1
|
Moody JB, Poitrasson-Rivière A, Renaud JM, Hagio T, Al-Mallah MH, Weinberg RL, Ficaro EP, Murthy VL. Integrated myocardial flow reserve (iMFR) assessment: diffuse atherosclerosis and microvascular dysfunction are more strongly associated with mortality than focally impaired perfusion. Eur J Nucl Med Mol Imaging 2023; 51:123-135. [PMID: 37787848 DOI: 10.1007/s00259-023-06448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND AND AIMS Although treatment of ischemia-causing epicardial stenoses may improve symptoms of ischemia, current evidence does not suggest that revascularization improves survival. Conventional myocardial ischemia imaging does not uniquely identify diffuse atherosclerosis, microvascular dysfunction, or nonobstructive epicardial stenoses. We sought to evaluate the prognostic value of integrated myocardial flow reserve (iMFR), a novel noninvasive approach to distinguish the perfusion impact of focal atherosclerosis from diffuse coronary disease. METHODS This study analyzed a large single-center registry of consecutive patients clinically referred for rest-stress myocardial perfusion positron emission tomography. Cox proportional hazards modeling was used to assess the association of two previously reported and two novel perfusion measures with mortality risk: global stress myocardial blood flow (MBF); global myocardial flow reserve (MFR); and two metrics derived from iMFR analysis: the extents of focal and diffusely impaired perfusion. RESULTS In total, 6867 patients were included with a median follow-up of 3.4 years [1st-3rd quartiles, 1.9-5.0] and 1444 deaths (21%). Although all evaluated perfusion measures were independently associated with death, diffusely impaired perfusion extent (hazard ratio 2.65, 95%C.I. [2.37-2.97]) and global MFR (HR 2.29, 95%C.I. [2.08-2.52]) were consistently stronger predictors than stress MBF (HR 1.62, 95%C.I. [1.46-1.79]). Focally impaired perfusion extent (HR 1.09, 95%C.I. [1.03-1.16]) was only moderately related to mortality. Diffusely impaired perfusion extent remained a significant independent predictor of death when combined with global MFR (p < 0.0001), providing improved risk stratification (overall net reclassification improvement 0.246, 95%C.I. [0.183-0.310]). CONCLUSIONS The extent of diffusely impaired perfusion is a strong independent and additive marker of mortality risk beyond traditional risk factors, standard perfusion imaging, and global MFR, while focally impaired perfusion is only moderately related to mortality.
Collapse
Affiliation(s)
| | | | | | | | - Mouaz H Al-Mallah
- Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, USA
| | - Richard L Weinberg
- Division of Cardiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Edward P Ficaro
- INVIA, LLC, Ann Arbor, MI, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Brown LAE, Gulsin GS, Onciul SC, Broadbent DA, Yeo JL, Wood AL, Saunderson CED, Das A, Jex N, Chowdhary A, Thirunavukarasu S, Sharrack N, Knott KD, Levelt E, Swoboda PP, Xue H, Greenwood JP, Moon JC, Adlam D, McCann GP, Kellman P, Plein S. Sex- and age-specific normal values for automated quantitative pixel-wise myocardial perfusion cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging 2023; 24:426-434. [PMID: 36458882 PMCID: PMC10029853 DOI: 10.1093/ehjci/jeac231] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
AIMS Recently developed in-line automated cardiovascular magnetic resonance (CMR) myocardial perfusion mapping has been shown to be reproducible and comparable with positron emission tomography (PET), and can be easily integrated into clinical workflows. Bringing quantitative myocardial perfusion CMR into routine clinical care requires knowledge of sex- and age-specific normal values in order to define thresholds for disease detection. This study aimed to establish sex- and age-specific normal values for stress and rest CMR myocardial blood flow (MBF) in healthy volunteers. METHODS AND RESULTS A total of 151 healthy volunteers recruited from two centres underwent adenosine stress and rest myocardial perfusion CMR. In-line automatic reconstruction and post processing of perfusion data were implemented within the Gadgetron software framework, creating pixel-wise perfusion maps. Rest and stress MBF were measured, deriving myocardial perfusion reserve (MPR) and were subdivided by sex and age. Mean MBF in all subjects was 0.62 ± 0.13 mL/g/min at rest and 2.24 ± 0.53 mL/g/min during stress. Mean MPR was 3.74 ± 1.00. Compared with males, females had higher rest (0.69 ± 0.13 vs. 0.58 ± 0.12 mL/g/min, P < 0.01) and stress MBF (2.41 ± 0.47 vs. 2.13 ± 0.54 mL/g/min, P = 0.001). Stress MBF and MPR showed significant negative correlations with increasing age (r = -0.43, P < 0.001 and r = -0.34, P < 0.001, respectively). CONCLUSION Fully automated in-line CMR myocardial perfusion mapping produces similar normal values to the published CMR and PET literature. There is a significant increase in rest and stress MBF, but not MPR, in females and a reduction of stress MBF and MPR with advancing age, advocating the use of sex- and age-specific reference ranges for diagnostic use.
Collapse
Affiliation(s)
- Louise A E Brown
- Multidisciplinary Cardiovascular Research Centre (MCRC) and Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Gaurav S Gulsin
- Department of Cardiovascular Sciences, University of Leicester and Cardiovascular Theme, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, UK
| | - Sebastian C Onciul
- Multidisciplinary Cardiovascular Research Centre (MCRC) and Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - David A Broadbent
- Multidisciplinary Cardiovascular Research Centre (MCRC) and Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
- Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Jian L Yeo
- Department of Cardiovascular Sciences, University of Leicester and Cardiovascular Theme, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, UK
| | - Alice L Wood
- Department of Cardiovascular Sciences, University of Leicester and Cardiovascular Theme, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, UK
| | - Christopher E D Saunderson
- Multidisciplinary Cardiovascular Research Centre (MCRC) and Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Arka Das
- Multidisciplinary Cardiovascular Research Centre (MCRC) and Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Nicholas Jex
- Multidisciplinary Cardiovascular Research Centre (MCRC) and Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Amrit Chowdhary
- Multidisciplinary Cardiovascular Research Centre (MCRC) and Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Sharmaine Thirunavukarasu
- Multidisciplinary Cardiovascular Research Centre (MCRC) and Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Noor Sharrack
- Multidisciplinary Cardiovascular Research Centre (MCRC) and Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Kristopher D Knott
- Barts Heart Centre, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London, UK
| | - Eylem Levelt
- Multidisciplinary Cardiovascular Research Centre (MCRC) and Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Peter P Swoboda
- Multidisciplinary Cardiovascular Research Centre (MCRC) and Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - Hui Xue
- National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - John P Greenwood
- Multidisciplinary Cardiovascular Research Centre (MCRC) and Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | - James C Moon
- Barts Heart Centre, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St Bartholomew's Hospital, West Smithfield, London, UK
| | - David Adlam
- Medical Physics and Engineering, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester and Cardiovascular Theme, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, UK
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Centre (MCRC) and Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
Renaud JM, Poitrasson-Rivière A, Hagio T, Moody JB, Arida-Moody L, Ficaro EP, Murthy VL. Myocardial flow reserve estimation with contemporary CZT-SPECT and 99mTc-tracers lacks precision for routine clinical application. J Nucl Cardiol 2022; 29:2078-2089. [PMID: 34426935 DOI: 10.1007/s12350-021-02761-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/17/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND PET myocardial flow reserve (MFR) has established diagnostic and prognostic value. Technological advances have now enabled SPECT MFR quantification. We investigated whether SPECT MFR precision is sufficient for clinical categorization of patients. METHODS Validation studies vs invasive flow measurements and PET MFR were reviewed to determine global SPECT MFR thresholds. Studies vs PET and a SPECT MFR repeatability study were used to establish imprecision in SPECT MFR measurements as the standard deviation of the difference between SPECT and PET MFR, or test-retest SPECT MFR. Simulations were used to evaluate the impact of SPECT MFR imprecision on confidence of clinically relevant categorization. RESULTS Based on validation studies, the typical PET MFR categories were used for SPECT MFR classification (< 1.5, 1.5-2.0, > 2.0). Imprecision vs PET MFR ranged from 0.556 to 0.829, and test-retest imprecision was 0.781-0.878. Simulations showed correct classification of up to only 34% of patients when 1.5 ≤ true MFR ≤ 2.0. Categorization with high confidence (> 80%) was only achieved for extreme MFR values (< 1.0 or > 2.5), with correct classification in only 15% of patients in a typical lab with MFR of 1.8 ± 0.5. CONCLUSIONS Current SPECT-derived estimates of MFR lack precision and require further optimization for clinical risk stratification.
Collapse
Affiliation(s)
- Jennifer M Renaud
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA.
| | | | - Tomoe Hagio
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
| | - Jonathan B Moody
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
| | - Liliana Arida-Moody
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine (Department of Internal Medicine) and Division of Nuclear Medicine (Department of Radiology), University of Michigan, Ann Arbor, MI, USA
| | - Edward P Ficaro
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine (Department of Internal Medicine) and Division of Nuclear Medicine (Department of Radiology), University of Michigan, Ann Arbor, MI, USA
| | - Venkatesh L Murthy
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine (Department of Internal Medicine) and Division of Nuclear Medicine (Department of Radiology), University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Koenders SS, van Dijk JD, Jager PL, Mouden M, Tegelaar AG, Slump CH, van Dalen JA. Effect of temporal sampling protocols on myocardial blood flow measurements using Rubidium-82 PET. J Nucl Cardiol 2022; 29:1729-1741. [PMID: 33655444 PMCID: PMC9345838 DOI: 10.1007/s12350-021-02555-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/19/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND A variety of temporal sampling protocols is used worldwide to measure myocardial blood flow (MBF). Both the length and number of time frames in these protocols may alter MBF and myocardial flow reserve (MFR) measurements. We aimed to assess the effect of different clinically used temporal sampling protocols on MBF and MFR quantification in Rubidium-82 (Rb-82) PET imaging. METHODS We retrospectively included 20 patients referred for myocardial perfusion imaging using Rb-82 PET. A literature search was performed to identify appropriate sampling protocols. PET data were reconstructed using 14 selected temporal sampling protocols with time frames of 5-10 seconds in the first-pass phase and 30-120 seconds in the tissue phase. Rest and stress MBF and MFR were calculated for all protocols and compared to the reference protocol with 26 time frames. RESULTS MBF measurements differed (P ≤ 0.003) in six (43%) protocols in comparison to the reference protocol, with mean absolute relative differences up to 16% (range 5%-31%). Statistically significant differences were most frequently found for protocols with tissue phase time frames < 90 seconds. MFR did not differ (P ≥ 0.11) for any of the protocols. CONCLUSIONS Various temporal sampling protocols result in different MBF values using Rb-82 PET. MFR measurements were more robust to different temporal sampling protocols.
Collapse
Affiliation(s)
- S S Koenders
- Department of Nuclear Medicine, Isala Hospital, PO Box 10400, 8000 GK, Zwolle, The Netherlands.
- Technical Medical Center, University of Twente, Enschede, The Netherlands.
| | - J D van Dijk
- Department of Nuclear Medicine, Isala Hospital, PO Box 10400, 8000 GK, Zwolle, The Netherlands
| | - P L Jager
- Department of Nuclear Medicine, Isala Hospital, PO Box 10400, 8000 GK, Zwolle, The Netherlands
| | - M Mouden
- Department of Cardiology, Isala hospital, Zwolle, The Netherlands
| | - A G Tegelaar
- Department of Nuclear Medicine, Isala Hospital, PO Box 10400, 8000 GK, Zwolle, The Netherlands
| | - C H Slump
- Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - J A van Dalen
- Department of Medical Physics, Isala hospital, Zwolle, The Netherlands
| |
Collapse
|
5
|
Zavadovsky KV, Vorobyeva DA, Mochula OV, Mochula AV, Maltseva AN, Bayev AE, Gulya MO, Gimelli A, Ryabov VV. Myocardial Blood Flow and Flow Reserve in Patients With Acute Myocardial Infarction and Obstructive and Non-Obstructive Coronary Arteries: CZT SPECT Study. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:935539. [PMID: 39354978 PMCID: PMC11440855 DOI: 10.3389/fnume.2022.935539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 10/03/2024]
Abstract
Background To assess single-photon emission computed tomography cadmium-zinc-telluride (SPECT CZT)-derived myocardial blood flow (MBF) flow reserve (MFR) and flow difference (FD) in patients with acute myocardial infarction (AMI) and to compare this data with serum cardiac troponin and cardiac magnetic resonance (CMR) findings. Methods A total of 31 patients with AMI underwent invasive coronary angiography (ICA), serial high-sensitivity serum cardiac troponin I (cTnI) measurement, and CZT SPECT with visual and quantitative (MBF, MFR, and FD) perfusion parameters, and contrast-enhanced CMR. All patients with AMI were divided into two groups: (1) with non-obstructive coronary arteries (MINOCA), n = 10; (2) with obstructive coronary artery disease (MICAD), n = 21. Results The values of SSS and SRS were significantly (p < 0.01) higher whereas global stress MBF, MFR significantly lower in patients with MICAD as compared to MINOCA - 5.0 (3.0; 5.0) vs. 9.0 (5.0; 13.0); 2.0 (1.0; 3.0) vs. 6.0 (3.0; 11.0); 2.02 (1.71; 2.37) vs. 0.86 (0.72; 1.02) ml/min/g; and 2.61 (2.23; 3.14) vs. 1.67 (1.1; 1.9), respectively. Stress MBF correlated with cTnI at 24 h and day 4: ρ = -0.39; p = 0.03 and ρ = -0.47; p = 0.007, respectively. FD correlated with cTnI at 24 h and day 4: ρ = -0.39; p = 0.03 and ρ = -0.46; p = 0.009. CMR analysis showed that infarct size, MVO and myocardial edema in patients with MICAD were significantly (< 0.05) higher as compared to MINOCA: 19.4 (10.4; 29.7) vs. 1.8 (0.0; 6.9); 0.1 (0.0; 0.7) vs. 0.0 (0.0; 0.0) and 19.5 (12.0;30.0) vs. 3.0 (0.0; 12.0), respectively. According to vessel-based analysis of CMR data, acute myocardial injury (defined as late gadolinium enhancement and myocardial edema) was observed more frequently in patients with MICAD compared to MINOCA: 34(37%) vs. 5(5%) p = 0.005, respectively. The values of regional stress MBF, MFR and FD were significantly decreased in LV territories characterized by myocardial injury compared to those without: 0.98 (0.73; 1.79) vs. 1.33 (0.94; 2.08) p < 0.01, 1.64 (1.0; 2.36) vs. 2.0 (1.53; 2.89) p < 0.01 and 0.33 (0.05; 0.57) vs. 0.56 (0.36; 1.32) p> 0.01, respectively. Conclusion In patients with AMI, SPECT CZT-derived flow measures were associated with the high-sensitivity troponin I as well as the extent of edema, microvascular obstruction, and infarct size detected by CMR. On the regional level, quantitative SPECT CZT measures were significantly lower in vessel territories characterized by myocardial injury.
Collapse
Affiliation(s)
- Konstantin V. Zavadovsky
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| | - Darya A. Vorobyeva
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| | - Olga V. Mochula
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| | - Andrew V. Mochula
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| | - Alina N. Maltseva
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| | - Andrew E. Bayev
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| | - Marina O. Gulya
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| | | | - Vyacheslav V. Ryabov
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Arida-Moody L, Moody JB, Renaud JM, Poitrasson-Rivière A, Hagio T, Smith AM, Ficaro EP, Murthy VL. Effects of two patient-specific dosing protocols on measurement of myocardial blood flow with 3D 82Rb cardiac PET. Eur J Nucl Med Mol Imaging 2021; 48:3835-3846. [PMID: 33982174 DOI: 10.1007/s00259-021-05385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/25/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Clinical measurement of myocardial blood flow (MBF) has emerged as an important component of routine PET-CT assessment of myocardial perfusion in patients with known or suspected coronary artery disease. Although multiple society guidelines recommend patient-specific dosing, there is a lack of studies evaluating the efficacy of patient-specific dosing for quantitative MBF accuracy. METHODS Two patient-specific dosing protocols (weight- and BMI-adjusted) were retrospectively evaluated in 435 consecutive clinical patients referred for PET myocardial perfusion assessment. MBF was estimated at rest and after regadenoson-induced hyperemia. The effect of dosing protocol on dose reduction, PET scanner saturation, relative perfusion, and image quality was compared. The effect of PET saturation on the accuracy of MBF and myocardial flow reserve (MFR) in remote myocardium was assessed with multivariable linear regression. RESULTS BMI-adjusted dosing was associated with lower administered 82Rb activities (1036.0 ± 274 vs. 1147 ± 274 MBq, p = 0.003) and lower PET scanner saturation incidence (28 vs. 38%, p = 0.006) and severity (median saturation severity index 0.219 ± 0.33 vs. 0.397 ± 0.59%, p = 0.018) compared to weight-adjusted dosing. PET saturation that occurred with either dosing protocol was moderate and resulted in modest remote MBF and MFR biases ranging from 2 to 9% after adjusting for patient age, sex, BMI, rate-pressure product, and LV ejection fraction. No adverse effects of BMI dose adjustment were observed in relative perfusion assessment or image quality. CONCLUSIONS Patient-specific dosing according to BMI is an effective method for guideline-directed dose reduction while maintaining image quality and accuracy for routine MBF and MFR quantification.
Collapse
Affiliation(s)
- Liliana Arida-Moody
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | - Edward P Ficaro
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- INVIA, LLC, Ann Arbor, MI, USA
| | - Venkatesh L Murthy
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Saillant A, Armstrong I, Shah V, Zuehlsdorff S, Hayden C, Declerck J, Saint K, Memmott M, Jenkinson M, Chappell MA. Assessing Reliability of Myocardial Blood Flow After Motion Correction With Dynamic PET Using a Bayesian Framework. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1216-1226. [PMID: 30452353 DOI: 10.1109/tmi.2018.2881992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The estimation of myocardial blood flow (MBF) in dynamic PET can be biased by many different processes. A major source of error, particularly in clinical applications, is patient motion. Patient motion, or gross motion, creates displacements between different PET frames as well as between the PET frames and the CT-derived attenuation map, leading to errors in MBF calculation from voxel time series. Motion correction techniques are challenging to evaluate quantitatively and the impact on MBF reliability is not fully understood. Most metrics, such as signal-to-noise ratio (SNR), are characteristic of static images, and are not specific to motion correction in dynamic data. This study presents a new approach of estimating motion correction quality in dynamic cardiac PET imaging. It relies on calculating a MBF surrogate, K1 , along with the uncertainty on the parameter. This technique exploits a Bayesian framework, representing the kinetic parameters as a probability distribution, from which the uncertainty measures can be extracted. If the uncertainty extracted is high, the parameter studied is considered to have high variability - or low confidence - and vice versa. The robustness of the framework is evaluated on simulated time activity curves to ensure that the uncertainties are consistently estimated at the multiple levels of noise. Our framework is applied on 40 patient datasets, divided in 4 motion magnitude categories. Experienced observers manually realigned clinical datasets with 3D translations to correct for motion. K1 uncertainties were compared before and after correction. A reduction of uncertainty after motion correction of up to 60% demonstrates the benefit of motion correction in dynamic PET and as well as provides evidence of the usefulness of the new method presented.
Collapse
|
8
|
Moody JB, Hiller KM, Lee BC, Poitrasson-Rivière A, Corbett JR, Weinberg RL, Murthy VL, Ficaro EP. The utility of 82Rb PET for myocardial viability assessment: Comparison with perfusion-metabolism 82Rb- 18F-FDG PET. J Nucl Cardiol 2019; 26:374-386. [PMID: 30809755 DOI: 10.1007/s12350-019-01615-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND 82Rb kinetics may distinguish scar from viable but dysfunctional (hibernating) myocardium. We sought to define the relationship between 82Rb kinetics and myocardial viability compared with conventional 82Rb and 18F-fluorodeoxyglucose (FDG) perfusion-metabolism PET imaging. METHODS Consecutive patients (N = 120) referred for evaluation of myocardial viability prior to revascularization and normal volunteers (N = 37) were reviewed. Dynamic 82Rb 3D PET data were acquired at rest. 18F-FDG 3D PET data were acquired after metabolic preparation using a standardized hyperinsulinemic-euglycemic clamp. 82Rb kinetic parameters K1, k2, and partition coefficient (KP) were estimated by compartmental modeling RESULTS: Segmental 82Rb k2 and KP differed significantly between scarred and hibernating segments identified by Rb-FDG perfusion-metabolism (k2, 0.42 ± 0.25 vs. 0.22 ± 0.09 min-1; P < .0001; KP, 1.33 ± 0.62 vs. 2.25 ± 0.98 ml/g; P < .0001). As compared to Rb-FDG analysis, segmental Rb KP had a c-index, sensitivity and specificity of 0.809, 76% and 84%, respectively, for distinguishing hibernating and scarred segments. Segmental k2 performed similarly, but with lower specificity (75%, P < .001) CONCLUSIONS: In this pilot study, 82Rb kinetic parameters k2 and KP, which are readily estimated using a compartmental model commonly used for myocardial blood flow, reliably differentiated hibernating myocardium and scar. Further study is necessary to evaluate their clinical utility for predicting benefit after revascularization.
Collapse
Affiliation(s)
- Jonathan B Moody
- INVIA Medical Imaging Solutions, 3025 Boardwalk Street, Suite 200, Ann Arbor, MI, 48108, USA.
| | - Keri M Hiller
- Cardiac Imaging Program, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin C Lee
- INVIA Medical Imaging Solutions, 3025 Boardwalk Street, Suite 200, Ann Arbor, MI, 48108, USA
| | | | - James R Corbett
- Cardiac Imaging Program, University of Michigan, Ann Arbor, MI, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Richard L Weinberg
- Cardiac Imaging Program, University of Michigan, Ann Arbor, MI, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Venkatesh L Murthy
- Cardiac Imaging Program, University of Michigan, Ann Arbor, MI, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Edward P Ficaro
- INVIA Medical Imaging Solutions, 3025 Boardwalk Street, Suite 200, Ann Arbor, MI, 48108, USA
- Cardiac Imaging Program, University of Michigan, Ann Arbor, MI, USA
- Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Hunter CRRN, Klein R, Alessio AM, deKemp RA. Patient body motion correction for dynamic cardiac PET-CT by attenuation-emission alignment according to projection consistency conditions. Med Phys 2019; 46:1697-1706. [PMID: 30710381 DOI: 10.1002/mp.13419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Patient body motion is known to cause large deviations in the determination of myocardial blood flow (MBF) with errors exceeding 300%. Accurate correction for patient whole-body motion is still a largely unsolved problem in cardiac positron emission tomography (PET) imaging. OBJECTIVE This study evaluated the efficacy of using Natterer's formulation of the Helgason-Ludwig consistency conditions on the two-dimensional Radon transform to align computed tomography to PET projection data in multiple time frames of a dynamic sequence for the purpose of frame-by-frame correction of rigid whole-body motion. METHODS The correction algorithm was evaluated with digital NCAT phantoms using realistic noise added by the analytical simulator. Count rates used in the simulation were derived from clinical patient data. In addition, a proof of concept test using measured data with a cardiac torso phantom was conducted. RESULTS Motion correction resulted in significant improvement in the accuracy of MBF estimates, especially for high count-rate acquisitions. Maximum errors for 2 cm of motion dropped from 325% to 25% and from 250% to 25% using global and regional partial-volume correction, respectively. Median MBF errors dropped from 33% to 4.5% and 27% to 3.8%, respectively. Importantly, the correction algorithm performed equally well to compensate for body motion in both early and late time frames. CONCLUSION Cardiac PET-CT data used for attenuation correction (CTAC) alignment using projection consistency conditions was effective for reducing errors in MBF measurements due to simulated patient motion, and can be integrated into the image reconstruction workflow.
Collapse
Affiliation(s)
- Chad R R N Hunter
- Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada.,University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
| | - Ran Klein
- Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada.,The Ottawa Hospital, 1053 Carling Ave, Ottawa, ON, K1Y 4E9, Canada
| | - Adam M Alessio
- Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824, USA
| | - Robert A deKemp
- Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada.,University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON, K1Y 4W7, Canada
| |
Collapse
|
10
|
Klein R, Ocneanu A, Renaud JM, Ziadi MC, Beanlands RSB, deKemp RA. Consistent tracer administration profile improves test-retest repeatability of myocardial blood flow quantification with 82Rb dynamic PET imaging. J Nucl Cardiol 2018; 25:929-941. [PMID: 27804067 PMCID: PMC5966478 DOI: 10.1007/s12350-016-0698-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Quantification of myocardial blood flow (MBF) and stress/rest flow reserve is used increasingly to diagnose multi-vessel coronary artery disease and micro-vascular disease with PET imaging. However, variability in the measurements may limit physician confidence to direct revascularization therapies based on specific threshold values. This study evaluated the effects of rubidium-82 (82Rb) tracer injection profile using a constant-activity-rate (CA) vs a constant-flow-rate (CF) infusion to improve test-retest repeatability of MBF measurements. METHOD 22 participants underwent single-session 82Rb dynamic PET imaging during rest and dipyridamole stress using one of 2 test-retest infusion protocols: CA-CA (n = 12) or CA-CF (n = 10). MBF was quantified using a single-tissue-compartment model (1TCM) and a simplified retention model (SRM). Non-parametric test-retest repeatability coefficients (RPCnp) were compared between groups. Myocardium-to-blood contrast and signal-to-noise ratios of the late uptake images (2 to 6 minutes) were also compared to evaluate standard myocardial perfusion image (MPI) quality. RESULTS MBF values in the CA-CA group were more repeatable (smaller RPCnp) than the CA-CF group using the 1TCM at rest alone, rest and stress combined, and stress/rest reserve (21% vs 36%, 16% vs 19%, and 20% vs 27%, P < 0.05, respectively), and using the SRM at Rest and Stress alone, Rest and Stress combined, and stress/rest reserve (21% vs 38%, 15% vs 25%, 22% vs 38%, and 23% vs 49%, P < 0.05, respectively). In terms of image quality, myocardium-to-blood contrast and signal-to-noise ratios were not significantly different between groups. CONCLUSIONS Constant-activity-rate 'square-wave' infusion of 82Rb produces more repeatable tracer injection profiles and decreases the test-retest variability of MBF measurements, when compared to a constant-flow-rate 'bolus' administration of 82Rb, especially with SRM, and without compromising standard MPI quality.
Collapse
Affiliation(s)
- Ran Klein
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada.
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada.
- Division of Nuclear Medicine, Department of Medicine, The Ottawa Hospital and University of Ottawa, Box 232, 1053 Carling Ave, Ottawa, ON, K1Y 4E9, Canada.
| | - Adrian Ocneanu
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
| | - Jennifer M Renaud
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
| | - Maria C Ziadi
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
- Non Invasive Cardiovascular Imaging Department, Diagnostico Medico Oroño, Rosario, Argentina
| | - Rob S B Beanlands
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
- Division of Nuclear Medicine, Department of Medicine, The Ottawa Hospital and University of Ottawa, Box 232, 1053 Carling Ave, Ottawa, ON, K1Y 4E9, Canada
| | - Robert A deKemp
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
- Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada
- Division of Nuclear Medicine, Department of Medicine, The Ottawa Hospital and University of Ottawa, Box 232, 1053 Carling Ave, Ottawa, ON, K1Y 4E9, Canada
| |
Collapse
|
11
|
Polycarpou I, Soultanidis G, Tsoumpas C. Synthesis of Realistic Simultaneous Positron Emission Tomography and Magnetic Resonance Imaging Data. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:703-711. [PMID: 29533892 DOI: 10.1109/tmi.2017.2768130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The investigation of the performance of different positron emission tomography (PET) reconstruction and motion compensation methods requires accurate and realistic representation of the anatomy and motion trajectories as observed in real subjects during acquisitions. The generation of well-controlled clinical datasets is difficult due to the many different clinical protocols, scanner specifications, patient sizes, and physiological variations. Alternatively, computational phantoms can be used to generate large data sets for different disease states, providing a ground truth. Several studies use registration of dynamic images to derive voxel deformations to create moving computational phantoms. These phantoms together with simulation software generate raw data. This paper proposes a method for the synthesis of dynamic PET data using a fast analytic method. This is achieved by incorporating realistic models of respiratory motion into a numerical phantom to generate datasets with continuous and variable motion with magnetic resonance imaging (MRI)-derived motion modeling and high resolution MRI images. In this paper, data sets for two different clinical traces are presented, 18F-FDG and 68Ga-PSMA. This approach incorporates realistic models of respiratory motion to generate temporally and spatially correlated MRI and PET data sets, as those expected to be obtained from simultaneous PET-MRI acquisitions.
Collapse
|
12
|
Chilra P, Gnesin S, Allenbach G, Monteiro M, Prior JO, Vieira L, Pires Jorge JA. Cardiac PET/CT with Rb-82: optimization of image acquisition and reconstruction parameters. EJNMMI Phys 2017; 4:10. [PMID: 28205113 PMCID: PMC5311016 DOI: 10.1186/s40658-017-0178-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/08/2017] [Indexed: 12/04/2022] Open
Abstract
Background Our aim was to characterize the influence of time-of-flight (TOF) and point spread function (PSF) recovery corrections, as well as ordered subset expectation maximization (OSEM) reconstruction parameters, in 82Rb PET/CT quantification of myocardial blood flow (MBF) and myocardial flow reserve (MFR). Rest and stress list-mode dynamic 82Rb PET acquisition data from 10 patients without myocardial flow defects and 10 patients with myocardial blood flow defects were reconstructed retrospectively. OSEM reconstructions were performed with Gaussian filters of 4, 6, and 8 mm, different iterations, and subset numbers (2 × 24; 2 × 16; 3 × 16; 4 × 16). Rest and stress global, regional, and segmental MBF and MFR were computed from time activity curves with FlowQuant© software. Left ventricular segmentation using the 17-segment American Heart Association model was obtained. Results Whole left ventricle (LV) MBF at rest and stress were 0.97 ± 0.30 and 2.30 ± 1.00 mL/min/g, respectively, and MFR was 2.40 ± 1.13. Concordance was excellent and all reconstruction parameters had no significant impact on MBF, except for the exclusion of TOF which led to significantly decreased concordance in rest and stress MBF in patients with or without perfusion defects on a coronary artery basis and in MFR in patients with perfusion defects. Conclusions Changes in reconstruction parameters in perfusion 82Rb PET/CT studies influence quantitative MBF analysis. The inclusion of TOF information in the tomographic reconstructions had significant impact in MBF quantification.
Collapse
Affiliation(s)
- P Chilra
- Haute École de Santé Vaud - Filière TRM, University of Applied Sciences and Arts Western Switzerland, Lausanne, Switzerland.,Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland.,Área Científica de Medicina Nuclear, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - S Gnesin
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland.,Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
| | - G Allenbach
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
| | - M Monteiro
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
| | - J O Prior
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
| | - L Vieira
- Área Científica de Medicina Nuclear, Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - J A Pires Jorge
- Haute École de Santé Vaud - Filière TRM, University of Applied Sciences and Arts Western Switzerland, Lausanne, Switzerland.
| |
Collapse
|
13
|
Optimally Repeatable Kinetic Model Variant for Myocardial Blood Flow Measurements with 82Rb PET. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2017; 2017:6810626. [PMID: 28293274 PMCID: PMC5331165 DOI: 10.1155/2017/6810626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/24/2016] [Indexed: 11/18/2022]
Abstract
Purpose. Myocardial blood flow (MBF) quantification with 82Rb positron emission tomography (PET) is gaining clinical adoption, but improvements in precision are desired. This study aims to identify analysis variants producing the most repeatable MBF measures. Methods. 12 volunteers underwent same-day test-retest rest and dipyridamole stress imaging with dynamic 82Rb PET, from which MBF was quantified using 1-tissue-compartment kinetic model variants: (1) blood-pool versus uptake region sampled input function (Blood/Uptake-ROI), (2) dual spillover correction (SOC-On/Off), (3) right blood correction (RBC-On/Off), (4) arterial blood transit delay (Delay-On/Off), and (5) distribution volume (DV) constraint (Global/Regional-DV). Repeatability of MBF, stress/rest myocardial flow reserve (MFR), and stress/rest MBF difference (ΔMBF) was assessed using nonparametric reproducibility coefficients (RPCnp = 1.45 × interquartile range). Results. MBF using SOC-On, RVBC-Off, Blood-ROI, Global-DV, and Delay-Off was most repeatable for combined rest and stress: RPCnp = 0.21 mL/min/g (15.8%). Corresponding MFR and ΔMBF RPCnp were 0.42 (20.2%) and 0.24 mL/min/g (23.5%). MBF repeatability improved with SOC-On at stress (p < 0.001) and tended to improve with RBC-Off at both rest and stress (p < 0.08). DV and ROI did not significantly influence repeatability. The Delay-On model was overdetermined and did not reliably converge. Conclusion. MBF and MFR test-retest repeatability were the best with dual spillover correction, left atrium blood input function, and global DV.
Collapse
|
14
|
deKemp RA, Klein R, Beanlands RSB. (82)Rb PET imaging of myocardial blood flow-have we achieved the 4 "R"s to support routine use? EJNMMI Res 2016; 6:69. [PMID: 27650281 PMCID: PMC5030198 DOI: 10.1186/s13550-016-0225-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/02/2016] [Indexed: 01/29/2023] Open
Affiliation(s)
- Robert A deKemp
- Division of Cardiology, National Cardiac PET Centre, University of Ottawa Heart Institute, Ottawa, Canada.
| | - Ran Klein
- Division of Nuclear Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Rob S B Beanlands
- Division of Cardiology, National Cardiac PET Centre, University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
15
|
Germino M, Ropchan J, Mulnix T, Fontaine K, Nabulsi N, Ackah E, Feringa H, Sinusas AJ, Liu C, Carson RE. Quantification of myocardial blood flow with (82)Rb: Validation with (15)O-water using time-of-flight and point-spread-function modeling. EJNMMI Res 2016; 6:68. [PMID: 27650280 PMCID: PMC5030203 DOI: 10.1186/s13550-016-0215-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/30/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We quantified myocardial blood flow with (82)Rb PET using parameters of the generalized Renkin-Crone model estimated from (82)Rb and (15)O-water images reconstructed with time-of-flight and point spread function modeling. Previous estimates of rubidium extraction have used older-generation scanners without time-of-flight or point spread function modeling. We validated image-derived input functions with continuously collected arterial samples. METHODS Nine healthy subjects were scanned at rest and under pharmacological stress on the Siemens Biograph mCT with (82)Rb and (15)O-water PET, undergoing arterial blood sampling with each scan. Image-derived input functions were estimated from the left ventricle cavity and corrected with tracer-specific population-based scale factors determined from arterial data. Kinetic parametric images were generated from the dynamic PET images by fitting the one-tissue compartment model to each voxel's time activity curve. Mean myocardial blood flow was determined from each subject's (15)O-water k 2 images. The parameters of the generalized Renkin-Crone model were estimated from these water-based flows and mean myocardial (82)Rb K 1 estimates. RESULTS Image-derived input functions showed improved agreement with arterial measurements after a scale correction. The Renkin-Crone model fit (a = 0.77, b = 0.39) was similar to those previously published, though b was lower. CONCLUSIONS We have presented parameter estimates for the generalized Renkin-Crone model of extraction for (82)Rb PET using human (82)Rb and (15)O-water PET from high-resolution images using a state-of-the-art time-of-flight-capable scanner. These results provide a state-of-the-art methodology for myocardial blood flow measurement with (82)Rb PET.
Collapse
Affiliation(s)
- Mary Germino
- Biomedical Engineering, Yale University, New Haven, CT USA
- PET Center, Yale School of Medicine, PO Box 208048, New Haven, CT 06520-8048 USA
| | - Jim Ropchan
- PET Center, Diagnostic Radiology, School of Medicine, Yale University, New Haven, CT USA
| | - Tim Mulnix
- PET Center, Diagnostic Radiology, School of Medicine, Yale University, New Haven, CT USA
| | - Kathryn Fontaine
- PET Center, Diagnostic Radiology, School of Medicine, Yale University, New Haven, CT USA
| | - Nabeel Nabulsi
- PET Center, Diagnostic Radiology, School of Medicine, Yale University, New Haven, CT USA
| | - Eric Ackah
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT USA
| | - Herman Feringa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT USA
| | - Albert J. Sinusas
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT USA
| | - Chi Liu
- Biomedical Engineering, Yale University, New Haven, CT USA
- PET Center, Diagnostic Radiology, School of Medicine, Yale University, New Haven, CT USA
| | - Richard E. Carson
- Biomedical Engineering, Yale University, New Haven, CT USA
- PET Center, Diagnostic Radiology, School of Medicine, Yale University, New Haven, CT USA
| |
Collapse
|