomical variations across patients, the scarcity of annotated public datasets, and the quality of images. Our goal is to provide a foundation on the topic and identify a robust baseline model for application to vascular segmentation using a new imaging modality, Hierarchical Phase-Contrast Tomography (HiP-CT). We begin with an extensive review of current machine-learning approaches for vascular segmentation across various organs. Our work introduces a meticulously curated training dataset, verified by double annotators, consisting of vascular data from three kidneys imaged using HiP-CT as part of the Human Organ Atlas Project. HiP-CT pioneered at the European Synchrotron Radiation Facility in 2020, revolutionizes 3D organ imaging by offering a resolution of around 20 μm/voxel and enabling highly detailed localised zooms up to 1-2 μm/voxel without physical sectioning. We leverage the nnU-Net framework to evaluate model performance on this high-resolution dataset, using both known and novel samples, and implementing metrics tailored for vascular structures. Our comprehensive review and empirical analysis on HiP-CT data sets a new standard for evaluating machine learning models in high-resolution organ imaging. Our three experiments yielded Dice similarity coefficient (DSC) scores of 0.9523, 0.9410, and 0.8585, respectively. Nevertheless, DSC primarily assesses voxel-to-voxel concordance, overlooking several crucial characteristics of the vessels and should not be the sole metric for deciding the performance of vascular segmentation. Our results show that while segmentations yielded reasonably high scores-such as centerline DSC ranging from 0.82 to 0.88, certain errors persisted. Specifically, large vessels that collapsed due to the lack of hydrostatic pressure (HiP-CT is an ex vivo technique) were segmented poorly. Moreover, decreased connectivity in finer vessels and higher segmentation errors at vessel boundaries were observed. Such errors, particularly in significant vessels, obstruct the understanding of the structures by interrupting vascular tree connectivity. Our study establishes the benchmark across various evaluation metrics, for vascular segmentation of HiP-CT imaging data, an imaging technology that has the potential to substantively shift our understanding of human vascular networks.
Collapse
Affiliation(s)
- Ekin Yagis
- Department of Mechanical Engineering, University College London, London, UK.
| | - Shahab Aslani
- Department of Mechanical Engineering, University College London, London, UK
- Centre for Medical Image Computing, University College London, London, UK
| | - Yashvardhan Jain
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, USA
| | - Yang Zhou
- Department of Mechanical Engineering, University College London, London, UK
| | - Shahrokh Rahmani
- Department of Mechanical Engineering, University College London, London, UK
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK
| | - Joseph Brunet
- Department of Mechanical Engineering, University College London, London, UK
- European Synchrotron Radiation Facility, Grenoble, France
| | | | - Christopher Werlein
- Institute of Pathology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Danny Jonigk
- Institute of Pathology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Peter D Lee
- Department of Mechanical Engineering, University College London, London, UK
| | - Claire L Walsh
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
4
|
Guo Z, Tan Z, Feng J, Zhou J. 3D Vascular Segmentation Supervised by 2D Annotation of Maximum Intensity Projection. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2241-2253. [PMID: 38319757 DOI: 10.1109/tmi.2024.3362847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Vascular structure segmentation plays a crucial role in medical analysis and clinical applications. The practical adoption of fully supervised segmentation models is impeded by the intricacy and time-consuming nature of annotating vessels in the 3D space. This has spurred the exploration of weakly-supervised approaches that reduce reliance on expensive segmentation annotations. Despite this, existing weakly supervised methods employed in organ segmentation, which encompass points, bounding boxes, or graffiti, have exhibited suboptimal performance when handling sparse vascular structure. To alleviate this issue, we employ maximum intensity projection (MIP) to decrease the dimensionality of 3D volume to 2D image for efficient annotation, and the 2D labels are utilized to provide guidance and oversight for training 3D vessel segmentation model. Initially, we generate pseudo-labels for 3D blood vessels using the annotations of 2D projections. Subsequently, taking into account the acquisition method of the 2D labels, we introduce a weakly-supervised network that fuses 2D-3D deep features via MIP to further improve segmentation performance. Furthermore, we integrate confidence learning and uncertainty estimation to refine the generated pseudo-labels, followed by fine-tuning the segmentation network. Our method is validated on five datasets (including cerebral vessel, aorta and coronary artery), demonstrating highly competitive performance in segmenting vessels and the potential to significantly reduce the time and effort required for vessel annotation. Our code is available at: https://github.com/gzq17/Weakly-Supervised-by-MIP.
Collapse
|
5
|
Burrows L, Patel J, Islim AI, Jenkinson MD, Mills SJ, Chen K. A semi-automatic segmentation method for meningioma developed using a variational approach model. Neuroradiol J 2024; 37:199-205. [PMID: 38146866 DOI: 10.1177/19714009231224442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Meningioma is the commonest primary brain tumour. Volumetric post-contrast magnetic resonance imaging (MRI) is recognised as gold standard for delineation of meningioma volume but is hindered by manual processing times. We aimed to investigate the utility of a model-based variational approach in segmenting meningioma. METHODS A database of patients with a meningioma (2007-2015) was queried for patients with a contrast-enhanced volumetric MRI, who had consented to a research tissue biobank. Manual segmentation by a neuroradiologist was performed and results were compared to the mathematical model, using a battery of tests including the Sørensen-Dice coefficient (DICE) and JACCARD index. A publicly available meningioma dataset (708 segmented T1 contrast-enhanced slices) was also used to test the reliability of the model. RESULTS 49 meningioma cases were included. The most common meningioma location was convexity (n = 15, 30.6%). The mathematical model segmented all but one incidental meningioma, which failed due to the lack of contrast uptake. The median meningioma volume by manual segmentation was 19.0 cm3 (IQR 4.9-31.2). The median meningioma volume using the mathematical model was 16.9 cm3 (IQR 4.6-28.34). The mean DICE score was 0.90 (SD = 0.04). The mean JACCARD index was 0.82 (SD = 0.07). For the publicly available dataset, the mean DICE and JACCARD scores were 0.90 (SD = 0.06) and 0.82 (SD = 0.10), respectively. CONCLUSIONS Segmentation of meningioma volume using the proposed mathematical model was possible with accurate results. Application of this model on contrast-enhanced volumetric imaging may help reduce work burden on neuroradiologists with the increasing number in meningioma diagnoses.
Collapse
Affiliation(s)
- Liam Burrows
- Department of Mathematical Sciences and Centre for Mathematical Imaging Techniques, University of Liverpool, UK
| | - Jay Patel
- Department of Neuroradiology, The Walton Centre NHS Foundation Trust, UK
| | - Abdurrahman I Islim
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital, Northren Care Alliance NHS Foundation Trust, UK
| | - Michael D Jenkinson
- Department of Neurosurgery, The Walton Centre NHS Foundation Trust, UK
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Samantha J Mills
- Department of Neuroradiology, The Walton Centre NHS Foundation Trust, UK
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK
| | - Ke Chen
- Department of Mathematical Sciences and Centre for Mathematical Imaging Techniques, University of Liverpool, UK
- Department of Mathematics and Statistics, University of Strathclyde, UK
| |
Collapse
|
6
|
Zhou Y, Xu M, Hu Y, Blumberg SB, Zhao A, Wagner SK, Keane PA, Alexander DC. CF-Loss: Clinically-relevant feature optimised loss function for retinal multi-class vessel segmentation and vascular feature measurement. Med Image Anal 2024; 93:103098. [PMID: 38320370 DOI: 10.1016/j.media.2024.103098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/22/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
Characterising clinically-relevant vascular features, such as vessel density and fractal dimension, can benefit biomarker discovery and disease diagnosis for both ophthalmic and systemic diseases. In this work, we explicitly encode vascular features into an end-to-end loss function for multi-class vessel segmentation, categorising pixels into artery, vein, uncertain pixels, and background. This clinically-relevant feature optimised loss function (CF-Loss) regulates networks to segment accurate multi-class vessel maps that produce precise vascular features. Our experiments first verify that CF-Loss significantly improves both multi-class vessel segmentation and vascular feature estimation, with two standard segmentation networks, on three publicly available datasets. We reveal that pixel-based segmentation performance is not always positively correlated with accuracy of vascular features, thus highlighting the importance of optimising vascular features directly via CF-Loss. Finally, we show that improved vascular features from CF-Loss, as biomarkers, can yield quantitative improvements in the prediction of ischaemic stroke, a real-world clinical downstream task. The code is available at https://github.com/rmaphoh/feature-loss.
Collapse
Affiliation(s)
- Yukun Zhou
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK; NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| | - MouCheng Xu
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK; Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Yipeng Hu
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK; Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK; Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London W1W 7TS, UK
| | - Stefano B Blumberg
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK; Department of Computer Science, University College London, London WC1E 6BT, UK
| | - An Zhao
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK; Department of Computer Science, University College London, London WC1E 6BT, UK
| | - Siegfried K Wagner
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Pearse A Keane
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK; Department of Computer Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
7
|
Wang X, Fang J, Yang L. Research progress on ocular complications caused by type 2 diabetes mellitus and the function of tears and blepharons. Open Life Sci 2024; 19:20220773. [PMID: 38299009 PMCID: PMC10828665 DOI: 10.1515/biol-2022-0773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/20/2023] [Accepted: 10/19/2023] [Indexed: 02/02/2024] Open
Abstract
The purpose of this study was to explore the related research progress of ocular complications (OCs) caused by type 2 diabetes mellitus (T2DM), tear and tarsal function, and the application of deep learning (DL) in the diagnosis of diabetes and OCs caused by it, to provide reference for the prevention and control of OCs in T2DM patients. This study reviewed the pathogenesis and treatment of diabetes retinopathy, keratopathy, dry eye disease, glaucoma, and cataract, analyzed the relationship between OCs and tear function and tarsal function, and discussed the application value of DL in the diagnosis of diabetes and OCs. Diabetes retinopathy is related to hyperglycemia, angiogenic factors, oxidative stress, hypertension, hyperlipidemia, and other factors. The increase in water content in the corneal stroma leads to corneal relaxation, loss of transparency, and elasticity, and can lead to the occurrence of corneal lesions. Dry eye syndrome is related to abnormal stability of the tear film and imbalance in neural and immune regulation. Elevated intraocular pressure, inflammatory reactions, atrophy of the optic nerve head, and damage to optic nerve fibers are the causes of glaucoma. Cataract is a common eye disease in the elderly, which is a visual disorder caused by lens opacity. Oxidative stress is an important factor in the occurrence of cataracts. In clinical practice, blood sugar control, laser therapy, and drug therapy are used to control the above eye complications. The function of tear and tarsal plate will be affected by eye diseases. Retinopathy and dry eye disease caused by diabetes will cause dysfunction of tear and tarsal plate, which will affect the eye function of patients. Furthermore, DL can automatically diagnose and classify eye diseases, automatically analyze fundus images, and accurately diagnose diabetes retinopathy, macular degeneration, and other diseases by analyzing and processing eye images and data. The treatment of T2DM is difficult and prone to OCs, which seriously threatens the normal life of patients. The occurrence of OCs is closely related to abnormal tear and tarsal function. Based on DL, clinical diagnosis and treatment of diabetes and its OCs can be carried out, which has positive application value.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Operating Room, Xinchang County Peoples Hospital, Xinchang, 312500, Shaoxing City, Zhejiang, China
| | - Jian Fang
- Department of Ophthalmolgy, Xinchang County Peoples Hospital, Xinchang, 312500, Shaoxing City, Zhejiang, China
| | - Lina Yang
- Department of Ophthalmolgy, Xinchang County Peoples Hospital, Xinchang, 312500, Shaoxing City, Zhejiang, China
| |
Collapse
|
8
|
Mahapatra S, Agrawal S, Mishro PK, Panda R, Dora L, Pachori RB. A Review on Retinal Blood Vessel Enhancement and Segmentation Techniques for Color Fundus Photography. Crit Rev Biomed Eng 2024; 52:41-69. [PMID: 37938183 DOI: 10.1615/critrevbiomedeng.2023049348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The retinal image is a trusted modality in biomedical image-based diagnosis of many ophthalmologic and cardiovascular diseases. Periodic examination of the retina can help in spotting these abnormalities in the early stage. However, to deal with today's large population, computerized retinal image analysis is preferred over manual inspection. The precise extraction of the retinal vessel is the first and decisive step for clinical applications. Every year, many more articles are added to the literature that describe new algorithms for the problem at hand. The majority of the review article is restricted to a fairly small number of approaches, assessment indices, and databases. In this context, a comprehensive review of different vessel extraction methods is inevitable. It includes the development of a first-hand classification of these methods. A bibliometric analysis of these articles is also presented. The benefits and drawbacks of the most commonly used techniques are summarized. The primary challenges, as well as the scope of possible changes, are discussed. In order to make a fair comparison, numerous assessment indices are considered. The findings of this survey could provide a new path for researchers for further work in this domain.
Collapse
Affiliation(s)
- Sakambhari Mahapatra
- Department of Electronics and Telecommunication Engineering, Veer Surendra Sai University of Technology, Burla, India
| | - Sanjay Agrawal
- Department of Electronics and Telecommunication Engineering, Veer Surendra Sai University of Technology, Burla, India
| | - Pranaba K Mishro
- Department of Electronics and Telecommunication Engineering, Veer Surendra Sai University of Technology, Burla, India
| | - Rutuparna Panda
- Department of Electronics and Telecommunication Engineering, Veer Surendra Sai University of Technology, Burla, India
| | - Lingraj Dora
- Department of Electrical and Electronics Engineering, Veer Surendra Sai University of Technology, Burla, India
| | - Ram Bilas Pachori
- Department of Electrical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
9
|
Shen N, Xu T, Huang S, Mu F, Li J. Expert-Guided Knowledge Distillation for Semi-Supervised Vessel Segmentation. IEEE J Biomed Health Inform 2023; 27:5542-5553. [PMID: 37669209 DOI: 10.1109/jbhi.2023.3312338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
In medical image analysis, blood vessel segmentation is of considerable clinical value for diagnosis and surgery. The predicaments of complex vascular structures obstruct the development of the field. Despite many algorithms have emerged to get off the tight corners, they rely excessively on careful annotations for tubular vessel extraction. A practical solution is to excavate the feature information distribution from unlabeled data. This work proposes a novel semi-supervised vessel segmentation framework, named EXP-Net, to navigate through finite annotations. Based on the training mechanism of the Mean Teacher model, we innovatively engage an expert network in EXP-Net to enhance knowledge distillation. The expert network comprises knowledge and connectivity enhancement modules, which are respectively in charge of modeling feature relationships from global and detailed perspectives. In particular, the knowledge enhancement module leverages the vision transformer to highlight the long-range dependencies among multi-level token components; the connectivity enhancement module maximizes the properties of topology and geometry by skeletonizing the vessel in a non-parametric manner. The key components are dedicated to the conditions of weak vessel connectivity and poor pixel contrast. Extensive evaluations show that our EXP-Net achieves state-of-the-art performance on subcutaneous vessel, retinal vessel, and coronary artery segmentations.
Collapse
|
10
|
Pang S, Du A, Orgun MA, Wang Y, Sheng QZ, Wang S, Huang X, Yu Z. Beyond CNNs: Exploiting Further Inherent Symmetries in Medical Image Segmentation. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:6776-6787. [PMID: 36044511 DOI: 10.1109/tcyb.2022.3195447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Automatic tumor or lesion segmentation is a crucial step in medical image analysis for computer-aided diagnosis. Although the existing methods based on convolutional neural networks (CNNs) have achieved the state-of-the-art performance, many challenges still remain in medical tumor segmentation. This is because, although the human visual system can detect symmetries in 2-D images effectively, regular CNNs can only exploit translation invariance, overlooking further inherent symmetries existing in medical images, such as rotations and reflections. To solve this problem, we propose a novel group equivariant segmentation framework by encoding those inherent symmetries for learning more precise representations. First, kernel-based equivariant operations are devised on each orientation, which allows it to effectively address the gaps of learning symmetries in existing approaches. Then, to keep segmentation networks globally equivariant, we design distinctive group layers with layer-wise symmetry constraints. Finally, based on our novel framework, extensive experiments conducted on real-world clinical data demonstrate that a group equivariant Res-UNet (called GER-UNet) outperforms its regular CNN-based counterpart and the state-of-the-art segmentation methods in the tasks of hepatic tumor segmentation, COVID-19 lung infection segmentation, and retinal vessel detection. More importantly, the newly built GER-UNet also shows potential in reducing the sample complexity and the redundancy of filters, upgrading current segmentation CNNs, and delineating organs on other medical imaging modalities.
Collapse
|
11
|
Zhu YF, Xu X, Zhang XD, Jiang MS. CCS-UNet: a cross-channel spatial attention model for accurate retinal vessel segmentation. BIOMEDICAL OPTICS EXPRESS 2023; 14:4739-4758. [PMID: 37791275 PMCID: PMC10545190 DOI: 10.1364/boe.495766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 10/05/2023]
Abstract
Precise segmentation of retinal vessels plays an important role in computer-assisted diagnosis. Deep learning models have been applied to retinal vessel segmentation, but the efficacy is limited by the significant scale variation of vascular structures and the intricate background of retinal images. This paper supposes a cross-channel spatial attention U-Net (CCS-UNet) for accurate retinal vessel segmentation. In comparison to other models based on U-Net, our model employes a ResNeSt block for the encoder-decoder architecture. The block has a multi-branch structure that enables the model to extract more diverse vascular features. It facilitates weight distribution across channels through the incorporation of soft attention, which effectively aggregates contextual information in vascular images. Furthermore, we suppose an attention mechanism within the skip connection. This mechanism serves to enhance feature integration across various layers, thereby mitigating the degradation of effective information. It helps acquire cross-channel information and enhance the localization of regions of interest, ultimately leading to improved recognition of vascular structures. In addition, the feature fusion module (FFM) module is used to provide semantic information for a more refined vascular segmentation map. We evaluated CCS-UNet based on five benchmark retinal image datasets, DRIVE, CHASEDB1, STARE, IOSTAR and HRF. Our proposed method exhibits superior segmentation efficacy compared to other state-of-the-art techniques with a global accuracy of 0.9617/0.9806/0.9766/0.9786/0.9834 and AUC of 0.9863/0.9894/0.9938/0.9902/0.9855 on DRIVE, CHASEDB1, STARE, IOSTAR and HRF respectively. Ablation studies are also performed to evaluate the the relative contributions of different architectural components. Our proposed model is potential for diagnostic aid of retinal diseases.
Collapse
Affiliation(s)
| | | | - Xue-dian Zhang
- Shanghai Key Laboratory of Contemporary Optics System, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min-shan Jiang
- Shanghai Key Laboratory of Contemporary Optics System, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
12
|
Zhou H, Sun C, Huang H, Fan M, Yang X, Zhou L. Feature-guided attention network for medical image segmentation. Med Phys 2023; 50:4871-4886. [PMID: 36746870 DOI: 10.1002/mp.16253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND U-Net and its variations have achieved remarkable performances in medical image segmentation. However, they have two limitations. First, the shallow layer feature of the encoder always contains background noise. Second, semantic gaps exist between the features of the encoder and the decoder. Skip-connections directly connect the encoder to the decoder, which will lead to the fusion of semantically dissimilar feature maps. PURPOSE To overcome these two limitations, this paper proposes a novel medical image segmentation algorithm, called feature-guided attention network, which consists of U-Net, the cross-level attention filtering module (CAFM), and the attention-guided upsampling module (AUM). METHODS In the proposed method, the AUM and the CAFM were introduced into the U-Net, where the AUM learns to filter the background noise in the low-level feature map of the encoder and the CAFM tries to eliminate the semantic gap between the encoder and the decoder. Specifically, the AUM adopts a top-down pathway to use the high-level feature map so as to filter the background noise in the low-level feature map of the encoder. The AUM uses the encoder features to guide the upsampling of the corresponding decoder features, thus eliminating the semantic gap between them. Four medical image segmentation tasks, including coronary atherosclerotic plaque segmentation (Dataset A), retinal vessel segmentation (Dataset B), skin lesion segmentation (Dataset C), and multiclass retinal edema lesions segmentation (Dataset D), were used to validate the proposed method. RESULTS For Dataset A, the proposed method achieved higher Intersection over Union (IoU) (67.91 ± 3.82 % $67.91\pm 3.82\%$ ), dice (79.39 ± 3.37 % $79.39\pm 3.37\%$ ), accuracy (98.39 ± 0.34 % $98.39\pm 0.34\%$ ), and sensitivity (85.10 ± 3.74 % $85.10\pm 3.74\%$ ) than the previous best method: CA-Net. For Dataset B, the proposed method achieved higher sensitivity (83.50%) and accuracy (97.55%) than the previous best method: SCS-Net. For Dataset C, the proposed method had highest IoU (83.47 ± 0.41 % $83.47\pm 0.41\%$ ) and dice (90.81 ± 0.34 % $90.81\pm 0.34\%$ ) than those of all compared previous methods. For Dataset D, the proposed method had highest dice (average: 81.53%; retina edema area [REA]: 83.78%; pigment epithelial detachment [PED] 77.13%), sensitivity (REA: 89.01%; SRF: 85.50%), specificity (REA: 99.35%; PED: 100.00), and accuracy (98.73%) among all compared previous networks. In addition, the number of parameters of the proposed method was 2.43 M, which is less than CA-Net (3.21 M) and CPF-Net (3.07 M). CONCLUSIONS The proposed method demonstrated state-of-the-art performance, outperforming other top-notch medical image segmentation algorithms. The CAFM filtered the background noise in the low-level feature map of the encoder, while the AUM eliminated the semantic gap between the encoder and the decoder. Furthermore, the proposed method was of high computational efficiency.
Collapse
Affiliation(s)
- Hao Zhou
- National Key Laboratory of Science and Technology of Underwater Vehicle, Harbin Engineering University, Harbin, China
| | - Chaoyu Sun
- Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hai Huang
- National Key Laboratory of Science and Technology of Underwater Vehicle, Harbin Engineering University, Harbin, China
| | - Mingyu Fan
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Xu Yang
- State Key Laboratory of Management and Control for Complex System, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Linxiao Zhou
- Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Ni J, Sun H, Xu J, Liu J, Chen Z. A feature aggregation and feature fusion network for retinal vessel segmentation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
14
|
Abdushkour H, Soomro TA, Ali A, Ali Jandan F, Jelinek H, Memon F, Althobiani F, Mohammed Ghonaim S, Irfan M. Enhancing fine retinal vessel segmentation: Morphological reconstruction and double thresholds filtering strategy. PLoS One 2023; 18:e0288792. [PMID: 37467245 DOI: 10.1371/journal.pone.0288792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Eye diseases such as diabetic retinopathy are progressive with various changes in the retinal vessels, and it is difficult to analyze the disease for future treatment. There are many computerized algorithms implemented for retinal vessel segmentation, but the tiny vessels drop off, impacting the performance of the overall algorithms. This research work contains the new image processing techniques such as enhancement filters, coherence filters and binary thresholding techniques to handle the different color retinal fundus image problems to achieve a vessel image that is well-segmented, and the proposed algorithm has improved performance over existing work. Our developed technique incorporates morphological techniques to address the center light reflex issue. Additionally, to effectively resolve the problem of insufficient and varying contrast, our developed technique employs homomorphic methods and Wiener filtering. Coherent filters are used to address the coherence issue of the retina vessels, and then a double thresholding technique is applied with image reconstruction to achieve a correctly segmented vessel image. The results of our developed technique were evaluated using the STARE and DRIVE datasets and it achieves an accuracy of about 0.96 and a sensitivity of 0.81. The performance obtained from our proposed method proved the capability of the method which can be used by ophthalmology experts to diagnose ocular abnormalities and recommended for further treatment.
Collapse
Affiliation(s)
- Hesham Abdushkour
- Nautical Science Deptartment, Faculty of Maritime, King Abdul Aziz University, Jeddah, Saudia Arabia
| | - Toufique A Soomro
- Department of Electronic Engineering, Quaid-e-Awam University of Engineering, Science and Technology Larkana Campus, Sukkur, Pakistan
| | - Ahmed Ali
- Eletrical Engineering Department, Sukkur IBA University, Sukkur, Pakistan
| | - Fayyaz Ali Jandan
- Eletrical Engineering Department, Quaid-e-Awam University of Engineering, Science and Technology Larkana Campus, Sukkur, Pakistan
| | - Herbert Jelinek
- Health Engineering Innovation Center and biotechnology Center, Khalifa University, Abu Dhabi, UAE
| | - Farida Memon
- Department of Electronic Engineering, Mehran University, Janshoro, Jamshoro, Pakistan
| | - Faisal Althobiani
- Marine Engineering Department, Faculty of Maritime, King Abdul Aziz University, Jeddah, Saudia Arabia
| | - Saleh Mohammed Ghonaim
- Marine Engineering Department, Faculty of Maritime, King Abdul Aziz University, Jeddah, Saudia Arabia
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| |
Collapse
|
15
|
Bertanha M, Mellucci Filho PL, Genka CA, de Camargo PAB, Grillo VTRDS, Sertório ND, Rodrigues LDS, Sobreira ML, Lourenção PLTDA. Quantitative analysis validation for sclerotherapy treatment of lower limb telangiectasias. J Vasc Surg Venous Lymphat Disord 2023; 11:708-715. [PMID: 37030450 DOI: 10.1016/j.jvsv.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND The evaluation of sclerotherapy efficacy for lower limb telangiectasias, which is the standard treatment for such condition, is commonly assisted by scores based on before and after pictures. This method is marked by its subjectivity, which impairs the precision of studies on the subject, making it unfeasible to evaluate and compare different interventions. We hypothesize that a quantitative method for evaluating the effectiveness of sclerotherapy for lower limb telangiectasias may present more reproducible results. Reliable measurement methods and new technologies may become part of the clinical practice in the near future. METHODS Before and after treatment photographs were analyzed using a quantitative method and compared with a validated qualitative method based on improvement scores. Reliability analysis of the methods was performed, applying the intraclass correlation coefficient (ICC) and kappa coefficient with quadratic weights (Fleiss Cohen), for analysis of inter-examiner and intra-examiner agreement in both evaluation methods. Convergent validity was evaluated by applying the Spearman test. To assess the applicability of the quantitative scale, the Mann-Whitney test was used. RESULTS A better agreement between examiners is shown for the quantitative scale, with a mean kappa of .3986 (.251-.511) for qualitative analysis and a mean kappa of .788 (.655-.918) for quantitative analysis (P < .001 for all examiners). Convergent validity was achieved by correlation coefficients of .572 to .905 (P < .001). The quantitative scale results obtained between the specialists with different degrees of experience did not show statistical difference (seniors: 0.71 [-0.48/1.00] × juniors: 0.73 [-0.34/1.00]; P = .221). CONCLUSIONS Convergent validity between both analyses has been achieved, but quantitative analysis has been shown to be more reliable and can be applied by professionals of any degree of experience. The validation of quantitative analysis is a major milestone for the development of new technology and automated, reliable, applications.
Collapse
Affiliation(s)
- Matheus Bertanha
- Department of Surgery and Orthopedics, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil.
| | | | - Caroline Araujo Genka
- Department of Surgery and Orthopedics, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | | | | | - Nathalia Dias Sertório
- Department of Surgery and Orthopedics, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Lenize da Silva Rodrigues
- Department of Surgery and Orthopedics, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | - Marcone Lima Sobreira
- Department of Surgery and Orthopedics, Sao Paulo State University (UNESP), Botucatu, Sao Paulo, Brazil
| | | |
Collapse
|
16
|
Zhang S, Niu Y. LcmUNet: A Lightweight Network Combining CNN and MLP for Real-Time Medical Image Segmentation. Bioengineering (Basel) 2023; 10:712. [PMID: 37370643 PMCID: PMC10295621 DOI: 10.3390/bioengineering10060712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, UNet and its improved variants have become the main methods for medical image segmentation. Although these models have achieved excellent results in segmentation accuracy, their large number of network parameters and high computational complexity make it difficult to achieve medical image segmentation in real-time therapy and diagnosis rapidly. To address this problem, we introduce a lightweight medical image segmentation network (LcmUNet) based on CNN and MLP. We designed LcmUNet's structure in terms of model performance, parameters, and computational complexity. The first three layers are convolutional layers, and the last two layers are MLP layers. In the convolution part, we propose an LDA module that combines asymmetric convolution, depth-wise separable convolution, and an attention mechanism to reduce the number of network parameters while maintaining a strong feature-extraction capability. In the MLP part, we propose an LMLP module that helps enhance contextual information while focusing on local information and improves segmentation accuracy while maintaining high inference speed. This network also covers skip connections between the encoder and decoder at various levels. Our network achieves real-time segmentation results accurately in extensive experiments. With only 1.49 million model parameters and without pre-training, LcmUNet demonstrated impressive performance on different datasets. On the ISIC2018 dataset, it achieved an IoU of 85.19%, 92.07% recall, and 92.99% precision. On the BUSI dataset, it achieved an IoU of 63.99%, 79.96% recall, and 76.69% precision. Lastly, on the Kvasir-SEG dataset, LcmUNet achieved an IoU of 81.89%, 88.93% recall, and 91.79% precision.
Collapse
Affiliation(s)
| | - Yanmin Niu
- School of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China;
| |
Collapse
|
17
|
Guo J, Zhang D, Gong Y, Liu J, Zhang J, Zhao Y. Association of retinal microvascular abnormalities and neuromyelitis optica spectrum disorders with optical coherence tomography angiography. Front Neurosci 2023; 17:1194661. [PMID: 37360155 PMCID: PMC10288997 DOI: 10.3389/fnins.2023.1194661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune central nervous system diseases characterized by the immune system's abnormal attack on glial cells and neurons. Optic neuritis (ON) is one of the indicators of NMOSD, often starting unilaterally and potentially affecting both eyes later in the disease progression, leading to visual impairment. Optical coherence tomography angiography (OCTA) has the potential to aid in the early diagnosis of NMOSD by examining ophthalmic imaging and may offer a window for disease prevention. Methods In this study, we collected OCTA images from 22 NMOSD patients (44 images) and 25 healthy individuals (50 images) to investigate retinal microvascular changes in NMOSD. We employed effective retinal microvascular segmentation and foveal avascular zone (FAZ) segmentation techniques to extract key OCTA structures for biomarker analysis. A total of 12 microvascular features were extracted using specifically designed methods based on the segmentation results. The OCTA images of NMOSD patients were classified into two groups: optic neuritis (ON) and non-optic neuritis (non-ON). Each group was compared separately with a healthy control (HC) group. Results Statistical analysis revealed that the non-ON group displayed shape changes in the deep layer of the retina, specifically in the FAZ. However, there were no significant microvascular differences between the non-ON group and the HC group. In contrast, the ON group exhibited microvascular degeneration in both superficial and deep retinal layers. Sub-regional analysis revealed that pathological variations predominantly occurred on the side affected by ON, particularly within the internal ring near the FAZ. Discussion The findings of this study highlight the potential of OCTA in evaluating retinal microvascular changes associated with NMOSD. The shape alterations observed in the FAZ of the non-ON group suggest localized vascular abnormalities. In the ON group, microvascular degeneration in both superficial and deep retinal layers indicates more extensive vascular damage. Sub-regional analysis further emphasizes the impact of optic neuritis on pathological variations, particularly near the FAZ's internal ring. Conclusion This study provides insights into the retinal microvascular changes associated with NMOSD using OCTA imaging. The identified biomarkers and observed alterations may contribute to the early diagnosis and monitoring of NMOSD, potentially offering a time window for intervention and prevention of disease progression.
Collapse
Affiliation(s)
- Jiaqi Guo
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- School of Cyber Science and Engineering, Ningbo University of Technology, Ningbo, China
| | - Yan Gong
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Jiang Liu
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiong Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| | - Yitian Zhao
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- The Affiliated Ningbo Eye Hospital of Wenzhou Medical University, Ningbo, China
| |
Collapse
|
18
|
Khan MS, Ali H, Zakarya M, Tirunagari S, Khan AA, Khan R, Ahmed A, Rada L. A convex selective segmentation model based on a piece-wise constant metric-guided edge detector function. Soft comput 2023. [DOI: 10.1007/s00500-023-08173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 10/23/2023]
|
19
|
Zhang H, Ni W, Luo Y, Feng Y, Song R, Wang X. TUnet-LBF: Retinal fundus image fine segmentation model based on transformer Unet network and LBF. Comput Biol Med 2023; 159:106937. [PMID: 37084640 DOI: 10.1016/j.compbiomed.2023.106937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Segmentation of retinal fundus images is a crucial part of medical diagnosis. Automatic extraction of blood vessels in low-quality retinal images remains a challenging problem. In this paper, we propose a novel two-stage model combining Transformer Unet (TUnet) and local binary energy function model (LBF), TUnet-LBF, for coarse to fine segmentation of retinal vessels. In the coarse segmentation stage, the global topological information of blood vessels is obtained by TUnet. The neural network outputs the initial contour and the probability maps, which are input to the fine segmentation stage as the priori information. In the fine segmentation stage, an energy modulated LBF model is proposed to obtain the local detail information of blood vessels. The proposed model reaches accuracy (Acc) of 0.9650, 0.9681 and 0.9708 on the public datasets DRIVE, STARE and CHASE_DB1 respectively. The experimental results demonstrate the effectiveness of each component in the proposed model.
Collapse
Affiliation(s)
- Hanyu Zhang
- School of Geography, Liaoning Normal University, Dalian City, 116029, China; School of Computer and Information Technology, Liaoning Normal University, Dalian City, 116029, China; College of Information Science and Engineering, Northeastern University, Shenyang, 110167, China.
| | - Weihan Ni
- School of Computer and Information Technology, Liaoning Normal University, Dalian City, 116029, China.
| | - Yi Luo
- College of Information Science and Engineering, Northeastern University, Shenyang, 110167, China.
| | - Yining Feng
- School of Geography, Liaoning Normal University, Dalian City, 116029, China.
| | - Ruoxi Song
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xianghai Wang
- School of Geography, Liaoning Normal University, Dalian City, 116029, China; School of Computer and Information Technology, Liaoning Normal University, Dalian City, 116029, China.
| |
Collapse
|
20
|
Rong Y, Xiong Y, Li C, Chen Y, Wei P, Wei C, Fan Z. Segmentation of retinal vessels in fundus images based on U-Net with self-calibrated convolutions and spatial attention modules. Med Biol Eng Comput 2023:10.1007/s11517-023-02806-1. [PMID: 36899285 DOI: 10.1007/s11517-023-02806-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/08/2023] [Indexed: 03/12/2023]
Abstract
Automated and accurate segmentation of retinal vessels in fundus images is an important step for screening and diagnosing various ophthalmologic diseases. However, many factors, including the variations of vessels in color, shape and size, make this task become an intricate challenge. One kind of the most popular methods for vessel segmentation is U-Net based methods. However, in the U-Net based methods, the size of the convolution kernels is generally fixed. As a result, the receptive field for an individual convolution operation is single, which is not conducive to the segmentation of retinal vessels with various thicknesses. To overcome this problem, in this paper, we employed self-calibrated convolutions to replace the traditional convolutions for the U-Net, which can make the U-Net learn discriminative representations from different receptive fields. Besides, we proposed an improved spatial attention module, instead of using traditional convolutions, to connect the encoding part and decoding part of the U-Net, which can improve the ability of the U-Net to detect thin vessels. The proposed method has been tested on Digital Retinal Images for Vessel Extraction (DRIVE) database and Child Heart and Health Study in England Database (CHASE DB1). The metrics used to evaluate the performance of the proposed method are accuracy (ACC), sensitivity (SE), specificity (SP), F1-score (F1) and the area under the receiver operating characteristic curve (AUC). The ACC, SE, SP, F1 and AUC obtained by the proposed method are 0.9680, 0.8036, 0.9840, 0.8138 and 0.9840 respectively on DRIVE database, and 0.9756, 0.8118, 0.9867, 0.8068 and 0.9888 respectively on CHASE DB1, which are better than those obtained by the traditional U-Net (the ACC, SE, SP, F1 and AUC obtained by U-Net are 0.9646, 0.7895, 0.9814, 0.7963 and 0.9791 respectively on DRIVE database, and 0.9733, 0.7817, 0.9862, 0.7870 and 0.9810 respectively on CHASE DB1). The experimental results indicate that the proposed modifications in the U-Net are effective for vessel segmentation. The structure of the proposed network.
Collapse
Affiliation(s)
- YiBiao Rong
- Department of Electronic and Information Engineering, Shantou University, 515063, Guangdong, China
- Key Lab of Digital Signal and Image Processing of Guangdong Province, Shantou University, 515063, Guangdong, China
| | - Yu Xiong
- Department of Electronic and Information Engineering, Shantou University, 515063, Guangdong, China
- Key Lab of Digital Signal and Image Processing of Guangdong Province, Shantou University, 515063, Guangdong, China
| | - Chong Li
- Department of Electronic and Information Engineering, Shantou University, 515063, Guangdong, China
- Key Lab of Digital Signal and Image Processing of Guangdong Province, Shantou University, 515063, Guangdong, China
| | - Ying Chen
- Department of Electronic and Information Engineering, Shantou University, 515063, Guangdong, China
- Key Lab of Digital Signal and Image Processing of Guangdong Province, Shantou University, 515063, Guangdong, China
| | - Peiwei Wei
- Department of Electronic and Information Engineering, Shantou University, 515063, Guangdong, China
- Key Lab of Digital Signal and Image Processing of Guangdong Province, Shantou University, 515063, Guangdong, China
- Department of Microbiology and Immunology, Shantou University Medical College, Guangdong, 515041, China
| | - Chuliang Wei
- Department of Electronic and Information Engineering, Shantou University, 515063, Guangdong, China
- Key Lab of Digital Signal and Image Processing of Guangdong Province, Shantou University, 515063, Guangdong, China
| | - Zhun Fan
- Department of Electronic and Information Engineering, Shantou University, 515063, Guangdong, China.
- Key Lab of Digital Signal and Image Processing of Guangdong Province, Shantou University, 515063, Guangdong, China.
| |
Collapse
|
21
|
Challoob M, Gao Y, Busch A, Nikzad M. Separable Paravector Orientation Tensors for Enhancing Retinal Vessels. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:880-893. [PMID: 36331638 DOI: 10.1109/tmi.2022.3219436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Robust detection of retinal vessels remains an unsolved research problem, particularly in handling the intrinsic real-world challenges of highly imbalanced contrast between thick vessels and thin ones, inhomogeneous background regions, uneven illumination, and complex geometries of crossing/bifurcations. This paper presents a new separable paravector orientation tensor that addresses these difficulties by characterizing the enhancement of retinal vessels to be dependent on a nonlinear scale representation, invariant to changes in contrast and lighting, responsive for symmetric patterns, and fitted with elliptical cross-sections. The proposed method is built on projecting vessels as a 3D paravector valued function rotated in an alpha quarter domain, providing geometrical, structural, symmetric, and energetic features. We introduce an innovative symmetrical inhibitory scheme that incorporates paravector features for producing a set of directional contrast-independent elongated-like patterns reconstructing vessel tree in orientation tensors. By fitting constraint elliptical volumes via eigensystem analysis, the final vessel tree is produced with a strong and uniform response preserving various vessel features. The validation of proposed method on clinically relevant retinal images with high-quality results, shows its excellent performance compared to the state-of-the-art benchmarks and the second human observers.
Collapse
|
22
|
Retinal blood vessel segmentation by using the MS-LSDNet network and geometric skeleton reconnection method. Comput Biol Med 2023; 153:106416. [PMID: 36586230 DOI: 10.1016/j.compbiomed.2022.106416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/21/2022] [Accepted: 12/04/2022] [Indexed: 12/29/2022]
Abstract
Automatic retinal blood vessel segmentation is a key link in the diagnosis of ophthalmic diseases. Recent deep learning methods have achieved high accuracy in vessel segmentation but still face challenges in maintaining vascular structural connectivity. Therefore, this paper proposes a novel retinal blood vessel segmentation strategy that includes three stages: vessel structure detection, vessel branch extraction and broken vessel segment reconnection. First, we propose a multiscale linear structure detection network (MS-LSDNet), which improves the detection ability of fine blood vessels by learning the types of rich hierarchical features. In addition, to maintain the connectivity of the vascular structure in the process of binarization of the vascular probability map, an adaptive hysteresis threshold method for vascular extraction is proposed. Finally, we propose a vascular tree structure reconstruction algorithm based on a geometric skeleton to connect the broken vessel segments. Experimental results on three publicly available datasets show that compared with current state-of-the-art algorithms, our strategy effectively maintains the connectivity of retinal vascular tree structure.
Collapse
|
23
|
Kuang X, Xu X, Fang L, Kozegar E, Chen H, Sun Y, Huang F, Tan T. Improved fully convolutional neuron networks on small retinal vessel segmentation using local phase as attention. Front Med (Lausanne) 2023; 10:1038534. [PMID: 36936204 PMCID: PMC10014569 DOI: 10.3389/fmed.2023.1038534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Retinal images have been proven significant in diagnosing multiple diseases such as diabetes, glaucoma, and hypertension. Retinal vessel segmentation is crucial for the quantitative analysis of retinal images. However, current methods mainly concentrate on the segmentation performance of overall retinal vessel structures. The small vessels do not receive enough attention due to their small percentage in the full retinal images. Small retinal vessels are much more sensitive to the blood circulation system and have great significance in the early diagnosis and warning of various diseases. This paper combined two unsupervised methods, local phase congruency (LPC) and orientation scores (OS), with a deep learning network based on the U-Net as attention. And we proposed the U-Net using local phase congruency and orientation scores (UN-LPCOS), which showed a remarkable ability to identify and segment small retinal vessels. A new metric called sensitivity on a small ship (Sesv ) was also proposed to evaluate the methods' performance on the small vessel segmentation. Our strategy was validated on both the DRIVE dataset and the data from Maastricht Study and achieved outstanding segmentation performance on both the overall vessel structure and small vessels.
Collapse
Affiliation(s)
- Xihe Kuang
- The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiayu Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi'an, Shaanxi, China
| | - Leyuan Fang
- College of Electrical and Information Engineering, Hunan University, Changsha, Hunan, China
| | - Ehsan Kozegar
- Faculty of Technology and Engineering (East of Guilan), University of Guilan, Rudsar-Vajargah, Guilan, Iran
| | - Huachao Chen
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, Macao SAR, China
| | - Yue Sun
- Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Fan Huang
- The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tao Tan
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, Macao SAR, China
- Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- *Correspondence: Tao Tan,
| |
Collapse
|
24
|
Rodrigues EO, Rodrigues LO, Machado JHP, Casanova D, Teixeira M, Oliva JT, Bernardes G, Liatsis P. Local-Sensitive Connectivity Filter (LS-CF): A Post-Processing Unsupervised Improvement of the Frangi, Hessian and Vesselness Filters for Multimodal Vessel Segmentation. J Imaging 2022; 8:jimaging8100291. [PMID: 36286385 PMCID: PMC9604711 DOI: 10.3390/jimaging8100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
A retinal vessel analysis is a procedure that can be used as an assessment of risks to the eye. This work proposes an unsupervised multimodal approach that improves the response of the Frangi filter, enabling automatic vessel segmentation. We propose a filter that computes pixel-level vessel continuity while introducing a local tolerance heuristic to fill in vessel discontinuities produced by the Frangi response. This proposal, called the local-sensitive connectivity filter (LS-CF), is compared against a naive connectivity filter to the baseline thresholded Frangi filter response and to the naive connectivity filter response in combination with the morphological closing and to the current approaches in the literature. The proposal was able to achieve competitive results in a variety of multimodal datasets. It was robust enough to outperform all the state-of-the-art approaches in the literature for the OSIRIX angiographic dataset in terms of accuracy and 4 out of 5 works in the case of the IOSTAR dataset while also outperforming several works in the case of the DRIVE and STARE datasets and 6 out of 10 in the CHASE-DB dataset. For the CHASE-DB, it also outperformed all the state-of-the-art unsupervised methods.
Collapse
Affiliation(s)
- Erick O. Rodrigues
- Department of Academic Informatics (DAINF), Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco 85503-390, PR, Brazil
- Correspondence:
| | - Lucas O. Rodrigues
- Graduate Program of Sciences Applied to Health Products, Universidade Federal Fluminense (UFF), Niteroi 24241-000, RJ, Brazil
| | - João H. P. Machado
- Department of Academic Informatics (DAINF), Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco 85503-390, PR, Brazil
| | - Dalcimar Casanova
- Department of Academic Informatics (DAINF), Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco 85503-390, PR, Brazil
| | - Marcelo Teixeira
- Department of Academic Informatics (DAINF), Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco 85503-390, PR, Brazil
| | - Jeferson T. Oliva
- Department of Academic Informatics (DAINF), Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco 85503-390, PR, Brazil
| | - Giovani Bernardes
- Institute of Technological Sciences (ICT), Universidade Federal de Itajuba (UNIFEI), Itabira 35903-087, MG, Brazil
| | - Panos Liatsis
- Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
25
|
Ni J, Wu J, Elazab A, Tong J, Chen Z. DNL-Net: deformed non-local neural network for blood vessel segmentation. BMC Med Imaging 2022; 22:109. [PMID: 35668351 PMCID: PMC9169317 DOI: 10.1186/s12880-022-00836-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The non-local module has been primarily used in literature to capturing long-range dependencies. However, it suffers from prohibitive computational complexity and lacks the interactions among positions across the channels. METHODS We present a deformed non-local neural network (DNL-Net) for medical image segmentation, which has two prominent components; deformed non-local module (DNL) and multi-scale feature fusion. The former optimizes the structure of the non-local block (NL), hence, reduces the problem of excessive computation and memory usage, significantly. The latter is derived from the attention mechanisms to fuse the features of different levels and improve the ability to exchange information across channels. In addition, we introduce a residual squeeze and excitation pyramid pooling (RSEP) module that is like spatial pyramid pooling to effectively resample the features at different scales and improve the network receptive field. RESULTS The proposed method achieved 96.63% and 92.93% for Dice coefficient and mean intersection over union, respectively, on the intracranial blood vessel dataset. Also, DNL-Net attained 86.64%, 96.10%, and 98.37% for sensitivity, accuracy and area under receiver operation characteristic curve, respectively, on the DRIVE dataset. CONCLUSIONS The overall performance of DNL-Net outperforms other current state-of-the-art vessel segmentation methods, which indicates that the proposed network is more suitable for blood vessel segmentation, and is of great clinical significance.
Collapse
Affiliation(s)
- Jiajia Ni
- College of Internet of Things Engineering, HoHai University, Changzhou, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianhuang Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Ahmed Elazab
- School of Biomedical Engineering, Shenzhen University, Shenzhen, China
- Computer Science Department, Misr Higher Institute for Commerce and Computers, Mansoura, Egypt
| | - Jing Tong
- College of Internet of Things Engineering, HoHai University, Changzhou, China
| | - Zhengming Chen
- College of Internet of Things Engineering, HoHai University, Changzhou, China
| |
Collapse
|
26
|
Yang D, Zhao H, Han T. Learning feature-rich integrated comprehensive context networks for automated fundus retinal vessel analysis. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
State-of-the-art retinal vessel segmentation with minimalistic models. Sci Rep 2022; 12:6174. [PMID: 35418576 PMCID: PMC9007957 DOI: 10.1038/s41598-022-09675-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/10/2022] [Indexed: 01/03/2023] Open
Abstract
The segmentation of retinal vasculature from eye fundus images is a fundamental task in retinal image analysis. Over recent years, increasingly complex approaches based on sophisticated Convolutional Neural Network architectures have been pushing performance on well-established benchmark datasets. In this paper, we take a step back and analyze the real need of such complexity. We first compile and review the performance of 20 different techniques on some popular databases, and we demonstrate that a minimalistic version of a standard U-Net with several orders of magnitude less parameters, carefully trained and rigorously evaluated, closely approximates the performance of current best techniques. We then show that a cascaded extension (W-Net) reaches outstanding performance on several popular datasets, still using orders of magnitude less learnable weights than any previously published work. Furthermore, we provide the most comprehensive cross-dataset performance analysis to date, involving up to 10 different databases. Our analysis demonstrates that the retinal vessel segmentation is far from solved when considering test images that differ substantially from the training data, and that this task represents an ideal scenario for the exploration of domain adaptation techniques. In this context, we experiment with a simple self-labeling strategy that enables moderate enhancement of cross-dataset performance, indicating that there is still much room for improvement in this area. Finally, we test our approach on Artery/Vein and vessel segmentation from OCTA imaging problems, where we again achieve results well-aligned with the state-of-the-art, at a fraction of the model complexity available in recent literature. Code to reproduce the results in this paper is released.
Collapse
|
28
|
Li X, Ding J, Tang J, Guo F. Res2Unet: A multi-scale channel attention network for retinal vessel segmentation. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Meng Y, Zhang H, Zhao Y, Yang X, Qiao Y, MacCormick IJC, Huang X, Zheng Y. Graph-Based Region and Boundary Aggregation for Biomedical Image Segmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:690-701. [PMID: 34714742 DOI: 10.1109/tmi.2021.3123567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Segmentation is a fundamental task in biomedical image analysis. Unlike the existing region-based dense pixel classification methods or boundary-based polygon regression methods, we build a novel graph neural network (GNN) based deep learning framework with multiple graph reasoning modules to explicitly leverage both region and boundary features in an end-to-end manner. The mechanism extracts discriminative region and boundary features, referred to as initialized region and boundary node embeddings, using a proposed Attention Enhancement Module (AEM). The weighted links between cross-domain nodes (region and boundary feature domains) in each graph are defined in a data-dependent way, which retains both global and local cross-node relationships. The iterative message aggregation and node update mechanism can enhance the interaction between each graph reasoning module's global semantic information and local spatial characteristics. Our model, in particular, is capable of concurrently addressing region and boundary feature reasoning and aggregation at several different feature levels due to the proposed multi-level feature node embeddings in different parallel graph reasoning modules. Experiments on two types of challenging datasets demonstrate that our method outperforms state-of-the-art approaches for segmentation of polyps in colonoscopy images and of the optic disc and optic cup in colour fundus images. The trained models will be made available at: https://github.com/smallmax00/Graph_Region_Boudnary.
Collapse
|
30
|
Aoyama G, Zhao L, Zhao S, Xue X, Zhong Y, Yamauchi H, Tsukihara H, Maeda E, Ino K, Tomii N, Takagi S, Sakuma I, Ono M, Sakaguchi T. Automatic Aortic Valve Cusps Segmentation from CT Images Based on the Cascading Multiple Deep Neural Networks. J Imaging 2022; 8:11. [PMID: 35049852 PMCID: PMC8780687 DOI: 10.3390/jimaging8010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Accurate morphological information on aortic valve cusps is critical in treatment planning. Image segmentation is necessary to acquire this information, but manual segmentation is tedious and time consuming. In this paper, we propose a fully automatic aortic valve cusps segmentation method from CT images by combining two deep neural networks, spatial configuration-Net for detecting anatomical landmarks and U-Net for segmentation of aortic valve components. A total of 258 CT volumes of end systolic and end diastolic phases, which include cases with and without severe calcifications, were collected and manually annotated for each aortic valve component. The collected CT volumes were split 6:2:2 for the training, validation and test steps, and our method was evaluated by five-fold cross validation. The segmentation was successful for all CT volumes with 69.26 s as mean processing time. For the segmentation results of the aortic root, the right-coronary cusp, the left-coronary cusp and the non-coronary cusp, mean Dice Coefficient were 0.95, 0.70, 0.69, and 0.67, respectively. There were strong correlations between measurement values automatically calculated based on the annotations and those based on the segmentation results. The results suggest that our method can be used to automatically obtain measurement values for aortic valve morphology.
Collapse
Affiliation(s)
- Gakuto Aoyama
- Research and Development Center, Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara 324-8550, Japan;
| | - Longfei Zhao
- Research and Development Center, Canon Medical Systems (CHINA) CO., LTD., Chao Yang District, Beijing 100015, China; (L.Z.); (S.Z.); (X.X.); (Y.Z.)
| | - Shun Zhao
- Research and Development Center, Canon Medical Systems (CHINA) CO., LTD., Chao Yang District, Beijing 100015, China; (L.Z.); (S.Z.); (X.X.); (Y.Z.)
| | - Xiao Xue
- Research and Development Center, Canon Medical Systems (CHINA) CO., LTD., Chao Yang District, Beijing 100015, China; (L.Z.); (S.Z.); (X.X.); (Y.Z.)
| | - Yunxin Zhong
- Research and Development Center, Canon Medical Systems (CHINA) CO., LTD., Chao Yang District, Beijing 100015, China; (L.Z.); (S.Z.); (X.X.); (Y.Z.)
| | - Haruo Yamauchi
- The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.Y.); (H.T.); (E.M.); (K.I.); (M.O.)
| | - Hiroyuki Tsukihara
- The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.Y.); (H.T.); (E.M.); (K.I.); (M.O.)
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; (N.T.); (S.T.); (I.S.)
| | - Eriko Maeda
- The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.Y.); (H.T.); (E.M.); (K.I.); (M.O.)
| | - Kenji Ino
- The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.Y.); (H.T.); (E.M.); (K.I.); (M.O.)
| | - Naoki Tomii
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; (N.T.); (S.T.); (I.S.)
| | - Shu Takagi
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; (N.T.); (S.T.); (I.S.)
| | - Ichiro Sakuma
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; (N.T.); (S.T.); (I.S.)
| | - Minoru Ono
- The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (H.Y.); (H.T.); (E.M.); (K.I.); (M.O.)
| | - Takuya Sakaguchi
- Research and Development Center, Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara 324-8550, Japan;
| |
Collapse
|
31
|
Gour N, Tanveer M, Khanna P. Challenges for ocular disease identification in the era of artificial intelligence. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Review of Machine Learning Applications Using Retinal Fundus Images. Diagnostics (Basel) 2022; 12:diagnostics12010134. [PMID: 35054301 PMCID: PMC8774893 DOI: 10.3390/diagnostics12010134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/03/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Automating screening and diagnosis in the medical field saves time and reduces the chances of misdiagnosis while saving on labor and cost for physicians. With the feasibility and development of deep learning methods, machines are now able to interpret complex features in medical data, which leads to rapid advancements in automation. Such efforts have been made in ophthalmology to analyze retinal images and build frameworks based on analysis for the identification of retinopathy and the assessment of its severity. This paper reviews recent state-of-the-art works utilizing the color fundus image taken from one of the imaging modalities used in ophthalmology. Specifically, the deep learning methods of automated screening and diagnosis for diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma are investigated. In addition, the machine learning techniques applied to the retinal vasculature extraction from the fundus image are covered. The challenges in developing these systems are also discussed.
Collapse
|
33
|
Zhuang J, Wang D. Geometrically Matched Multi-source Microscopic Image Synthesis Using Bidirectional Adversarial Networks. LECTURE NOTES IN ELECTRICAL ENGINEERING 2022:79-88. [DOI: 10.1007/978-981-16-3880-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
34
|
MSC-Net: Multitask Learning Network for Retinal Vessel Segmentation and Centerline Extraction. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Automatic segmentation and centerline extraction of blood vessels from retinal fundus images is an essential step to measure the state of retinal blood vessels and achieve the goal of auxiliary diagnosis. Combining the information of blood vessel segments and centerline can help improve the continuity of results and performance. However, previous studies have usually treated these two tasks as separate research topics. Therefore, we propose a novel multitask learning network (MSC-Net) for retinal vessel segmentation and centerline extraction. The network uses a multibranch design to combine information between two tasks. Channel and atrous spatial fusion block (CAS-FB) is designed to fuse and correct the features of different branches and different scales. The clDice loss function is also used to constrain the topological continuity of blood vessel segments and centerline. Experimental results on different fundus blood vessel datasets (DRIVE, STARE, and CHASE) show that our method can obtain better segmentation and centerline extraction results at different scales and has better topological continuity than state-of-the-art methods.
Collapse
|
35
|
Sakthi Karthi Durai B, Benadict Raja J. An Effective Approach Based on Improved Convolutionary Neural Network Classifier for the Detection of Diabetic Retinopathy. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2021. [DOI: 10.1166/jmihi.2021.3896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In diabetic individuals, diabetic retinopathy (DR) causes blindness. Therefore, detecting diabetic retinopathy at an early stage decreases vision loss. An successful approach for diabetic retinopathy prediction is discussed in this article. In the beginning, the input pictures of human
retinal fundus images are preprocessed using histogram equalisation followed by Gabor filtering to reduce noise for enhancement. Then, using the Watershed method, segmentation is performed, and the features are retrieved through feature extraction. The best optimum features are selected using
PCA (principal component analysis) approach. The morphological based post processing scheme was employed to further enhance the quality of selected features. At last, the classification approach is carried with the utilization of Google NET CNN classifier to classify/predict the retinal image
as normal, abnormal, and severe. Google NET CNN has been developed with limited preprocessing step to distinguish visual features directly from image pixels. The findings are then evaluated and the efficacy of the new method is contrasted with other current methods. The quantitative findings
were evaluated for Accuracy, precision, reliability, positive predictive levels and false predictive levels in parameters and were seen to deliver better results than current techniques.
Collapse
Affiliation(s)
| | - J. Benadict Raja
- PSNA College of Engineering and Technology, Dindigul 624622, Tamil Nadu, India
| |
Collapse
|
36
|
Pramanik S, Bhattacharjee D, Nasipuri M, Krejcar O. LINPE-BL: A Local Descriptor and Broad Learning for Identification of Abnormal Breast Thermograms. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3919-3931. [PMID: 34329158 DOI: 10.1109/tmi.2021.3101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper proposes a novel local feature descriptor coined as a local instant-and-center-symmetric neighbor-based pattern of the extrema-images (LINPE) to detect breast abnormalities in thermal breast images. It is a hybrid descriptor that combines two different feature descriptors: one is the inverse-probability difference extrema (IpDE), and another is the local instant and center-symmetric neighbor-based pattern (LICsNP). IpDE is developed to compute the intensity-inhomogeneity-invariant feature-based image of the breast thermogram. Besides, the LICsNP is intended to capture the local microstructure pattern information in the IpDE image. A new paradigm, named Broad Learning (BL) network, is introduced here as a classifier to differentiate the healthy and sick breast thermograms efficiently. The efficacy of the proposed system is quantitatively validated on the images of DMR-IR and DBT-TU-JU databases. Extensive experimentation on these databases with an average accuracy of 96.90% and 94%, respectively, justifies proposed system's superiority in the differentiation of healthy and sick breast thermograms over the other related existing state-of-the-art methods. The proposed system also performs consistently in the presence of noise and rotational changes.
Collapse
|
37
|
Kovács G, Fazekas A. A new baseline for retinal vessel segmentation: Numerical identification and correction of methodological inconsistencies affecting 100+ papers. Med Image Anal 2021; 75:102300. [PMID: 34814057 DOI: 10.1016/j.media.2021.102300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/20/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022]
Abstract
In the last 15 years, the segmentation of vessels in retinal images has become an intensively researched problem in medical imaging, with hundreds of algorithms published. One of the de facto benchmarking data sets of vessel segmentation techniques is the DRIVE data set. Since DRIVE contains a predefined split of training and test images, the published performance results of the various segmentation techniques should provide a reliable ranking of the algorithms. Including more than 100 papers in the study, we performed a detailed numerical analysis of the coherence of the published performance scores. We found inconsistencies in the reported scores related to the use of the field of view (FoV), which has a significant impact on the performance scores. We attempted to eliminate the biases using numerical techniques to provide a more realistic picture of the state of the art. Based on the results, we have formulated several findings, most notably: despite the well-defined test set of DRIVE, most rankings in published papers are based on non-comparable figures; in contrast to the near-perfect accuracy scores reported in the literature, the highest accuracy score achieved to date is 0.9582 in the FoV region, which is 1% higher than that of human annotators. The methods we have developed for identifying and eliminating the evaluation biases can be easily applied to other domains where similar problems may arise.
Collapse
Affiliation(s)
- György Kovács
- Analytical Minds Ltd., Árpád street 5, Beregsurány 4933, Hungary.
| | - Attila Fazekas
- University of Debrecen, Faculty of Informatics, P.O.BOX 400, Debrecen 4002, Hungary.
| |
Collapse
|
38
|
A Hybrid Method to Enhance Thick and Thin Vessels for Blood Vessel Segmentation. Diagnostics (Basel) 2021; 11:diagnostics11112017. [PMID: 34829365 PMCID: PMC8621384 DOI: 10.3390/diagnostics11112017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Retinal blood vessels have been presented to contribute confirmation with regard to tortuosity, branching angles, or change in diameter as a result of ophthalmic disease. Although many enhancement filters are extensively utilized, the Jerman filter responds quite effectively at vessels, edges, and bifurcations and improves the visualization of structures. In contrast, curvelet transform is specifically designed to associate scale with orientation and can be used to recover from noisy data by curvelet shrinkage. This paper describes a method to improve the performance of curvelet transform further. A distinctive fusion of curvelet transform and the Jerman filter is presented for retinal blood vessel segmentation. Mean-C thresholding is employed for the segmentation purpose. The suggested method achieves average accuracies of 0.9600 and 0.9559 for DRIVE and CHASE_DB1, respectively. Simulation results establish a better performance and faster implementation of the suggested scheme in comparison with similar approaches seen in the literature.
Collapse
|
39
|
Sharmila C, Shanthi N. An Effective Approach Based on Deep Residual Google Net Convolutional Neural Network Classifier for the Detection of Glaucoma. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2021. [DOI: 10.1166/jmihi.2021.3854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glaucoma is a disease caused by fluid pressure build-up in the inner eye. Early detection of glaucoma is critical as it is expected that 111.8 million people worldwide shall suffer from glaucoma in 2040. In the diagnosis of glaucoma, the use of machine learning method is hoped to be
highly promising. This paper provides an important method to master learning to diagnose glaucoma. Initially, human retinal fundus images are preprocessed by means of histogram equalization in order to enhance them. The segmentation is performed by semantic segmentation method, mainly the
features are extracted using density with correlation based feature extraction approach. PCA (principal component analysis) methodology is used to choose the most optimal features. Ultimately, through the usage of the Deep residual Google Net CNN Classification method, the retinal image is
classified/predicted as regular and abnormal. The Deep residual Google Net CNN classifier is designed to distinguish view patterns with minimal pre-processing from pixel pictures. ORIGA and STARE datasets are used in this work. The findings are then analyzed and contrasted to illustrate the
efficacy of the new technique with alternate current techniques. Test accuracy of 99%, Specificity of 98.9% and 100% Sensitivity were achieved. The quantitative results are analyzed for specifications like sensitivity, specificity, accuracy, positive predictive rate, false predictive rate
and assured to provide excellent outcomes when compared with traditional methods.
Collapse
Affiliation(s)
- C. Sharmila
- Information Technology, Excel Engineering College, Komarapalayam, Namakkal 637303, India
| | - N. Shanthi
- Computer Science Engineering, Kongu Engineering College, Perundurai, Erode 638060, India
| |
Collapse
|
40
|
Hu X, Wang L, Cheng S, Li Y. HDC-Net: A hierarchical dilation convolutional network for retinal vessel segmentation. PLoS One 2021; 16:e0257013. [PMID: 34492064 PMCID: PMC8423235 DOI: 10.1371/journal.pone.0257013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
The cardinal symptoms of some ophthalmic diseases observed through exceptional retinal blood vessels, such as retinal vein occlusion, diabetic retinopathy, etc. The advanced deep learning models used to obtain morphological and structural information of blood vessels automatically are conducive to the early treatment and initiative prevention of ophthalmic diseases. In our work, we propose a hierarchical dilation convolutional network (HDC-Net) to extract retinal vessels in a pixel-to-pixel manner. It utilizes the hierarchical dilation convolution (HDC) module to capture the fragile retinal blood vessels usually neglected by other methods. An improved residual dual efficient channel attention (RDECA) module can infer more delicate channel information to reinforce the discriminative capability of the model. The structured Dropblock can help our HDC-Net model to solve the network overfitting effectively. From a holistic perspective, the segmentation results obtained by HDC-Net are superior to other deep learning methods on three acknowledged datasets (DRIVE, CHASE-DB1, STARE), the sensitivity, specificity, accuracy, f1-score and AUC score are {0.8252, 0.9829, 0.9692, 0.8239, 0.9871}, {0.8227, 0.9853, 0.9745, 0.8113, 0.9884}, and {0.8369, 0.9866, 0.9751, 0.8385, 0.9913}, respectively. It surpasses most other advanced retinal vessel segmentation models. Qualitative and quantitative analysis demonstrates that HDC-Net can fulfill the task of retinal vessel segmentation efficiently and accurately.
Collapse
Affiliation(s)
- Xiaolong Hu
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Liejun Wang
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Shuli Cheng
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
| | - Yongming Li
- College of Information Science and Engineering, Xinjiang University, Urumqi, China
| |
Collapse
|
41
|
Lin Z, Huang J, Chen Y, Zhang X, Zhao W, Li Y, Lu L, Zhan M, Jiang X, Liang X. A high resolution representation network with multi-path scale for retinal vessel segmentation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106206. [PMID: 34146772 DOI: 10.1016/j.cmpb.2021.106206] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Automatic retinal vessel segmentation (RVS) in fundus images is expected to be a vital step in the early image diagnosis of ophthalmologic diseases. However, it is a challenging task to detect the retinal vessel accurately mainly due to the vascular intricacies, lesion areas and optic disc edges in retinal fundus images. METHODS In this paper, we propose a high resolution representation network with multi-path scale (MPS-Net) for RVS aiming to improve the performance of extracting the retinal blood vessels. In the MPS-Net, there exist one high resolution main road and two lower resolution branch roads where the proposed multi-path scale modules are embedded to enhance the representation ability of network. Besides, in order to guide the network focus on learning the features of hard examples in retinal images, we design a hard-focused cross-entropy loss function. RESULTS We evaluate our network structure on DRIVE, STARE, CHASE and synthetic images and the quantitative comparisons with respect to the existing methods are presented. The experimental results show that our approach is superior to most methods in terms of F1-score, sensitivity, G-mean and Matthews correlation coefficient. CONCLUSIONS The promising segmentation performances reveal that our method has potential in real-world applications and can be exploited for other medical images with further analysis.
Collapse
Affiliation(s)
- Zefang Lin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China.
| | - Jianping Huang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China.
| | - Yingyin Chen
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China.
| | - Xiao Zhang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Wei Zhao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China.
| | - Xiaofei Jiang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China; Department of Cardiology, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China.
| | - Xiong Liang
- Department of Obstetrics, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, PR China.
| |
Collapse
|
42
|
SERR-U-Net: Squeeze-and-Excitation Residual and Recurrent Block-Based U-Net for Automatic Vessel Segmentation in Retinal Image. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5976097. [PMID: 34422093 PMCID: PMC8371614 DOI: 10.1155/2021/5976097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/03/2021] [Accepted: 07/24/2021] [Indexed: 11/23/2022]
Abstract
Methods A new SERR-U-Net framework for retinal vessel segmentation is proposed, which leverages technologies including Squeeze-and-Excitation (SE), residual module, and recurrent block. First, the convolution layers of encoder and decoder are modified on the basis of U-Net, and the recurrent block is used to increase the network depth. Second, the residual module is utilized to alleviate the vanishing gradient problem. Finally, to derive more specific vascular features, we employed the SE structure to introduce attention mechanism into the U-shaped network. In addition, enhanced super-resolution generative adversarial networks (ESRGANs) are also deployed to remove the noise of retinal image. Results The effectiveness of this method was tested on two public datasets, DRIVE and STARE. In the experiment of DRIVE dataset, the accuracy and AUC (area under the curve) of our method were 0.9552 and 0.9784, respectively, and for SATRE dataset, 0.9796 and 0.9859 were achieved, respectively, which proved a high accuracy and promising prospect on clinical assistance. Conclusion An improved U-Net network combining SE, ResNet, and recurrent technologies is developed for automatic vessel segmentation from retinal image. This new model enables an improvement on the accuracy compared to learning-based methods, and its robustness in circumvent challenging cases such as small blood vessels and intersection of vessels is also well demonstrated and validated.
Collapse
|
43
|
Mardani K, Maghooli K. Enhancing retinal blood vessel segmentation in medical images using combined segmentation modes extracted by DBSCAN and morphological reconstruction. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102837] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Valizadeh A, Jafarzadeh Ghoushchi S, Ranjbarzadeh R, Pourasad Y. Presentation of a Segmentation Method for a Diabetic Retinopathy Patient's Fundus Region Detection Using a Convolutional Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:7714351. [PMID: 34354746 PMCID: PMC8331281 DOI: 10.1155/2021/7714351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/30/2021] [Accepted: 07/18/2021] [Indexed: 01/16/2023]
Abstract
Diabetic retinopathy is characteristic of a local distribution that involves early-stage risk factors and can forecast the evolution of the illness or morphological lesions related to the abnormality of retinal blood flows. Regional variations in retinal blood flow and modulation of retinal capillary width in the macular area and the retinal environment are also linked to the course of diabetic retinopathy. Despite the fact that diabetic retinopathy is frequent nowadays, it is hard to avoid. An ophthalmologist generally determines the seriousness of the retinopathy of the eye by directly examining color photos and evaluating them by visually inspecting the fundus. It is an expensive process because of the vast number of diabetic patients around the globe. We used the IDRiD data set that contains both typical diabetic retinopathic lesions and normal retinal structures. We provided a CNN architecture for the detection of the target region of 80 patients' fundus imagery. Results demonstrate that the approach described here can nearly detect 83.84% of target locations. This result can potentially be utilized to monitor and regulate patients.
Collapse
Affiliation(s)
- Amin Valizadeh
- Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeid Jafarzadeh Ghoushchi
- Department of Industrial Engineering, Urmia University of Technology (UUT), P.O. Box 57166-419, Urmia, Iran
| | - Ramin Ranjbarzadeh
- Department of Telecommunications Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran
| | - Yaghoub Pourasad
- Department of Electrical Engineering, Urmia University of Technology (UUT), P.O. Box 57166-419, Urmia, Iran
| |
Collapse
|
45
|
Saiz-Vivó M, Colomer A, Fonfría C, Martí-Bonmatí L, Naranjo V. Supervised Domain Adaptation for Automated Semantic Segmentation of the Atrial Cavity. ENTROPY (BASEL, SWITZERLAND) 2021; 23:898. [PMID: 34356439 PMCID: PMC8304895 DOI: 10.3390/e23070898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. At present, cardiac ablation is the main treatment procedure for AF. To guide and plan this procedure, it is essential for clinicians to obtain patient-specific 3D geometrical models of the atria. For this, there is an interest in automatic image segmentation algorithms, such as deep learning (DL) methods, as opposed to manual segmentation, an error-prone and time-consuming method. However, to optimize DL algorithms, many annotated examples are required, increasing acquisition costs. The aim of this work is to develop automatic and high-performance computational models for left and right atrium (LA and RA) segmentation from a few labelled MRI volumetric images with a 3D Dual U-Net algorithm. For this, a supervised domain adaptation (SDA) method is introduced to infer knowledge from late gadolinium enhanced (LGE) MRI volumetric training samples (80 LA annotated samples) to a network trained with balanced steady-state free precession (bSSFP) MR images of limited number of annotations (19 RA and LA annotated samples). The resulting knowledge-transferred model SDA outperformed the same network trained from scratch in both RA (Dice equals 0.9160) and LA (Dice equals 0.8813) segmentation tasks.
Collapse
Affiliation(s)
- Marta Saiz-Vivó
- Instituto de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (M.S.-V.); (V.N.)
| | - Adrián Colomer
- Instituto de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (M.S.-V.); (V.N.)
| | - Carles Fonfría
- Radiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (C.F.); (L.M.-B.)
| | - Luis Martí-Bonmatí
- Radiology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain; (C.F.); (L.M.-B.)
- Biomedical Imaging Research Group (GIBI230-PREBI), La Fe Health Research Institute, 46026 Valencia, Spain
| | - Valery Naranjo
- Instituto de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain; (M.S.-V.); (V.N.)
| |
Collapse
|
46
|
Garg M, Gupta S, Nayak SR, Nayak J, Pelusi D. Modified pixel level snake using bottom hat transformation for evolution of retinal vasculature map. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:5737-5757. [PMID: 34517510 DOI: 10.3934/mbe.2021290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Small changes in retinal blood vessels may produce different pathological disorders which may further cause blindness. Therefore, accurate extraction of vasculature map of retinal fundus image has become a challenging task for analysis of different pathologies. The present study offers an unsupervised method for extraction of vasculature map from retinal fundus images. This paper presents the methodology for evolution of vessels using Modified Pixel Level Snake (MPLS) algorithm based on Black Top-Hat (BTH) transformation. In the proposed method, initially bimodal masking is used for extraction of the mask of the retinal fundus image. Then adaptive segmentation and global thresholding is applied on masked image to find the initial contour image. Finally, MPLS is used for evolution of contour in all four cardinal directions using external, internal and balloon potential. This proposed work is implemented using MATLAB software. DRIVE and STARE databases are used for checking the performance of the system. In the proposed work, various performance metrics such as sensitivity, specificity and accuracy are evaluated. The average sensitivity of 76.96%, average specificity of 98.34% and average accuracy of 96.30% is achieved for DRIVE database. This technique can also segment vessels of pathological images accurately; reaching the average sensitivity of 70.80%, average specificity of 96.40% and average accuracy of 94.41%. The present study provides a simple and accurate method for the detection of vasculature map for normal fundus images as well as pathological images. It can be helpful for the assessment of various retinal vascular attributes like length, diameter, width, tortuosity and branching angle.
Collapse
Affiliation(s)
- Meenu Garg
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Sheifali Gupta
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Soumya Ranjan Nayak
- Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India
| | - Janmenjoy Nayak
- Aditya Institute of Technology and Management, Tekkali, K. Kotturu, Andhra Pradesh, India
| | - Danilo Pelusi
- Faculty of Communication Sciences, University of Teramo, Italy
| |
Collapse
|
47
|
Ashraf MN, Hussain M, Habib Z. Review of Various Tasks Performed in the Preprocessing Phase of a Diabetic Retinopathy Diagnosis System. Curr Med Imaging 2021; 16:397-426. [PMID: 32410541 DOI: 10.2174/1573405615666190219102427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/31/2018] [Accepted: 01/20/2019] [Indexed: 12/15/2022]
Abstract
Diabetic Retinopathy (DR) is a major cause of blindness in diabetic patients. The increasing population of diabetic patients and difficulty to diagnose it at an early stage are limiting the screening capabilities of manual diagnosis by ophthalmologists. Color fundus images are widely used to detect DR lesions due to their comfortable, cost-effective and non-invasive acquisition procedure. Computer Aided Diagnosis (CAD) of DR based on these images can assist ophthalmologists and help in saving many sight years of diabetic patients. In a CAD system, preprocessing is a crucial phase, which significantly affects its performance. Commonly used preprocessing operations are the enhancement of poor contrast, balancing the illumination imbalance due to the spherical shape of a retina, noise reduction, image resizing to support multi-resolution, color normalization, extraction of a field of view (FOV), etc. Also, the presence of blood vessels and optic discs makes the lesion detection more challenging because these two artifacts exhibit specific attributes, which are similar to those of DR lesions. Preprocessing operations can be broadly divided into three categories: 1) fixing the native defects, 2) segmentation of blood vessels, and 3) localization and segmentation of optic discs. This paper presents a review of the state-of-the-art preprocessing techniques related to three categories of operations, highlighting their significant aspects and limitations. The survey is concluded with the most effective preprocessing methods, which have been shown to improve the accuracy and efficiency of the CAD systems.
Collapse
Affiliation(s)
| | - Muhammad Hussain
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Zulfiqar Habib
- Department of Computer Science, COMSATS University Islamabad, Lahore, Pakistan
| |
Collapse
|
48
|
Chen S, Zou Y, Liu PX. IBA-U-Net: Attentive BConvLSTM U-Net with Redesigned Inception for medical image segmentation. Comput Biol Med 2021; 135:104551. [PMID: 34157471 DOI: 10.1016/j.compbiomed.2021.104551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
Accurate segmentation of medical images plays an essential role in their analysis and has a wide range of research and application values in fields of practice such as medical research, disease diagnosis, disease analysis, and auxiliary surgery. In recent years, deep convolutional neural networks have been developed that show strong performance in medical image segmentation. However, because of the inherent challenges of medical images, such as irregularities of the dataset and the existence of outliers, segmentation approaches have not demonstrated sufficiently accurate and reliable results for clinical employment. Our method is based on three key ideas: (1) integrating the BConvLSTM block and the Attention block to reduce the semantic gap between the encoder and decoder feature maps to make the two feature maps more homogeneous, (2) factorizing convolutions with a large filter size by Redesigned Inception, which uses a multiscale feature fusion method to significantly increase the effective receptive field, and (3) devising a deep convolutional neural network with multiscale feature fusion and a Attentive BConvLSTM mechanism, which integrates the Attentive BConvLSTM block and the Redesigned Inception block into an encoder-decoder model called Attentive BConvLSTM U-Net with Redesigned Inception (IBA-U-Net). Our proposed architecture, IBA-U-Net, has been compared with the U-Net and state-of-the-art segmentation methods on three publicly available datasets, the lung image segmentation dataset, skin lesion image dataset, and retinal blood vessel image segmentation dataset, each with their unique challenges, and it has improved the prediction performance even with slightly less calculation expense and fewer network parameters. By devising a deep convolutional neural network with a multiscale feature fusion and Attentive BConvLSTM mechanism, medical image segmentation of different tasks can be completed effectively and accurately with only 45% of U-Net parameters.
Collapse
Affiliation(s)
- Siyuan Chen
- The School of Information Engineering, Nanchang University, Jiangxi, Nanchang, 330031, China
| | - Yanni Zou
- The School of Information Engineering, Nanchang University, Jiangxi, Nanchang, 330031, China.
| | - Peter X Liu
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, KIS 5B6, Canada
| |
Collapse
|
49
|
Gegundez-Arias ME, Marin-Santos D, Perez-Borrero I, Vasallo-Vazquez MJ. A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 205:106081. [PMID: 33882418 DOI: 10.1016/j.cmpb.2021.106081] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Automatic monitoring of retinal blood vessels proves very useful for the clinical assessment of ocular vascular anomalies or retinopathies. This paper presents an efficient and accurate deep learning-based method for vessel segmentation in eye fundus images. METHODS The approach consists of a convolutional neural network based on a simplified version of the U-Net architecture that combines residual blocks and batch normalization in the up- and downscaling phases. The network receives patches extracted from the original image as input and is trained with a novel loss function that considers the distance of each pixel to the vascular tree. At its output, it generates the probability of each pixel of the input patch belonging to the vascular structure. The application of the network to the patches in which a retinal image can be divided allows obtaining the pixel-wise probability map of the complete image. This probability map is then binarized with a certain threshold to generate the blood vessel segmentation provided by the method. RESULTS The method has been developed and evaluated in the DRIVE, STARE and CHASE_Db1 databases, which offer a manual segmentation of the vascular tree by each of its images. Using this set of images as ground truth, the accuracy of the vessel segmentations obtained for an operating point proposal (established by a single threshold value for each database) was quantified. The overall performance was measured using the area of its receiver operating characteristic curve. The method demonstrated robustness in the face of the variability of the fundus images of diverse origin, being capable of working with the highest level of accuracy in the entire set of possible points of operation, compared to those provided by the most accurate methods found in literature. CONCLUSIONS The analysis of results concludes that the proposed method reaches better performance than the rest of state-of-art methods and can be considered the most promising for integration into a real tool for vascular structure segmentation.
Collapse
Affiliation(s)
- Manuel E Gegundez-Arias
- Vision, Prediction, Optimisation and Control Systems Department, Science and Technology Research Centre, University of Huelva, Avenida de las Fuerzas Armadas s/n, 21007, Huelva, Spain.
| | - Diego Marin-Santos
- Vision, Prediction, Optimisation and Control Systems Department, Science and Technology Research Centre, University of Huelva, Avenida de las Fuerzas Armadas s/n, 21007, Huelva, Spain.
| | - Isaac Perez-Borrero
- Vision, Prediction, Optimisation and Control Systems Department, Science and Technology Research Centre, University of Huelva, Avenida de las Fuerzas Armadas s/n, 21007, Huelva, Spain.
| | - Manuel J Vasallo-Vazquez
- Vision, Prediction, Optimisation and Control Systems Department, Science and Technology Research Centre, University of Huelva, Avenida de las Fuerzas Armadas s/n, 21007, Huelva, Spain.
| |
Collapse
|
50
|
Blood Vessel Segmentation of Fundus Retinal Images Based on Improved Frangi and Mathematical Morphology. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:4761517. [PMID: 34122614 PMCID: PMC8172282 DOI: 10.1155/2021/4761517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/09/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
An improved blood vessel segmentation algorithm on the basis of traditional Frangi filtering and the mathematical morphological method was proposed to solve the low accuracy of automatic blood vessel segmentation of fundus retinal images and high complexity of algorithms. First, a global enhanced image was generated by using the contrast-limited adaptive histogram equalization algorithm of the retinal image. An improved Frangi Hessian model was constructed by introducing the scale equivalence factor and eigenvector direction angle of the Hessian matrix into the traditional Frangi filtering algorithm to enhance blood vessels of the global enhanced image. Next, noise interferences surrounding small blood vessels were eliminated through the improved mathematical morphological method. Then, blood vessels were segmented using the Otsu threshold method. The improved algorithm was tested by the public DRIVE and STARE data sets. According to the test results, the average segmentation accuracy, sensitivity, and specificity of retinal images in DRIVE and STARE are 95.54%, 69.42%, and 98.02% and 94.92%, 70.19%, and 97.71%, respectively. The improved algorithm achieved high average segmentation accuracy and low complexity while promising segmentation sensitivity. This improved algorithm can segment retinal vessels more accurately than other algorithms.
Collapse
|