1
|
Zhang W, Yang T, Fan J, Wang H, Ji M, Zhang H, Miao J. U-shaped network combining dual-stream fusion mamba and redesigned multilayer perceptron for myocardial pathology segmentation. Med Phys 2025. [PMID: 40247150 DOI: 10.1002/mp.17812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/10/2025] [Accepted: 03/16/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Cardiac magnetic resonance imaging (CMR) provides critical pathological information, such as scars and edema, which are vital for diagnosing myocardial infarction (MI). However, due to the limited pathological information in single-sequence CMR images and the small size of pathological regions, automatic segmentation of myocardial pathology remains a significant challenge. PURPOSE In the paper, we propose a novel two-stage anatomical-pathological segmentation framework combining Kolmogorov-Arnold Networks (KAN) and Mamba, aiming to effectively segment myocardial pathology in multi-sequence CMR images. METHODS First, in the coarse segmentation stage, we employed a multiline parallel MambaUnet as the anatomical structure segmentation network to obtain shape prior information. This approach effectively addresses the class imbalance issue and aids in subsequent pathological segmentation. In the fine segmentation stage, we introduced a novel U-shaped segmentation network, KANMambaNet, which features a Dual-Stream Fusion Mamba module. This module enhances the network's ability to capture long-range dependencies while improving its capability to distinguish different pathological features in small regions. Additionally, we developed a Kolmogorov-Arnold Network-based multilayer perceptron (KAN MLP) module that utilizes learnable activation functions instead of fixed nonlinear functions. This design enhances the network's flexibility in handling various pathological features, enabling more accurate differentiation of the pathological characteristics at the boundary between edema and scar regions. Our method achieves competitive segmentation performance compared to state-of-the-art models, particularly in terms of the Dice coefficient. RESULTS We validated our model's performance on the MyoPS2020 dataset, achieving a Dice score of 0.8041 ± $\pm$ 0.0751 for myocardial edema and 0.9051 ± $\pm$ 0.0240 for myocardial scar. Compared to the baseline model MambaUnet, our edema segmentation performance improved by 0.1420, and scar segmentation performance improved by 0.1081. CONCLUSIONS We developed an innovative two-stage anatomical-pathological segmentation framework that integrates KAN and Mamba, effectively segmenting myocardial pathology in multi-sequence CMR images. The experimental results demonstrate that our proposed method achieves superior segmentation performance compared to other state-of-the-art methods.
Collapse
Affiliation(s)
- Wenjie Zhang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Tiejun Yang
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, China
- Key Laboratory of Grain Information Processing and Control (HAUT), Ministry of Education, Zhengzhou, China
- Henan Key Laboratory of Grain Photoelectric Detection and Control (HAUT), Zhengzhou, Henan, China
| | - Jiacheng Fan
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Heng Wang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Mingzhu Ji
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Huiyao Zhang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Jianyu Miao
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
2
|
Li L. Toward Enabling Cardiac Digital Twins of Myocardial Infarction Using Deep Computational Models for Inverse Inference. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2466-2478. [PMID: 38373128 PMCID: PMC7616288 DOI: 10.1109/tmi.2024.3367409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Cardiac digital twins (CDTs) have the potential to offer individualized evaluation of cardiac function in a non-invasive manner, making them a promising approach for personalized diagnosis and treatment planning of myocardial infarction (MI). The inference of accurate myocardial tissue properties is crucial in creating a reliable CDT of MI. In this work, we investigate the feasibility of inferring myocardial tissue properties from the electrocardiogram (ECG) within a CDT platform. The platform integrates multi-modal data, such as cardiac MRI and ECG, to enhance the accuracy and reliability of the inferred tissue properties. We perform a sensitivity analysis based on computer simulations, systematically exploring the effects of infarct location, size, degree of transmurality, and electrical activity alteration on the simulated QRS complex of ECG, to establish the limits of the approach. We subsequently present a novel deep computational model, comprising a dual-branch variational autoencoder and an inference model, to infer infarct location and distribution from the simulated QRS. The proposed model achieves mean Dice scores of 0.457 ±0.317 and 0.302 ±0.273 for the inference of left ventricle scars and border zone, respectively. The sensitivity analysis enhances our understanding of the complex relationship between infarct characteristics and electrophysiological features. The in silico experimental results show that the model can effectively capture the relationship for the inverse inference, with promising potential for clinical application in the future. The code is available at https://github.com/lileitech/MI_inverse_inference.
Collapse
Affiliation(s)
- Lei Li
- Department of Engineering Science, Institute of Biomedical
Engineering, University of Oxford, OX3 7DQ,
Oxford, U.K.
| |
Collapse
|
3
|
Trayanova NA, Lyon A, Shade J, Heijman J. Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation. Physiol Rev 2024; 104:1265-1333. [PMID: 38153307 PMCID: PMC11381036 DOI: 10.1152/physrev.00017.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
The complexity of cardiac electrophysiology, involving dynamic changes in numerous components across multiple spatial (from ion channel to organ) and temporal (from milliseconds to days) scales, makes an intuitive or empirical analysis of cardiac arrhythmogenesis challenging. Multiscale mechanistic computational models of cardiac electrophysiology provide precise control over individual parameters, and their reproducibility enables a thorough assessment of arrhythmia mechanisms. This review provides a comprehensive analysis of models of cardiac electrophysiology and arrhythmias, from the single cell to the organ level, and how they can be leveraged to better understand rhythm disorders in cardiac disease and to improve heart patient care. Key issues related to model development based on experimental data are discussed, and major families of human cardiomyocyte models and their applications are highlighted. An overview of organ-level computational modeling of cardiac electrophysiology and its clinical applications in personalized arrhythmia risk assessment and patient-specific therapy of atrial and ventricular arrhythmias is provided. The advancements presented here highlight how patient-specific computational models of the heart reconstructed from patient data have achieved success in predicting risk of sudden cardiac death and guiding optimal treatments of heart rhythm disorders. Finally, an outlook toward potential future advances, including the combination of mechanistic modeling and machine learning/artificial intelligence, is provided. As the field of cardiology is embarking on a journey toward precision medicine, personalized modeling of the heart is expected to become a key technology to guide pharmaceutical therapy, deployment of devices, and surgical interventions.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Aurore Lyon
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Division of Heart and Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Julie Shade
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Artificial Intelligence as a Diagnostic Tool in Non-Invasive Imaging in the Assessment of Coronary Artery Disease. Med Sci (Basel) 2023; 11:medsci11010020. [PMID: 36976528 PMCID: PMC10053913 DOI: 10.3390/medsci11010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Coronary artery disease (CAD) remains a leading cause of mortality and morbidity worldwide, and it is associated with considerable economic burden. In an ageing, multimorbid population, it has become increasingly important to develop reliable, consistent, low-risk, non-invasive means of diagnosing CAD. The evolution of multiple cardiac modalities in this field has addressed this dilemma to a large extent, not only in providing information regarding anatomical disease, as is the case with coronary computed tomography angiography (CCTA), but also in contributing critical details about functional assessment, for instance, using stress cardiac magnetic resonance (S-CMR). The field of artificial intelligence (AI) is developing at an astounding pace, especially in healthcare. In healthcare, key milestones have been achieved using AI and machine learning (ML) in various clinical settings, from smartwatches detecting arrhythmias to retinal image analysis and skin cancer prediction. In recent times, we have seen an emerging interest in developing AI-based technology in the field of cardiovascular imaging, as it is felt that ML methods have potential to overcome some limitations of current risk models by applying computer algorithms to large databases with multidimensional variables, thus enabling the inclusion of complex relationships to predict outcomes. In this paper, we review the current literature on the various applications of AI in the assessment of CAD, with a focus on multimodality imaging, followed by a discussion on future perspectives and critical challenges that this field is likely to encounter as it continues to evolve in cardiology.
Collapse
|
5
|
Qiu J, Li L, Wang S, Zhang K, Chen Y, Yang S, Zhuang X. MyoPS-Net: Myocardial pathology segmentation with flexible combination of multi-sequence CMR images. Med Image Anal 2023; 84:102694. [PMID: 36495601 DOI: 10.1016/j.media.2022.102694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/05/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022]
Abstract
Myocardial pathology segmentation (MyoPS) can be a prerequisite for the accurate diagnosis and treatment planning of myocardial infarction. However, achieving this segmentation is challenging, mainly due to the inadequate and indistinct information from an image. In this work, we develop an end-to-end deep neural network, referred to as MyoPS-Net, to flexibly combine five-sequence cardiac magnetic resonance (CMR) images for MyoPS. To extract precise and adequate information, we design an effective yet flexible architecture to extract and fuse cross-modal features. This architecture can tackle different numbers of CMR images and complex combinations of modalities, with output branches targeting specific pathologies. To impose anatomical knowledge on the segmentation results, we first propose a module to regularize myocardium consistency and localize the pathologies, and then introduce an inclusiveness loss to utilize relations between myocardial scars and edema. We evaluated the proposed MyoPS-Net on two datasets, i.e., a private one consisting of 50 paired multi-sequence CMR images and a public one from MICCAI2020 MyoPS Challenge. Experimental results showed that MyoPS-Net could achieve state-of-the-art performance in various scenarios. Note that in practical clinics, the subjects may not have full sequences, such as missing LGE CMR or mapping CMR scans. We therefore conducted extensive experiments to investigate the performance of the proposed method in dealing with such complex combinations of different CMR sequences. Results proved the superiority and generalizability of MyoPS-Net, and more importantly, indicated a practical clinical application. The code has been released via https://github.com/QJYBall/MyoPS-Net.
Collapse
Affiliation(s)
- Junyi Qiu
- School of Data Science, Fudan University, Shanghai, China
| | - Lei Li
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Sihan Wang
- School of Data Science, Fudan University, Shanghai, China
| | - Ke Zhang
- School of Data Science, Fudan University, Shanghai, China
| | - Yinyin Chen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Medical Imaging, Shanghai Medical School, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Shan Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Medical Imaging, Shanghai Medical School, Fudan University and Shanghai Institute of Medical Imaging, Shanghai, China
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Automatic development of 3D anatomical models of border zone and core scar regions in the left ventricle. Comput Med Imaging Graph 2023; 103:102152. [PMID: 36525769 DOI: 10.1016/j.compmedimag.2022.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/17/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Patients with myocardial infarction are at elevated risk of sudden cardiac death, and scar tissue arising from infarction is known to play a role. The accurate identification of scars therefore is crucial for risk assessment, quantification and guiding interventions. Typically, core scars and grey peripheral zones are identified by radiologists and clinicians based on cardiac late gadolinium enhancement magnetic resonance images (LGE-MRI). Scar regions from LGE-MRI vary in size, shape, heterogeneity, artifacts, and image resolution. Thus, manual segmentation is time consuming, and influenced by the observer's experience (bias effect). We propose a fully automatic framework that develops 3D anatomical models of the left ventricle with border zone and core scar regions that are free from bias effect. Our myocardium (SOCRATIS), border scar and core scar (BZ-SOCRATIS) segmentation pipelines were evaluated using internal and external validation datasets. The automatic myocardium segmentation framework performed a Dice score of 81.9% and 70.0% in the internal and external validation dataset. The automatic scar segmentation pipeline achieved a Dice score of 60.9% for the core scar segmentation and 43.7% for the border zone scar segmentation in the internal dataset and in the external dataset a Dice score of 44.2% for the core scar segmentation and 54.8% for the border scar segmentation respectively. To the best of our knowledge, this is the first study outlining a fully automatic framework to develop 3D anatomical models of the left ventricle with border zone and core scar regions. Our method exhibits high performance without the need for training or tuning in an unseen cohort (unsupervised).
Collapse
|
7
|
Ding Y, Xie W, Wong KKL, Liao Z. DE-MRI myocardial fibrosis segmentation and classification model based on multi-scale self-supervision and transformer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107049. [PMID: 36274507 DOI: 10.1016/j.cmpb.2022.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE The segmentation and categorization of fibrotic tissue in time-lapse enhanced MRI scanning are quite challenging, and it is mainly done manually for myocardial DE-MRI images. On the other hand, DE-MRI instructions for segmenting and classifying cardiac hypertrophy are complex and prone to inaccuracy. Developing cardiac DE-MRI classification and prediction methods is crucial. METHODS This paper introduces a self-supervised myocardial histology segmentation algorithm with multi-scale portrayal consistency to address the degree of sophistication of cardiology DE-MRI. The model retrieves multi-scale representations from multiple expanded viewpoints using a Siamese system and uses resemblance learning instruction to achieve unlabeled representations. The DE-MRI data train the network weights to generate a superior segmentation effect by accurately reflecting the exact scale information. The paper provides an end-to-end method for detecting myocardial fibrosis tissue using a Transformer as a result of the poor classification outcomes of myocardial fibrosis substance in DE-MRI. A deep learning model is created using the Pre-LN Transformer decoded simultaneously with the Multi-Scale Transformer backbone structure developed in this paper. In addition, the joint regression cost, which incorporates the CIoU Loss and the L1 Loss, is used to determine the distance between forecast blocks and labels. RESULTS Increasing the independent evaluation and annotations position compared enhances performance compared to the segmentation method without canvas matching by 1.76%, 1.27%, 0.93%, and -1.17 mm on Dice, PPV, SEN, and HD, respectively. Based on the strongest of the three single-scale representation methodologies, the segmentation model in this study is enhanced by 0.71%, 0.79%, and 1.47%, as well as -1.49 mm on Dice, PPV, SEN, and HD, respectively. The effectiveness and reliability of the segmentation model are confirmed. Additionally, testing results show that this study's recognition system's mAP is 84.97%, which is greater than the benchmark techniques used in most other studies. The framework converges round is compressed by 18.1% compared to the DETR detection approach, and the identification rate is improved by 3.5%, proving the strategy's value. CONCLUSION The self-supervised cardiac fibrosis segmentation method with multi-scale portrayal consistency and end-to-end myocardial histology categorization is introduced in this study. To solve the challenges of segmentation and myocardial fibrosis identification in cardiology DE-MRI, a Transformer-based detection approach is put forth. It may address the issue of the myocardial scarring material's low accuracy in segmentation and classification in DE-MRI, as well as provide clinicians with a fibrosis diagnosis that is supplementary to the conventional therapy of heart ailments.
Collapse
Affiliation(s)
- Yuhan Ding
- School of Computer Science and Engineering, Central South University, Changsha 410000, China
| | - Weifang Xie
- School of Computer Science and Engineering, Central South University, Changsha 410000, China
| | - Kelvin K L Wong
- School of Computer Science and Engineering, Central South University, Changsha 410000, China.
| | - Zhifang Liao
- School of Computer Science and Engineering, Central South University, Changsha 410000, China.
| |
Collapse
|
8
|
Brahim K, Arega TW, Boucher A, Bricq S, Sakly A, Meriaudeau F. An Improved 3D Deep Learning-Based Segmentation of Left Ventricular Myocardial Diseases from Delayed-Enhancement MRI with Inclusion and Classification Prior Information U-Net (ICPIU-Net). SENSORS (BASEL, SWITZERLAND) 2022; 22:2084. [PMID: 35336258 PMCID: PMC8954140 DOI: 10.3390/s22062084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Accurate segmentation of the myocardial scar may supply relevant advancements in predicting and controlling deadly ventricular arrhythmias in subjects with cardiovascular disease. In this paper, we propose the architecture of inclusion and classification of prior information U-Net (ICPIU-Net) to efficiently segment the left ventricle (LV) myocardium, myocardial infarction (MI), and microvascular-obstructed (MVO) tissues from late gadolinium enhancement magnetic resonance (LGE-MR) images. Our approach was developed using two subnets cascaded to first segment the LV cavity and myocardium. Then, we used inclusion and classification constraint networks to improve the resulting segmentation of the diseased regions within the pre-segmented LV myocardium. This network incorporates the inclusion and classification information of the LGE-MRI to maintain topological constraints of pathological areas. In the testing stage, the outputs of each segmentation network obtained with specific estimated parameters from training were fused using the majority voting technique for the final label prediction of each voxel in the LGE-MR image. The proposed method was validated by comparing its results to manual drawings by experts from 50 LGE-MR images. Importantly, compared to various deep learning-based methods participating in the EMIDEC challenge, the results of our approach have a more significant agreement with manual contouring in segmenting myocardial diseases.
Collapse
Affiliation(s)
- Khawla Brahim
- ImViA EA 7535 Laboratory, University of Burgundy, 21078 Dijon, France; (K.B.); (T.W.A.); (A.B.); (S.B.)
- National Engineering School of Sousse, University of Sousse, Sousse 4054, Tunisia
- LASEE Laboratory, National Engineering School of Monastir, University of Monastir, Monastir 5000, Tunisia;
| | | | - Arnaud Boucher
- ImViA EA 7535 Laboratory, University of Burgundy, 21078 Dijon, France; (K.B.); (T.W.A.); (A.B.); (S.B.)
| | - Stephanie Bricq
- ImViA EA 7535 Laboratory, University of Burgundy, 21078 Dijon, France; (K.B.); (T.W.A.); (A.B.); (S.B.)
| | - Anis Sakly
- LASEE Laboratory, National Engineering School of Monastir, University of Monastir, Monastir 5000, Tunisia;
| | - Fabrice Meriaudeau
- ImViA EA 7535 Laboratory, University of Burgundy, 21078 Dijon, France; (K.B.); (T.W.A.); (A.B.); (S.B.)
| |
Collapse
|
9
|
Wang KN, Yang X, Miao J, Li L, Yao J, Zhou P, Xue W, Zhou GQ, Zhuang X, Ni D. AWSnet: An Auto-weighted Supervision Attention Network for Myocardial Scar and Edema Segmentation in Multi-sequence Cardiac Magnetic Resonance Images. Med Image Anal 2022; 77:102362. [DOI: 10.1016/j.media.2022.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/26/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
10
|
Mamalakis M, Garg P, Nelson T, Lee J, Wild JM, Clayton RH. MA-SOCRATIS: An automatic pipeline for robust segmentation of the left ventricle and scar. Comput Med Imaging Graph 2021; 93:101982. [PMID: 34481237 DOI: 10.1016/j.compmedimag.2021.101982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022]
Abstract
Multi-atlas segmentation of cardiac regions and total infarct scar (MA-SOCRATIS) is an unsupervised automatic pipeline to segment left ventricular myocardium and scar from late gadolinium enhanced MR images (LGE-MRI) of the heart. We implement two different pipelines for myocardial and scar segmentation from short axis LGE-MRI. Myocardial segmentation has two steps; initial segmentation and re-estimation. The initial segmentation step makes a first estimate of myocardium boundaries by using multi-atlas segmentation techniques. The re-estimation step refines the myocardial segmentation by a combination of k-means clustering and a geometric median shape variation technique. An active contour technique determines the unhealthy and healthy myocardial wall. The scar segmentation pipeline is a combination of a Rician-Gaussian mixture model and full width at half maximum (FWHM) thresholding, to determine the intensity pixels in scar regions. Following this step a watershed method with an automatic seed-points framework segments the final scar region. MA-SOCRATIS was evaluated using two different datasets. In both datasets ground truths were based on manual segmentation of short axis images from LGE-MRI scans. The first dataset included 40 patients from the MS-CMRSeg 2019 challenge dataset (STACOM at MICCAI 2019). The second is a collection of 20 patients with scar regions that are challenging to segment. MA-SOCRATIS achieved robust and accurate performance in automatic segmentation of myocardium and scar regions without the need of training or tuning in both cohorts, compared with state-of-the-art techniques (intra-observer and inter observer myocardium segmentation: 81.9% and 70% average Dice value, and scar (intra-observer and inter observer segmentation: 70.5% and 70.5% average Dice value).
Collapse
Affiliation(s)
- Michail Mamalakis
- Insigneo Institute for In-Silico Medicine, University of Sheffield, Sheffield, UK; Department of Computer Science, University of Sheffield, Regent Court, Sheffield S1 4DP, UK.
| | - Pankaj Garg
- Department of Cardiology, Sheffield Teaching Hospitals NHS Trust, Sheffield S5 7AU, UK
| | - Tom Nelson
- Department of Cardiology, Sheffield Teaching Hospitals NHS Trust, Sheffield S5 7AU, UK
| | - Justin Lee
- Department of Cardiology, Sheffield Teaching Hospitals NHS Trust, Sheffield S5 7AU, UK
| | - Jim M Wild
- Insigneo Institute for In-Silico Medicine, University of Sheffield, Sheffield, UK; Polaris, Imaging Sciences, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Richard H Clayton
- Insigneo Institute for In-Silico Medicine, University of Sheffield, Sheffield, UK; Department of Computer Science, University of Sheffield, Regent Court, Sheffield S1 4DP, UK
| |
Collapse
|
11
|
Myocardial Infarction Quantification from Late Gadolinium Enhancement MRI Using Top-Hat Transforms and Neural Networks. ALGORITHMS 2021. [DOI: 10.3390/a14080249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Late gadolinium enhancement (LGE) MRI is the gold standard technique for myocardial viability assessment. Although the technique accurately reflects the damaged tissue, there is no clinical standard to quantify myocardial infarction (MI). Moreover, commercial software used in clinical practice are mostly semi-automatic, and hence require direct intervention of experts. In this work, a new automatic method for MI quantification from LGE-MRI is proposed. Our novel segmentation approach is devised for accurately detecting not only hyper-enhanced lesions, but also microvascular obstruction areas. Moreover, it includes a myocardial disease detection step which extends the algorithm for working under healthy scans. The method is based on a cascade approach where firstly, diseased slices are identified by a convolutional neural network (CNN). Secondly, by means of morphological operations a fast coarse scar segmentation is obtained. Thirdly, the segmentation is refined by a boundary-voxel reclassification strategy using an ensemble of very light CNNs. We tested the method on a LGE-MRI database with healthy (n = 20) and diseased (n = 80) cases following a 5-fold cross-validation scheme. Our approach segmented myocardial scars with an average Dice coefficient of 77.22 ± 14.3% and with a volumetric error of 1.0 ± 6.9 cm3. In a comparison against nine reference algorithms, the proposed method achieved the highest agreement in volumetric scar quantification with the expert delineations (p< 0.001 when compared to the other approaches). Moreover, it was able to reproduce the scar segmentation intra- and inter-rater variability. Our approach was shown to be a good first attempt towards automatic and accurate myocardial scar segmentation, although validation over larger LGE-MRI databases is needed.
Collapse
|
12
|
Zabihollahy F, Rajan S, Ukwatta E. Machine Learning-Based Segmentation of Left Ventricular Myocardial Fibrosis from Magnetic Resonance Imaging. Curr Cardiol Rep 2020; 22:65. [PMID: 32562100 DOI: 10.1007/s11886-020-01321-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE OF REVIEW Myocardial fibrosis (MF) arises due to myocardial infarction and numerous cardiac diseases. MF may lead to several heart disorders, such as heart failure, arrhythmias, and ischemia. Cardiac magnetic resonance (CMR) imaging techniques, such as late gadolinium enhancement (LGE) CMR, enable non-invasive assessment of MF in the left ventricle (LV). Manual assessment of MF on CMR is a tedious and time-consuming task that is subject to high observer variability. Automated segmentation and quantification of MF is important for risk stratification and treatment planning in patients with heart disorders. This article aims to review the machine learning (ML)-based methodologies developed for MF quantification in the LV using CMR images. RECENT FINDINGS With the availability of relatively large labeled datasets supervised learning methods based on both conventional ML and state-of-the-art deep learning (DL) methods have been successfully applied for automated segmentation of MF. The incorporation of ML algorithms into imaging techniques such as 3D LGE CMR permits fast characterization of MF on CMR imaging and may enhance the diagnosis and prognosis of patients with heart disorders. Concurrently, the studies using cine CMR images have revealed that accurate segmentation of MF on non-contrast CMR imaging might be possible. The application of ML/DL tools in CMR image interpretation is likely to result in accurate and efficient quantification of MF.
Collapse
Affiliation(s)
- Fatemeh Zabihollahy
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada.
| | - S Rajan
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - E Ukwatta
- School of Engineering, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
13
|
Zabihollahy F, Rajchl M, White JA, Ukwatta E. Fully automated segmentation of left ventricular scar from 3D late gadolinium enhancement magnetic resonance imaging using a cascaded multi‐planar U‐Net (CMPU‐Net). Med Phys 2020; 47:1645-1655. [DOI: 10.1002/mp.14022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 11/05/2022] Open
Affiliation(s)
- Fatemeh Zabihollahy
- Department of Systems and Computer Engineering Carleton University Ottawa ON Canada
| | - Martin Rajchl
- Department of Computing and Medicine Imperial College London London ON Canada
| | - James A. White
- Libin Cardiovascular Institute of Alberta University of Calgary Calgary AB Canada
| | - Eranga Ukwatta
- School of Engineering University of Guelph Guelph ON Canada
| |
Collapse
|
14
|
Trayanova NA, Doshi AN, Prakosa A. How personalized heart modeling can help treatment of lethal arrhythmias: A focus on ventricular tachycardia ablation strategies in post-infarction patients. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1477. [PMID: 31917524 DOI: 10.1002/wsbm.1477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022]
Abstract
Precision Cardiology is a targeted strategy for cardiovascular disease prevention and treatment that accounts for individual variability. Computational heart modeling is one of the novel approaches that have been developed under the umbrella of Precision Cardiology. Personalized computational modeling of patient hearts has made strides in the development of models that incorporate the individual geometry and structure of the heart as well as other patient-specific information. Of these developments, one of the potentially most impactful is the research aimed at noninvasively predicting the targets of ablation of lethal arrhythmia, ventricular tachycardia (VT), using patient-specific models. The approach has been successfully applied to patients with ischemic cardiomyopathy in proof-of-concept studies. The goal of this paper is to review the strategies for computational VT ablation guidance in ischemic cardiomyopathy patients, from model developments to the intricacies of the actual clinical application. To provide context in describing the road these computational modeling applications have undertaken, we first review the state of the art in VT ablation in the clinic, emphasizing the benefits that personalized computational prediction of ablation targets could bring to the clinical electrophysiology practice. This article is characterized under: Analytical and Computational Methods > Computational Methods Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models Translational, Genomic, and Systems Medicine > Translational Medicine.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ashish N Doshi
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland
| | - Adityo Prakosa
- Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
15
|
Fahmy AS, Neisius U, Chan RH, Rowin EJ, Manning WJ, Maron MS, Nezafat R. Three-dimensional Deep Convolutional Neural Networks for Automated Myocardial Scar Quantification in Hypertrophic Cardiomyopathy: A Multicenter Multivendor Study. Radiology 2020; 294:52-60. [PMID: 31714190 PMCID: PMC6939743 DOI: 10.1148/radiol.2019190737] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/25/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
Background Cardiac MRI late gadolinium enhancement (LGE) scar volume is an important marker for outcome prediction in patients with hypertrophic cardiomyopathy (HCM); however, its clinical application is hindered by a lack of measurement standardization. Purpose To develop and evaluate a three-dimensional (3D) convolutional neural network (CNN)-based method for automated LGE scar quantification in patients with HCM. Materials and Methods We retrospectively identified LGE MRI data in a multicenter (n = 7) and multivendor (n = 3) HCM study obtained between November 2001 and November 2011. A deep 3D CNN based on U-Net architecture was used for LGE scar quantification. Independent CNN training and testing data sets were maintained with a 4:1 ratio. Stacks of short-axis MRI slices were split into overlapping substacks that were segmented and then merged into one volume. The 3D CNN per-site and per-vendor performances were evaluated with respect to manual scar quantification performed in a core laboratory setting using Dice similarity coefficient (DSC), Pearson correlation, and Bland-Altman analyses. Furthermore, the performance of 3D CNN was compared with that of two-dimensional (2D) CNN. Results This study included 1073 patients with HCM (733 men; mean age, 49 years ± 17 [standard deviation]). The 3D CNN-based quantification was fast (0.15 second per image) and demonstrated excellent correlation with manual scar volume quantification (r = 0.88, P < .001) and ratio of scar volume to total left ventricle myocardial volume (%LGE) (r = 0.91, P < .001). The 3D CNN-based quantification strongly correlated with manual quantification of scar volume (r = 0.82-0.99, P < .001) and %LGE (r = 0.90-0.97, P < .001) for all sites and vendors. The 3D CNN identified patients with a large scar burden (>15%) with 98% accuracy (202 of 207) (95% confidence interval [CI]: 95%, 99%). When compared with 3D CNN, 2D CNN underestimated scar volume (r = 0.85, P < .001) and %LGE (r = 0.83, P < .001). The DSC of 3D CNN segmentation was comparable among different vendors (P = .07) and higher than that of 2D CNN (DSC, 0.54 ± 0.26 vs 0.48 ± 0.29; P = .02). Conclusion In the hypertrophic cardiomyopathy population, a three-dimensional convolutional neural network enables fast and accurate quantification of myocardial scar volume, outperforms a two-dimensional convolutional neural network, and demonstrates comparable performance across different vendors. © RSNA, 2019 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ahmed S. Fahmy
- From the Departments of Medicine (Cardiovascular Division) (A.S.F., U.N., W.J.M., R.N.) and Radiology (W.J.M.), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215; Toronto General Hospital, University Health Network, Toronto, Ontario, Canada (R.H.C.); and Hypertrophic Cardiomyopathy Center, Division of Cardiology, Tufts Medical Center, Boston, Mass (E.J.R., M.S.M.)
| | - Ulf Neisius
- From the Departments of Medicine (Cardiovascular Division) (A.S.F., U.N., W.J.M., R.N.) and Radiology (W.J.M.), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215; Toronto General Hospital, University Health Network, Toronto, Ontario, Canada (R.H.C.); and Hypertrophic Cardiomyopathy Center, Division of Cardiology, Tufts Medical Center, Boston, Mass (E.J.R., M.S.M.)
| | - Raymond H. Chan
- From the Departments of Medicine (Cardiovascular Division) (A.S.F., U.N., W.J.M., R.N.) and Radiology (W.J.M.), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215; Toronto General Hospital, University Health Network, Toronto, Ontario, Canada (R.H.C.); and Hypertrophic Cardiomyopathy Center, Division of Cardiology, Tufts Medical Center, Boston, Mass (E.J.R., M.S.M.)
| | - Ethan J. Rowin
- From the Departments of Medicine (Cardiovascular Division) (A.S.F., U.N., W.J.M., R.N.) and Radiology (W.J.M.), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215; Toronto General Hospital, University Health Network, Toronto, Ontario, Canada (R.H.C.); and Hypertrophic Cardiomyopathy Center, Division of Cardiology, Tufts Medical Center, Boston, Mass (E.J.R., M.S.M.)
| | - Warren J. Manning
- From the Departments of Medicine (Cardiovascular Division) (A.S.F., U.N., W.J.M., R.N.) and Radiology (W.J.M.), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215; Toronto General Hospital, University Health Network, Toronto, Ontario, Canada (R.H.C.); and Hypertrophic Cardiomyopathy Center, Division of Cardiology, Tufts Medical Center, Boston, Mass (E.J.R., M.S.M.)
| | - Martin S. Maron
- From the Departments of Medicine (Cardiovascular Division) (A.S.F., U.N., W.J.M., R.N.) and Radiology (W.J.M.), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215; Toronto General Hospital, University Health Network, Toronto, Ontario, Canada (R.H.C.); and Hypertrophic Cardiomyopathy Center, Division of Cardiology, Tufts Medical Center, Boston, Mass (E.J.R., M.S.M.)
| | - Reza Nezafat
- From the Departments of Medicine (Cardiovascular Division) (A.S.F., U.N., W.J.M., R.N.) and Radiology (W.J.M.), Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215; Toronto General Hospital, University Health Network, Toronto, Ontario, Canada (R.H.C.); and Hypertrophic Cardiomyopathy Center, Division of Cardiology, Tufts Medical Center, Boston, Mass (E.J.R., M.S.M.)
| |
Collapse
|
16
|
Lopez-Perez A, Sebastian R, Izquierdo M, Ruiz R, Bishop M, Ferrero JM. Personalized Cardiac Computational Models: From Clinical Data to Simulation of Infarct-Related Ventricular Tachycardia. Front Physiol 2019; 10:580. [PMID: 31156460 PMCID: PMC6531915 DOI: 10.3389/fphys.2019.00580] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/25/2019] [Indexed: 12/20/2022] Open
Abstract
In the chronic stage of myocardial infarction, a significant number of patients develop life-threatening ventricular tachycardias (VT) due to the arrhythmogenic nature of the remodeled myocardium. Radiofrequency ablation (RFA) is a common procedure to isolate reentry pathways across the infarct scar that are responsible for VT. Unfortunately, this strategy show relatively low success rates; up to 50% of patients experience recurrent VT after the procedure. In the last decade, intensive research in the field of computational cardiac electrophysiology (EP) has demonstrated the ability of three-dimensional (3D) cardiac computational models to perform in-silico EP studies. However, the personalization and modeling of certain key components remain challenging, particularly in the case of the infarct border zone (BZ). In this study, we used a clinical dataset from a patient with a history of infarct-related VT to build an image-based 3D ventricular model aimed at computational simulation of cardiac EP, including detailed patient-specific cardiac anatomy and infarct scar geometry. We modeled the BZ in eight different ways by combining the presence or absence of electrical remodeling with four different levels of image-based patchy fibrosis (0, 10, 20, and 30%). A 3D torso model was also constructed to compute the ECG. Patient-specific sinus activation patterns were simulated and validated against the patient's ECG. Subsequently, the pacing protocol used to induce reentrant VTs in the EP laboratory was reproduced in-silico. The clinical VT was induced with different versions of the model and from different pacing points, thus identifying the slow conducting channel responsible for such VT. Finally, the real patient's ECG recorded during VT episodes was used to validate our simulation results and to assess different strategies to model the BZ. Our study showed that reduced conduction velocities and heterogeneity in action potential duration in the BZ are the main factors in promoting reentrant activity. Either electrical remodeling or fibrosis in a degree of at least 30% in the BZ were required to initiate VT. Moreover, this proof-of-concept study confirms the feasibility of developing 3D computational models for cardiac EP able to reproduce cardiac activation in sinus rhythm and during VT, using exclusively non-invasive clinical data.
Collapse
Affiliation(s)
- Alejandro Lopez-Perez
- Center for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, Valencia, Spain
| | - Rafael Sebastian
- Computational Multiscale Simulation Lab (CoMMLab), Universitat de València, Valencia, Spain
| | - M Izquierdo
- INCLIVA Health Research Institute, Valencia, Spain.,Arrhythmia Unit, Cardiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Ricardo Ruiz
- INCLIVA Health Research Institute, Valencia, Spain.,Arrhythmia Unit, Cardiology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Martin Bishop
- Division of Imaging Sciences & Biomedical Engineering, Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Jose M Ferrero
- Center for Research and Innovation in Bioengineering (Ci2B), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
17
|
Trayanova NA, Pashakhanloo F, Wu KC, Halperin HR. Imaging-Based Simulations for Predicting Sudden Death and Guiding Ventricular Tachycardia Ablation. Circ Arrhythm Electrophysiol 2019; 10:CIRCEP.117.004743. [PMID: 28696219 DOI: 10.1161/circep.117.004743] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Natalia A Trayanova
- From the Institute for Computational Medicine and Department of Biomedical Engineering (N.A.T., F.P.) and Departments of Radiology and Biomedical Engineering (H.R.H.), Johns Hopkins University, Baltimore, MD; and Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (K.C.W., H.R.H.).
| | - Farhad Pashakhanloo
- From the Institute for Computational Medicine and Department of Biomedical Engineering (N.A.T., F.P.) and Departments of Radiology and Biomedical Engineering (H.R.H.), Johns Hopkins University, Baltimore, MD; and Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (K.C.W., H.R.H.)
| | - Katherine C Wu
- From the Institute for Computational Medicine and Department of Biomedical Engineering (N.A.T., F.P.) and Departments of Radiology and Biomedical Engineering (H.R.H.), Johns Hopkins University, Baltimore, MD; and Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (K.C.W., H.R.H.)
| | - Henry R Halperin
- From the Institute for Computational Medicine and Department of Biomedical Engineering (N.A.T., F.P.) and Departments of Radiology and Biomedical Engineering (H.R.H.), Johns Hopkins University, Baltimore, MD; and Division of Cardiology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (K.C.W., H.R.H.)
| |
Collapse
|
18
|
Cartoski MJ, Nikolov PP, Prakosa A, Boyle PM, Spevak PJ, Trayanova NA. Computational Identification of Ventricular Arrhythmia Risk in Pediatric Myocarditis. Pediatr Cardiol 2019; 40:857-864. [PMID: 30840104 PMCID: PMC6451890 DOI: 10.1007/s00246-019-02082-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
Abstract
Children with myocarditis have increased risk of ventricular tachycardia (VT) due to myocardial inflammation and remodeling. There is currently no accepted method for VT risk stratification in this population. We hypothesized that personalized models developed from cardiac late gadolinium enhancement magnetic resonance imaging (LGE-MRI) could determine VT risk in patients with myocarditis using a previously-validated protocol. Personalized three-dimensional computational cardiac models were reconstructed from LGE-MRI scans of 12 patients diagnosed with myocarditis. Four patients with clinical VT and eight patients without VT were included in this retrospective analysis. In each model, we incorporated a personalized spatial distribution of fibrosis and myocardial fiber orientations. Then, VT inducibility was assessed in each model by pacing rapidly from 26 sites distributed throughout both ventricles. Sustained reentrant VT was induced from multiple pacing sites in all patients with clinical VT. In the eight patients without clinical VT, we were unable to induce sustained reentry in our simulations using rapid ventricular pacing. Application of our non-invasive approach in children with myocarditis has the potential to correctly identify those at risk for developing VT.
Collapse
Affiliation(s)
- Mark J Cartoski
- Divison of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Plamen P Nikolov
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Adityo Prakosa
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick M Boyle
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Philip J Spevak
- Divison of Pediatric Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalia A Trayanova
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Zabihollahy F, White JA, Ukwatta E. Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images. Med Phys 2019; 46:1740-1751. [PMID: 30734937 DOI: 10.1002/mp.13436] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/10/2019] [Accepted: 01/31/2019] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Accurate three-dimensional (3D) segmentation of myocardial replacement fibrosis (i.e., scar) is emerging as a potentially valuable tool for risk stratification and procedural planning in patients with ischemic cardiomyopathy. The main purpose of this study was to develop a semiautomated method using a 3D convolutional neural network (CNN)-based for the segmentation of left ventricle (LV) myocardial scar from 3D late gadolinium enhancement magnetic resonance (LGE-MR) images. METHODS Our proposed CNN is built upon several convolutional and pooling layers aimed at choosing appropriate features from LGE-MR images to distinguish between myocardial scar and healthy tissues of the left ventricle. In contrast to previous methods that consider image intensity as the sole feature, CNN-based algorithms have the potential to improve the accuracy of scar segmentation through the creation of unconventional features that separate scar from normal myocardium in the feature space. The first step of our pipeline was to manually delineate the left ventricular myocardium, which was used as the region of interest for scar segmentation. Our developed algorithm was trained using 265,220 volume patches extracted from ten 3D LGE-MR images, then was validated on 450,454 patches from a testing dataset of 24 3D LGE-MR images, all obtained from patients with chronic myocardial infarction. We evaluated our method in the context of several alternative methods by comparing algorithm-generated segmentations to manual delineations performed by experts. RESULTS Our CNN-based method reported an average Dice similarity coefficient (DSC) and Jaccard Index (JI) of 93.63% ± 2.6% and 88.13% ± 4.70%. In comparison to several previous methods, including K-nearest neighbor (KNN), hierarchical max flow (HMF), full width at half maximum (FWHM), and signal threshold to reference mean (STRM), the developed algorithm reported significantly higher accuracy for DSC with a P-value less than 0.0001. CONCLUSIONS Our experimental results demonstrated that our CNN-based proposed method yielded the highest accuracy of all contemporary LV myocardial scar segmentation methodologies, inclusive of the most widely used signal intensity-based methods, such as FWHM and STRM. To our knowledge, this is the first description of LV myocardial scar tissue segmentation from 3D LGE-MR images using a CNN-based method.
Collapse
Affiliation(s)
- Fatemeh Zabihollahy
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| | - James A White
- Stephenson Cardiac Imaging Centre, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, USA
| | - Eranga Ukwatta
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
20
|
Abstract
The treatment of individual patients in cardiology practice increasingly relies on advanced imaging, genetic screening and devices. As the amount of imaging and other diagnostic data increases, paralleled by the greater capacity to personalize treatment, the difficulty of using the full array of measurements of a patient to determine an optimal treatment seems also to be paradoxically increasing. Computational models are progressively addressing this issue by providing a common framework for integrating multiple data sets from individual patients. These models, which are based on physiology and physics rather than on population statistics, enable computational simulations to reveal diagnostic information that would have otherwise remained concealed and to predict treatment outcomes for individual patients. The inherent need for patient-specific models in cardiology is clear and is driving the rapid development of tools and techniques for creating personalized methods to guide pharmaceutical therapy, deployment of devices and surgical interventions.
Collapse
Affiliation(s)
- Steven A Niederer
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht, Netherlands
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac, France
| | - Natalia A Trayanova
- Department of Biomedical Engineering and the Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
21
|
Ukwatta E, Nikolov P, Zabihollahy F, Trayanova NA, Wright GA. Virtual electrophysiological study as a tool for evaluating efficacy of MRI techniques in predicting adverse arrhythmic events in ischemic patients. Phys Med Biol 2018; 63:225008. [PMID: 30412472 DOI: 10.1088/1361-6560/aae8b2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myocardial infarct (MI) related indices determined by late gadolinium enhancement (LGE) MRI have been widely investigated in determining patients suitable for implantable cardiovascular-defibrillator (ICD) therapy to complement left ventricular ejection fraction (LV EF). In comparison to LGE-MRI using inversion-recovery fast-gradient-echo (IR-FGRE), T1 mapping techniques, such as multi contrast late enhancement (MCLE), have been shown to provide more quantitative and reproducible estimates of infarct regions. The objective of this study is to use individualized heart computer models in determining the efficacy of IR-FGRE and MCLE techniques in predicting the occurrence of post-MI ventricular tachycardia (VT). Twenty-seven patients with MI underwent LGE-MRI using IR-FGRE and MCLE prior to ICD implantation and were followed up for 6-46 months. Individualized image-based computational models were built separately for each imaging technique; simulations of propensity to VT were conducted with each model. The imaging methods were evaluated by comparing simulated inducibility of VT to clinical outcome (appropriate ICD therapy) in patients. Twelve patients had at least one appropriate ICD therapy for VT at follow-up. For both MCLE and IR-FGRE, the outcomes of the simulations of VT were significantly associated with the events of appropriate ICD therapy. This indicates that, as compared to conventional measurements such as LV EF, the simulations of VT corresponding to both MCLE and IR-FGRE were more sensitive in predicting appropriate ICD therapy in post-MI patients.
Collapse
Affiliation(s)
- Eranga Ukwatta
- School of Engineering, University of Guelph, Guelph, ON, Canada. Author to whom any correspondence should be addressed
| | | | | | | | | |
Collapse
|
22
|
Tran TT, Pham VT, Lin C, Yang HW, Wang YH, Shyu KK, Tseng WYI, Su MYM, Lin LY, Lo MT. Empirical Mode Decomposition and Monogenic Signal-Based Approach for Quantification of Myocardial Infarction From MR Images. IEEE J Biomed Health Inform 2018; 23:731-743. [PMID: 29994104 DOI: 10.1109/jbhi.2018.2821675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Quantification of myocardial infarction on late Gadolinium enhancement cardiovascular magnetic resonance (LGE-CMR) images into heterogeneous infarct periphery (or gray zone) and infarct core plays an important role in cardiac diagnosis, especially in identifying patients at high risk of cardiovascular mortality. However, quantification task is challenging due to noise corrupted in cardiac MR images, the contrast variation, and limited resolution of images. In this study, we propose a novel approach for automatic myocardial infarction quantification, termed DEMPOT, which consists of three key parts: Decomposition of image into intrinsic modes, monogenic phase performing on combined dominant modes, and multilevel Otsu thresholding on the phase. In particular, inspired by the Hilbert-Huang transform, we perform the multidimensional ensemble empirical mode decomposition and 2-D generalization of the Hilbert transform known as the Riesz transform on the MR image to obtain the monogenic phase that is robust to noise and contrast variation. Then, a two-stage algorithm using multilevel Otsu thresholding is accomplished on the monogenic phase to automatically quantify the myocardium into healthy, gray zone, and infarct core regions. Experiments on LGE-CMR images with myocardial infarction from 82 patients show the superior performance of the proposed approach in terms of reproducibility, robustness, and effectiveness.
Collapse
|
23
|
Shinbane JS, Saxon LA. Virtual medicine: Utilization of the advanced cardiac imaging patient avatar for procedural planning and facilitation. J Cardiovasc Comput Tomogr 2017; 12:16-27. [PMID: 29198733 DOI: 10.1016/j.jcct.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 01/17/2023]
Abstract
Advances in imaging technology have led to a paradigm shift from planning of cardiovascular procedures and surgeries requiring the actual patient in a "brick and mortar" hospital to utilization of the digitalized patient in the virtual hospital. Cardiovascular computed tomographic angiography (CCTA) and cardiovascular magnetic resonance (CMR) digitalized 3-D patient representation of individual patient anatomy and physiology serves as an avatar allowing for virtual delineation of the most optimal approaches to cardiovascular procedures and surgeries prior to actual hospitalization. Pre-hospitalization reconstruction and analysis of anatomy and pathophysiology previously only accessible during the actual procedure could potentially limit the intrinsic risks related to time in the operating room, cardiac procedural laboratory and overall hospital environment. Although applications are specific to areas of cardiovascular specialty focus, there are unifying themes related to the utilization of technologies. The virtual patient avatar computer can also be used for procedural planning, computational modeling of anatomy, simulation of predicted therapeutic result, printing of 3-D models, and augmentation of real time procedural performance. Examples of the above techniques are at various stages of development for application to the spectrum of cardiovascular disease processes, including percutaneous, surgical and hybrid minimally invasive interventions. A multidisciplinary approach within medicine and engineering is necessary for creation of robust algorithms for maximal utilization of the virtual patient avatar in the digital medical center. Utilization of the virtual advanced cardiac imaging patient avatar will play an important role in the virtual health care system. Although there has been a rapid proliferation of early data, advanced imaging applications require further assessment and validation of accuracy, reproducibility, standardization, safety, efficacy, quality, cost effectiveness, and overall value to medical care.
Collapse
Affiliation(s)
- Jerold S Shinbane
- Division of Cardiovascular Medicine/USC Center for Body Computing, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.
| | - Leslie A Saxon
- Division of Cardiovascular Medicine/USC Center for Body Computing, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
24
|
Reentry via high-frequency pacing in a mathematical model for human-ventricular cardiac tissue with a localized fibrotic region. Sci Rep 2017; 7:15350. [PMID: 29127361 PMCID: PMC5681702 DOI: 10.1038/s41598-017-15735-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/02/2017] [Indexed: 11/08/2022] Open
Abstract
Localized heterogeneities, caused by the regional proliferation of fibroblasts, occur in mammalian hearts because of diseases like myocardial infarction. Such fibroblast clumps can become sources of pathological reentrant activities, e.g., spiral or scroll waves of electrical activation in cardiac tissue. The occurrence of reentry in cardiac tissue with heterogeneities, such as fibroblast clumps, can depend on the frequency at which the medium is paced. Therefore, it is important to study the reentry-initiating potential of such fibroblast clumps at different frequencies of pacing. We investigate the arrhythmogenic effects of fibroblast clumps at high- and low-frequency pacing. We find that reentrant waves are induced in the medium more prominently at high-frequency pacing than with low-frequency pacing. We also study the other factors that affect the potential of fibroblast clumps to induce reentry in cardiac tissue. In particular, we show that the ability of a fibroblast clump to induce reentry depends on the size of the clump, the distribution and percentage of fibroblasts in the clump, and the excitability of the medium. We study the process of reentry in two-dimensional and a three-dimensional mathematical models for cardiac tissue.
Collapse
|
25
|
Cairns DI, Fenton FH, Cherry EM. Efficient parameterization of cardiac action potential models using a genetic algorithm. CHAOS (WOODBURY, N.Y.) 2017; 27:093922. [PMID: 28964158 DOI: 10.1063/1.5000354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Finding appropriate values for parameters in mathematical models of cardiac cells is a challenging task. Here, we show that it is possible to obtain good parameterizations in as little as 30-40 s when as many as 27 parameters are fit simultaneously using a genetic algorithm and two flexible phenomenological models of cardiac action potentials. We demonstrate how our implementation works by considering cases of "model recovery" in which we attempt to find parameter values that match model-derived action potential data from several cycle lengths. We assess performance by evaluating the parameter values obtained, action potentials at fit and non-fit cycle lengths, and bifurcation plots for fidelity to the truth as well as consistency across different runs of the algorithm. We also fit the models to action potentials recorded experimentally using microelectrodes and analyze performance. We find that our implementation can efficiently obtain model parameterizations that are in good agreement with the dynamics exhibited by the underlying systems that are included in the fitting process. However, the parameter values obtained in good parameterizations can exhibit a significant amount of variability, raising issues of parameter identifiability and sensitivity. Along similar lines, we also find that the two models differ in terms of the ease of obtaining parameterizations that reproduce model dynamics accurately, most likely reflecting different levels of parameter identifiability for the two models.
Collapse
Affiliation(s)
- Darby I Cairns
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Flavio H Fenton
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - E M Cherry
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, New York 14623, USA
| |
Collapse
|
26
|
Walmsley J, van Everdingen W, Cramer MJ, Prinzen FW, Delhaas T, Lumens J. Combining computer modelling and cardiac imaging to understand right ventricular pump function. Cardiovasc Res 2017; 113:1486-1498. [DOI: 10.1093/cvr/cvx154] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
|
27
|
Baracho SF, Pinheiro DJLL, Godoy CMGD, Coelho RC. A segmentation method for myocardial ischemia/infarction applicable in heart photos. Comput Biol Med 2017. [DOI: 10.1016/j.compbiomed.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|