1
|
Kazemivalipour E, Guerin B, Wald LL. Simulated radiation levels and patterns of MRI without a Faraday shielded room. Magn Reson Med 2025. [PMID: 40096581 DOI: 10.1002/mrm.30499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE We characterize electromagnetic (EM) radiation patterns and levels in conventional MRI systems as a function of field strength and load symmetry, providing a framework for mitigation strategies allowing operation without a shielded room. METHODS We simulated the far-field radiation pattern and fields at a 10 m radius (|E|10m and |B|10m) for a solenoidal superconducting MRI with a body birdcage coil operated between 0.25T and 6.5T. Five load configurations probed the impact of load-symmetry, ranging from a sphere to a body load (least-symmetric). We also assessed simple layered EM absorbers at the bore-ends. RESULTS All configurations exceeded regulatory limits for realistic transmit levels. At 1.5T, a 300 Vrms RF-pulse is 2700-fold the |E|10m limit. Field strength and load symmetry strongly modulate radiation patterns and levels. The radiated power increased by more than four orders of magnitude from 0.25T to 6.5T. Spherical load radiation transitioned from a peak gain at the bore-ends (0.25-0.5T) to a donut-shaped pattern, suggesting current loops around the bore (1 T-1.5T), back to bore-axis-directed gain, suggesting propagating waves along the bore (2T-6.5T). Transition patterns were seen between these regimes; uniform radiation at 0.75T and a combined donut/bore-directed pattern at 1.75T. Load asymmetry increased both strength and pattern asymmetry, with the body load having the highest and least symmetric radiation with the legs facilitating wave propagation at high-fields. A simple optimized layered absorber at scanner's service-end reduced 3T peak radiation by 11 dB. CONCLUSION Radiation from unshielded scanners far exceeds regulatory limits, particularly at high-field. Mitigation strategies must address load-symmetry, field strength, and wave effects.
Collapse
Affiliation(s)
- Ehsan Kazemivalipour
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Bastien Guerin
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Telli T, Desaulniers M, Pyka T, Caobelli F, Forstmann S, Umutlu L, Fendler WP, Rominger A, Herrmann K, Seifert R. What Role Does PET/MRI Play in Musculoskeletal Disorders? Semin Nucl Med 2025; 55:277-289. [PMID: 38044175 DOI: 10.1053/j.semnuclmed.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023]
Abstract
Musculoskeletal disorders of nononcological origin are one of the most frequent reasons for consultation. Patients suffering from musculoskeletal disorders also consult more than once for the same reason. This results in multiple clinical follow-ups after several radiological and serum examinations, the main ones including X-rays targeting the painful anatomical region and inflammatory serum parameters. As part of their work up, patients suffering from musculoskeletal disorders often require multisequence, multi-parameter MRI. PET/MRI is a promising imaging modality for their diagnosis, with the added advantage of being able to be performed in a single visit. PET/MRI is particularly useful for diagnosing osteomyelitis, spondylodiscitis, arthritis, many pediatric pathologies, and a wide range of other musculoskeletal pathologies. PET/MRI is already used to diagnose malignant bone tumors such as osteosarcoma. However, current knowledge of the indications for PET/MRI in nononcological musculoskeletal disorders is based on studies involving only a few patients. This review focuses on the usefulness of PET/MRI for diagnosing nononcological musculoskeletal disorders.
Collapse
Affiliation(s)
- Tugce Telli
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany.
| | - Mélanie Desaulniers
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany; Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Thomas Pyka
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Sophia Forstmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- Department of Radiology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, West German Cancer Center, University Hospital Essen, Essen, Germany; Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
3
|
Wagner JG, Chen L, Jiang F, Nedley E, Akkaya Z, Ngarmsrikan C, Link TM, Majumdar S, Collins KH, Souza RB. Relationships Between the Infrapatellar Fat Pad and Patellofemoral Joint Osteoarthritis Differ With Body Mass Index and Sex. J Orthop Res 2025. [PMID: 39833110 DOI: 10.1002/jor.26048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
The role of the infrapatellar fat pad (IPFP) in knee osteoarthritis is not understood. This study aimed to identify relationships between MRI-based signal abnormalities in the IPFP and measures of structural pathology and symptom severity in PFJOA, as well as investigate the influence of obesity and sex on these relationships. Seventy participants (ages 28-80) with isolated PFJOA underwent bilateral knee MRI scan acquisitions and completed the Knee Injury and Osteoarthritis Outcome Score (KOOS). MR images were scored for abnormal IPFP area and signal intensity, joint effusion, synovial proliferation, and patellar and trochlear cartilage damage. Repeated measures correlations were performed to assess associations between abnormal area and signal of IPFP and PFJOA pathology and KOOS, respectively. Associations were interrogated across weight-based groups based on BMI and sex-based groups. Between abnormal IPFP and PFJOA pathology, we observed no significant associations. Between abnormal IPFP and patient-reported outcomes, we observed weak to moderate significant negative associations between the size of the abnormal IPFP area and all KOOS subscales. In a sex-based analysis of IPFP and KOOS associations, we observed significant moderate negative correlations between IPFP and KOOS scores across all subcategories in female participants. In male participants, abnormal IPFP was not associated with KOOS scores. The IPFP is significantly related to PFJOA patient-reported pain and function, and this correlation is stronger in high-risk OA groups.
Collapse
Affiliation(s)
- J G Wagner
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California, USA
- Department of Orthopaedic Surgery, University of California, San Francisco, California, USA
| | - L Chen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - F Jiang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - E Nedley
- Department of Orthopaedic Surgery, University of California, San Francisco, California, USA
| | - Z Akkaya
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
- Department of Radiology, Ankara University Faculty of Medicine, Ankara, Turkey
| | | | - T M Link
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - S Majumdar
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - K H Collins
- Department of Orthopaedic Surgery, University of California, San Francisco, California, USA
- Department of Anatomy, University of California, San Francisco, California, USA
| | - R B Souza
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
4
|
Calatayud-Jordán J, Carrasco-Vela N, Chimeno-Hernández J, Carles-Fariña M, Olivas-Arroyo C, Bello-Arqués P, Pérez-Enguix D, Martí-Bonmatí L, Torres-Espallardo I. Y-90 PET/MR imaging optimization with a Bayesian penalized likelihood reconstruction algorithm. Phys Eng Sci Med 2024; 47:1397-1413. [PMID: 38884672 DOI: 10.1007/s13246-024-01452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/23/2024] [Indexed: 06/18/2024]
Abstract
Positron Emission Tomography (PET) imaging after90 Y liver radioembolization is used for both lesion identification and dosimetry. Bayesian penalized likelihood (BPL) reconstruction algorithms are an alternative to ordered subset expectation maximization (OSEM) with improved image quality and lesion detectability. The investigation of optimal parameters for90 Y image reconstruction of Q.Clear, a commercial BPL algorithm developed by General Electric (GE), in PET/MR is a field of interest and the subject of this study. The NEMA phantom was filled at an 8:1 sphere-to-background ratio. Acquisitions were performed on a PET/MR scanner for clinically relevant activities between 0.7 and 3.3 MBq/ml. Reconstructions with Q.Clear were performed varying the β penalty parameter between 20 and 6000, the acquisition time between 5 and 20 min and pixel size between 1.56 and 4.69 mm. OSEM reconstructions of 28 subsets with 2 and 4 iterations with and without Time-of-Flight (TOF) were compared to Q.Clear with β = 4000. Recovery coefficients (RC), their coefficient of variation (COV), background variability (BV), contrast-to-noise ratio (CNR) and residual activity in the cold insert were evaluated. Increasing β parameter lowered RC, COV and BV, while CNR was maximized at β = 4000; further increase resulted in oversmoothing. For quantification purposes, β = 1000-2000 could be more appropriate. Longer acquisition times resulted in larger CNR due to reduced image noise. Q.Clear reconstructions led to higher CNR than OSEM. A β of 4000 was obtained for optimal image quality, although lower values could be considered for quantification purposes. An optimal acquisition time of 15 min was proposed considering its clinical use.
Collapse
Affiliation(s)
- José Calatayud-Jordán
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain.
| | - Nuria Carrasco-Vela
- Radiophysics and Radiological Protection Service, Clinical University Hospital of Valencia, Av. Blasco Ibáñez 17, 46010, Valencia, Spain
| | - José Chimeno-Hernández
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Montserrat Carles-Fariña
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Consuelo Olivas-Arroyo
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Pilar Bello-Arqués
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Daniel Pérez-Enguix
- Department of Radiology, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Department of Radiology, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Irene Torres-Espallardo
- Department of Nuclear Medicine, La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
- Biomedical Imaging Research Group (GIBI230) at Health Research Institute Hospital La Fe (IIS La Fe), La Fe University and Polytechnical Hospital, Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| |
Collapse
|
5
|
Dong Q, Ullah MN, Innes D, Watkins RD, Chang CM, Zou SJ, Groll A, Sacco I, Chinn G, Levin CS. PETcoil: first results from a second-generation RF-penetrable TOF-PET brain insert for simultaneous PET/MRI. Phys Med Biol 2024; 69:185007. [PMID: 39168156 DOI: 10.1088/1361-6560/ad7221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
Simultaneous positron emission tomography (PET)/magnetic resonance imaging provides concurrent information about anatomic, functional, and molecular changes in disease. We are developing a second generation MR-compatible RF-penetrable TOF-PET insert. The insert has a smaller scintillation crystal size and ring diameter compared to clinical whole-body PET scanners, resulting in higher spatial resolution and sensitivity. This paper reports the initial system performance of this full-ring PET insert. The global photopeak energy resolution and global coincidence time resolution, 11.74 ± 0.03 % FWHM and 238.1 ± 0.5 ps FWHM, respectively, are preserved as we scaled up the system to a full ring comprising 12, 288 LYSO-SiPM channels (crystal size: 3.2 × 3.2 × 20 mm3). Throughout a ten-hour experiment, the system performance remained stable, exhibiting a less than 1% change in all measured parameters. In a resolution phantom study, the system successfully resolved all 2.8 mm diameter rods, achieving an average VPR of 0.28 ± 0.08 without TOF and 0.24 ± 0.07 with TOF applied. Moreover, the implementation of TOF in the Hoffman phantom study also enhanced image quality. Initial MR compatibility studies of the full PET ring were performed with it unpowered as a milestone to focus on looking for material and geometry-related artifacts. During all MR studies, the MR body coil functioned as both the transmit and receive coil, and no observable artifacts were detected. As expected, using the body coil also as the RF receiver, MR image signal-to-noise ratio exhibited degradation (∼30%), so we are developing a high quality receive-only coil that resides inside the PET ring.
Collapse
Affiliation(s)
- Qian Dong
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Muhammad Nasir Ullah
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Derek Innes
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Ronald D Watkins
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Chen-Ming Chang
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Sarah J Zou
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Andrew Groll
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Ilaria Sacco
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Garry Chinn
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| | - Craig S Levin
- Molecular Imaging Instrumentation Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
6
|
Okazawa H, Nogami M, Ishida S, Makino A, Mori T, Kiyono Y, Ikawa M. PET/MRI multimodality imaging to evaluate changes in glymphatic system function and biomarkers of Alzheimer's disease. Sci Rep 2024; 14:12310. [PMID: 38811627 PMCID: PMC11137097 DOI: 10.1038/s41598-024-62806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
The glymphatic system is considered to play a pivotal role in the clearance of disease-causing proteins in neurodegenerative diseases. This study employed MR diffusion tensor imaging (DTI) to evaluate glymphatic system function and its correlation with brain amyloid accumulation levels measured using [11C]Pittsburgh compound-B (PiB) PET/MRI. Fifty-six patients with mild cognitive impairment and early Alzheimer's disease (AD: 70 ± 11 y) underwent [11C]PiB PET/MRI to assess amyloid deposition and were compared with 27 age-matched cognitively normal volunteers (CN: 69 ± 10y). All participants were evaluated for cognitive function using the Mini Mental State Examination (MMSE) before [11C]PiB PET/MRI. DTI images were acquired during the PET/MRI scan with several other MR sequences. The DTI analysis along the perivascular space index (DTI-ALPS index) was calculated to estimate the functional activity of the glymphatic system. Centiloid scale was applied to quantify amyloid deposition levels from [11C]PiB PET images. All patients in the AD group showed positive [11C]PiB accumulation, whereas all CN participants were negative. ALPS-index for all subjects linearly correlated with PiB centiloid, MMSE scores, and hippocampal volume. The correlation between the ALPS-index and PiB accumulation was more pronounced than with any other biomarkers. These findings suggest that glymphatic system dysfunction is a significant factor in the early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan.
| | - Munenobu Nogami
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
- Department of Radiology, Kobe University Hospital, Kobe, Japan
| | | | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
| | - Masamichi Ikawa
- Biomedical Imaging Research Center, University of Fukui, 23-3, Matsuoka-Shimaizuki, Eiheiji-cho, Fukui, 910-1193, Japan
- Department of Community Health Science, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
7
|
Cox CPW, Brabander T, Vegt E, de Lussanet de la Sablonière QG, Graven LH, Verburg FA, Segbers M. Reduction of [ 68Ga]Ga-DOTA-TATE injected activity for digital PET/MR in comparison with analogue PET/CT. EJNMMI Phys 2024; 11:27. [PMID: 38488989 PMCID: PMC11266332 DOI: 10.1186/s40658-024-00629-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND New digital detectors and block-sequential regularized expectation maximization (BSREM) reconstruction algorithm improve positron emission tomography (PET)/magnetic resonance (MR) image quality. The impact on image quality may differ from analogue PET/computed tomography (CT) protocol. The aim of this study is to determine the potential reduction of injected [68Ga]Ga-DOTA-TATE activity for digital PET/MR with BSREM reconstruction while maintaining at least equal image quality compared to the current analogue PET/CT protocol. METHODS NEMA IQ phantom data and 25 patients scheduled for a diagnostic PET/MR were included. According to our current protocol, 1.5 MBq [68Ga]Ga-DOTA-TATE per kilogram (kg) was injected. After 60 min, scans were acquired with 3 (≤ 70 kg) or 4 (> 70 kg) minutes per bedposition. PET/MR scans were reconstructed using BSREM and factors β 150, 300, 450 and 600. List mode data with reduced counts were reconstructed to simulate scans with 17%, 33%, 50% and 67% activity reduction. Image quality was measured quantitatively for PET/CT and PET/MR phantom and patient data. Experienced nuclear medicine physicians performed visual image quality scoring and lesion counting in the PET/MR patient data. RESULTS Phantom analysis resulted in a possible injected activity reduction of 50% with factor β = 600. Quantitative analysis of patient images revealed a possible injected activity reduction of 67% with factor β = 600. Both with equal or improved image quality as compared to PET/CT. However, based on visual scoring a maximum activity reduction of 33% with factor β = 450 was acceptable, which was further limited by lesion detectability analysis to an injected activity reduction of 17% with factor β = 450. CONCLUSION A digital [68Ga]Ga-DOTA-TATE PET/MR together with BSREM using factor β = 450 result in 17% injected activity reduction with quantitative values at least similar to analogue PET/CT, without compromising on PET/MR visual image quality and lesion detectability.
Collapse
Affiliation(s)
- Christina P W Cox
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Tessa Brabander
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Erik Vegt
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Quido G de Lussanet de la Sablonière
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Laura H Graven
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Frederik A Verburg
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| | - Marcel Segbers
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Postbus 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Wang F, Kao CM, Zhang X, Liu L, Hua Y, Kim H, Choong WS, Xie Q. DOI- and TOF-capable PET array detector using double-ended light readout and stripline-based row and column electronic readout. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2024; 8:269-276. [PMID: 38654812 PMCID: PMC11034922 DOI: 10.1109/trpms.2024.3360942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
We investigate a highly multiplexing readout for depth-of-interaction (DOI) and time-of-flight PET detector consisting of an N×N crystals whose light outputs at the front and back ends are detected by using silicon photomultipliers (SiPM). The front N×N SiPM array is read by using a stripline (SL) configured to support discrimination of the row position of the signal-producing crystal. The back N×N SiPM array is similarly read by an SL for column discrimination. Hence, the detector has only four outputs. We built 4×4 and 8×8 detector modules (DM) by using 3.0×3.0×20 mm3 lutetium-yttrium oxyorthosilicates. The outputs were sampled and processed offline. For both DMs, crystal discrimination was successful. For the 4×4 DM, we obtained an average energy resolution (ER) of 14.1%, an average DOI resolution of 2.5 mm, a non DOI-corrected coincidence resolving time (CRT), measured in coincidence with a single-pixel reference detector, of about 495 ps. For the 8×8 DM, the average ER, average DOI resolution and average CRT were 16.4%, 2.9 mm, and 641 ps, respectively. We identified the intercrystal scattering as a probable cause for the CRT deterioration when the DM was increased from 4×4 to 8×8.
Collapse
Affiliation(s)
- Fei Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | - Xiaoyu Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Linfeng Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | - Heejong Kim
- The University of Chicago, Chicago, Illinois, USA
| | - Woon-Seng Choong
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Qingguo Xie
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Chung HW, Park KS, Lim I, Noh WC, Yoo YB, Nam SE, So Y, Lee EJ. PET/MRI and Novel Targets for Breast Cancer. Biomedicines 2024; 12:172. [PMID: 38255277 PMCID: PMC10813582 DOI: 10.3390/biomedicines12010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer, with its global prevalence and impact on women's health, necessitates effective early detection and accurate staging for optimal patient outcomes. Traditional imaging modalities such as mammography, ultrasound, and dynamic contrast-enhanced magnetic resonance imaging (MRI) play crucial roles in local-regional assessment, while bone scintigraphy and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) aid in evaluating distant metastasis. Despite the proven utility of 18F-FDG PET/CT in various cancers, its limitations in breast cancer, such as high false-negative rates for small and low-grade tumors, have driven exploration into novel targets for PET radiotracers, including estrogen receptor, human epidermal growth factor receptor-2, fibroblast activation protein, and hypoxia. The advent of PET/MRI, which combines metabolic PET information with high anatomical detail from MRI, has emerged as a promising tool for breast cancer diagnosis, staging, treatment response assessment, and restaging. Technical advancements including the integration of PET and MRI, considerations in patient preparation, and optimized imaging protocols contribute to the success of dedicated breast and whole-body PET/MRI. This comprehensive review offers the current technical aspects and clinical applications of PET/MRI for breast cancer. Additionally, novel targets in breast cancer for PET radiotracers beyond glucose metabolism are explored.
Collapse
Affiliation(s)
- Hyun Woo Chung
- Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (H.W.C.); (Y.S.)
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
- Research Institute of Medical Science, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences (KIRAMS), 75 Nowon-ro, Nowon-gu, Seoul 07812, Republic of Korea;
| | - Woo Chul Noh
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Young Bum Yoo
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Sang Eun Nam
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (W.C.N.); (Y.B.Y.); (S.E.N.)
| | - Young So
- Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Republic of Korea; (H.W.C.); (Y.S.)
| | - Eun Jeong Lee
- Department of Nuclear Medicine, Seoul Medical Center, 156 Sinnae-ro, Jungnang-gu, Seoul 02053, Republic of Korea;
| |
Collapse
|
10
|
Galve P, Rodriguez-Vila B, Herraiz J, García-Vázquez V, Malpica N, Udias J, Torrado-Carvajal A. Recent advances in combined Positron Emission Tomography and Magnetic Resonance Imaging. JOURNAL OF INSTRUMENTATION 2024; 19:C01001. [DOI: 10.1088/1748-0221/19/01/c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Abstract
Hybrid imaging modalities combine two or more medical imaging techniques offering exciting new possibilities to image the structure, function and biochemistry of the human body in far greater detail than has previously been possible to improve patient diagnosis. In this context, simultaneous Positron Emission Tomography and Magnetic Resonance (PET/MR) imaging offers great complementary information, but it also poses challenges from the point of view of hardware and software compatibility. The PET signal may interfere with the MR magnetic field and vice-versa, posing several challenges and constrains in the PET instrumentation for PET/MR systems. Additionally, anatomical maps are needed to properly apply attenuation and scatter corrections to the resulting reconstructed PET images, as well motion estimates to minimize the effects of movement throughout the acquisition. In this review, we summarize the instrumentation implemented in modern PET scanners to overcome these limitations, describing the historical development of hybrid PET/MR scanners. We pay special attention to the methods used in PET to achieve attenuation, scatter and motion correction when it is combined with MR, and how both imaging modalities may be combined in PET image reconstruction algorithms.
Collapse
|
11
|
Kuang Z, Sang Z, Ren N, Wang X, Zeng T, Wu S, Niu M, Cong L, Kinyanjui SM, Chen Q, Tie C, Liu Z, Sun T, Hu Z, Du J, Li Y, Liang D, Liu X, Zheng H, Yang Y. Development and performance of SIAT bPET: a high-resolution and high-sensitivity MR-compatible brain PET scanner using dual-ended readout detectors. Eur J Nucl Med Mol Imaging 2024; 51:346-357. [PMID: 37782321 DOI: 10.1007/s00259-023-06458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Positron emission tomography/magnetic resonance imaging (PET/MRI) is a powerful tool for brain imaging, but the spatial resolution of the PET scanners currently used for brain imaging can be further improved to enhance the quantitative accuracy of brain PET imaging. The purpose of this study is to develop an MR-compatible brain PET scanner that can simultaneously achieve a uniform high spatial resolution and high sensitivity by using dual-ended readout depth encoding detectors. METHODS The MR-compatible brain PET scanner, named SIAT bPET, consists of 224 dual-ended readout detectors. Each detector contains a 26 × 26 lutetium yttrium oxyorthosilicate (LYSO) crystal array of 1.4 × 1.4 × 20 mm3 crystal size read out by two 10 × 10 silicon photomultiplier (SiPM) arrays from both ends. The scanner has a detector ring diameter of 376.8 mm and an axial field of view (FOV) of 329 mm. The performance of the scanner including spatial resolution, sensitivity, count rate, scatter fraction, and image quality was measured. Imaging studies of phantoms and the brain of a volunteer were performed. The mutual interferences of the PET insert and the uMR790 3 T MRI scanner were measured, and simultaneous PET/MRI imaging of the brain of a volunteer was performed. RESULTS A spatial resolution of better than 1.5 mm with an average of 1.2 mm within the whole FOV was obtained. A sensitivity of 11.0% was achieved at the center FOV for an energy window of 350-750 keV. Except for the dedicated RF coil, which caused a ~ 30% reduction of the sensitivity of the PET scanner, the MRI sequences running had a negligible effect on the performance of the PET scanner. The reduction of the SNR and homogeneity of the MRI images was less than 2% as the PET scanner was inserted to the MRI scanner and powered-on. High quality PET and MRI images of a human brain were obtained from simultaneous PET/MRI scans. CONCLUSION The SIAT bPET scanner achieved a spatial resolution and sensitivity better than all MR-compatible brain PET scanners developed up to date. It can be used either as a standalone brain PET scanner or a PET insert placed inside a commercial whole-body MRI scanner to perform simultaneous PET/MRI imaging.
Collapse
Affiliation(s)
- Zhonghua Kuang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Physics and Electronics-Electrical Engineering, Xiangnan University, Chenzhou, 423000, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ziru Sang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ning Ren
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaohui Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tianyi Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - San Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Niu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Longhan Cong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Samuel M Kinyanjui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiaoyan Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Changjun Tie
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zheng Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Tao Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhanli Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junwei Du
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ye Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xin Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hairong Zheng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yongfeng Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Lee JS, Lee MS. Advancements in Positron Emission Tomography Detectors: From Silicon Photomultiplier Technology to Artificial Intelligence Applications. PET Clin 2024; 19:1-24. [PMID: 37802675 DOI: 10.1016/j.cpet.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
This review article focuses on PET detector technology, which is the most crucial factor in determining PET image quality. The article highlights the desired properties of PET detectors, including high detection efficiency, spatial resolution, energy resolution, and timing resolution. Recent advancements in PET detectors to improve these properties are also discussed, including the use of silicon photomultiplier technology, advancements in depth-of-interaction and time-of-flight PET detectors, and the use of artificial intelligence for detector development. The article provides an overview of PET detector technology and its recent advancements, which can significantly enhance PET image quality.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, South Korea; Brightonix Imaging Inc., Seoul 04782, South Korea
| | - Min Sun Lee
- Environmental Radioactivity Assessment Team, Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute, Daejeon 34057, South Korea.
| |
Collapse
|
13
|
Sousa JM, Appel L, Engström M, Nyholm D, Ahlström H, Lubberink M. Comparison of quantitative [ 11C]PE2I brain PET studies between an integrated PET/MR and a stand-alone PET system. Phys Med 2024; 117:103185. [PMID: 38042064 DOI: 10.1016/j.ejmp.2023.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023] Open
Abstract
PET/MR systems demanded great efforts for accurate attenuation correction (AC) but differences in technology, geometry and hardware attenuation may also affect quantitative results. Dedicated PET systems using transmission-based AC are regarded as the gold standard for quantitative brain PET. The study aim was to investigate the agreement between quantitative PET outcomes from a PET/MR scanner against a stand-alone PET system. Nine patients with Parkinsonism underwent two 80-min dynamic PET scans with the dopamine transporter ligand [11C]PE2I. Images were reconstructed with resolution-matched settings using 68Ge-transmission (stand-alone PET), and zero-echo-time MR (PET/MR) scans for AC. Non-displaceable binding potential (BPND) and relative delivery (R1) were evaluated using volumes of interest and voxel-wise analysis. Correlations between systems were high (r ≥ 0.85) for both quantitative outcome parameters in all brain regions. Striatal BPND was significantly lower on PET/MR than on stand-alone PET (-7%). R1 was significantly overestimated in posterior cortical regions (9%) and underestimated in striatal (-9%) and limbic areas (-6%). The voxel-wise evaluation revealed that the MR-safe headphones caused a negative bias in both parametric BPND and R1 images. Additionally, a significant positive bias of R1 was found in the auditory cortex, most likely due to the acoustic background noise during MR imaging. The relative bias of the quantitative [11C]PE2I PET data acquired from a SIGNA PET/MR system was in the same order as the expected test-retest reproducibility of [11C]PE2I BPND and R1, compared to a stand-alone ECAT PET scanner. MR headphones and background noise are potential sources of error in functional PET/MR studies.
Collapse
Affiliation(s)
- João M Sousa
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden.
| | - Lieuwe Appel
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | | | - Dag Nyholm
- Department of Neurology, Uppsala University Hospital, Uppsala, Sweden; Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden; Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Mark Lubberink
- Nuclear Medicine & PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
14
|
Veit-Haibach P, Ahlström H, Boellaard R, Delgado Bolton RC, Hesse S, Hope T, Huellner MW, Iagaru A, Johnson GB, Kjaer A, Law I, Metser U, Quick HH, Sattler B, Umutlu L, Zaharchuk G, Herrmann K. International EANM-SNMMI-ISMRM consensus recommendation for PET/MRI in oncology. Eur J Nucl Med Mol Imaging 2023; 50:3513-3537. [PMID: 37624384 PMCID: PMC10547645 DOI: 10.1007/s00259-023-06406-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
PREAMBLE The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association that facilitates communication worldwide between individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. The merged International Society for Magnetic Resonance in Medicine (ISMRM) is an international, nonprofit, scientific association whose purpose is to promote communication, research, development, and applications in the field of magnetic resonance in medicine and biology and other related topics and to develop and provide channels and facilities for continuing education in the field.The ISMRM was founded in 1994 through the merger of the Society of Magnetic Resonance in Medicine and the Society of Magnetic Resonance Imaging. SNMMI, ISMRM, and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine and/or magnetic resonance imaging. The SNMMI, ISMRM, and EANM will periodically define new guidelines for nuclear medicine practice to help advance the science of nuclear medicine and/or magnetic resonance imaging and to improve the quality of service to patients throughout the world. Existing practice guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice guideline, representing a policy statement by the SNMMI/EANM/ISMRM, has undergone a thorough consensus process in which it has been subjected to extensive review. The SNMMI, ISMRM, and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging and magnetic resonance imaging requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice guideline by those entities not providing these services is not authorized. These guidelines are an educational tool designed to assist practitioners in providing appropriate care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the SNMMI, the ISMRM, and the EANM caution against the use of these guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by the physician or medical physicist in light of all the circumstances presented. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the guidelines. The practice of medicine includes both the art and the science of the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognized that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources, and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- Patrick Veit-Haibach
- Joint Department Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, Toronto General Hospital, 1 PMB-275, 585 University Avenue, Toronto, Ontario, M5G 2N2, Canada
- Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, 751 85, Uppsala, Sweden
- Antaros Medical AB, BioVenture Hub, 431 53, Mölndal, Sweden
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño, La Rioja, Spain
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig Medical Center, Leipzig, Germany
| | - Thomas Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zürich, University of Zürich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Andrei Iagaru
- Department of Radiology, Division of Nuclear Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Geoffrey B Johnson
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen, Denmark
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Harald H Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Greg Zaharchuk
- Division of Neuroradiology, Department of Radiology, Stanford University, 300 Pasteur Drive, Room S047, Stanford, CA, 94305-5105, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany.
| |
Collapse
|
15
|
Takata K, Kimura H, Ishida S, Isozaki M, Higashino Y, Kikuta KI, Okazawa H, Tsujikawa T. Assessment of Arterial Transit Time and Cerebrovascular Reactivity in Moyamoya Disease by Simultaneous PET/MRI. Diagnostics (Basel) 2023; 13:diagnostics13040756. [PMID: 36832244 PMCID: PMC9955140 DOI: 10.3390/diagnostics13040756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
We investigated the relationship between MRI-arterial spin labeling (ASL) parameters and PET-cerebral blood flow (CBF)/cerebrovascular reactivity (CVR) simultaneously obtained by PET/MRI in Moyamoya disease. Twelve patients underwent 15O-water PET/MRI with the acetazolamide (ACZ) challenge test. PET-CBF and PET-CVR were measured using 15O-water PET. Pseudo-continuous ASL obtained the robust arterial transit time (ATT) and ASL-CBF estimation. ASL parameters were compared with PET-CBF and PET-CVR. Before ACZ loading, absolute and relative ASL-CBF were significantly correlated with absolute and relative PET-CBF (r = 0.44, p < 0.0001, and r = 0.55, p < 0.0001, respectively). After ACZ loading, absolute and relative ASL-CBF were significantly correlated with absolute and relative PET-CBF (r = 0.56, p < 0.001, and r = 0.75, p < 0.0001, respectively), and ΔASL-CBF was significantly correlated with ΔPET-CBF (r = 0.65, p < 0.0001). Baseline ASL-ATT had strong negative correlations with ΔPET-CBF and PET-CVR (r = -0.72, p < 0.0001, and r = -0.66, p < 0.0001, respectively). Baseline ASL-ATT of MCA territories with CVR <30% (1546 ± 79 ms) was significantly higher than that with CVR > 30% (898 ± 197 ms). ASL-ATT ratio of MCA territories with CVR < 30% (94.0 ± 10.5%) was significantly higher than that with CVR > 30% (81.4 ± 11.3%). ATT correction using multiple postlabeling delays increased the accuracy of ASL-CBF quantitation. Baseline ASL-ATT is a hemodynamic parameter and may represent an efficient alternative to PET-CVR.
Collapse
Affiliation(s)
- Kenji Takata
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hirohiko Kimura
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shota Ishida
- Department of Radiological Technology, Faculty of Medical Sciences, Kyoto College of Medical Science, Kyoto 622-0041, Japan
| | - Makoto Isozaki
- Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Yoshifumi Higashino
- Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Ken-Ichiro Kikuta
- Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan
| | - Tetsuya Tsujikawa
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Correspondence: ; Tel.: +81-776-61-3111; Fax: +81-776-61-8137
| |
Collapse
|
16
|
Zatcepin A, Ziegler SI. Detectors in positron emission tomography. Z Med Phys 2023; 33:4-12. [PMID: 36208967 PMCID: PMC10082375 DOI: 10.1016/j.zemedi.2022.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022]
Abstract
Positron emission tomography is a highly sensitive molecular imaging modality, based on the coincident detection of annihilation photons after positron decay. The most used detector is based on dense, fast, and luminous scintillators read out by light sensors. This review covers the various detector concepts for clinical and preclinical systems.
Collapse
Affiliation(s)
- Artem Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sibylle I Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
17
|
Aydos U, Balcı E, Ateş SG, Akdemir ÜÖ, Karadeniz C, Atay LÖ. Quantitative and visual analyses of the effect of activity reduction on image metrics and quality in 18F-FDG PET/MRI in pediatric oncology. Turk J Med Sci 2023; 53:289-302. [PMID: 36945939 PMCID: PMC10387842 DOI: 10.55730/1300-0144.5584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/30/2022] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND : The aim of our study was to evaluate the effect of reduced injected tracer activities on the quantitative image metrics and the visual image quality in whole-body 18F-FDG PET/MRI with TOF capability in pediatric oncology. METHODS Seventy-seven PET/MRI examinations of 54 patients were analyzed (standard injected activity: 1.9 MBq/kg, standard PET scan duration: 5 min per bed position). Lower activity PET images (1.2 MBq/kg and 0.9 MBq/kg) were retrospectively simulated from the originally acquired list-mode data sets. Quantitative parameters were assessed by measuring the SUV metrics, signal-to-noise ratio (SNR), contrast-to-noise ratios (CNR), and textural features in each PET data set. PET images were also evaluated visually for image quality by using a scoring system. RESULTS SNRs were found as significantly different among PET data sets (p < 0.001) and showed increasing image noise with decreasing activities. CNR values did not show significant differences among PET data sets. The mean relative percentage changes in SUV metrics were found to be lower in 1.2 MBq/kg data set compared to 0.9 MBq/kg data set. Lesion SUVmax, SUVmean, SULpeak, and textural features were significantly different in 0.9 MBq/kg data set compared to the original data set (p < 0.05 for all). However, SUV metrics and textural features did not show a significant difference between the original and 1.2 MBq/kg data sets. While, the mean visual scores in 0.9 MBq/kg data set were significantly different compared to the original data set (p < 0.001), there was no significant difference between the original and 1.2 MBq/kg data sets in terms of general image quality and image sharpness. DISCUSSION Our analyses showed that the reduction of injected activity to 1.2 MBq/kg may be feasible in pediatric oncological PET/ MRI, with a smaller relative percentage change in quantitative parameters and with similar image quality to the original data set.
Collapse
Affiliation(s)
- Uğuray Aydos
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Erdem Balcı
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Seda Gülbahar Ateş
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ümit Özgür Akdemir
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ceyda Karadeniz
- Department of Pediatric Oncology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Lütfiye Özlem Atay
- Department of Nuclear Medicine, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
18
|
Sang Z, Kuang Z, Wang X, Ren N, Wu S, Niu M, Cong L, Liu Z, Hu Z, Sun T, Liang D, Liu X, Zheng H, Li Y, Yang Y. Mutual interferences between SIAT aPET insert and a 3 T uMR 790 MRI scanner. Phys Med Biol 2023; 68. [PMID: 36549011 DOI: 10.1088/1361-6560/acae17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Objective.Dual-modality small animal PET/MR imaging provides temporally correlated information on two biochemical processes of a living object. An magnetic resonance imaging (MRI)-compatible small animal PET insert named Shenzhen Institutes of Advanced Technology (SIAT) aPET was developed by using dual-ended readout depth encoding detectors to simultaneously achieve a uniform high spatial resolution and high sensitivity at the SIAT. In this work, the mutual interferences between SIAT aPET and the 3 T uMR 790 MRI scanner of United Imaging was quantitatively evaluated.Approach.To minimize the mutual interferences, only the PET detectors and the readout electronics were placed inside the MRI scanner, the major signal processing electronic was placed in the corner of the MRI room and the auxiliary unit was placed in the MRI technical room. A dedicated mouse radio fRequency (RF) coil with a transmitter and receiver was developed for the PET insert. The effects of PET scanner on theB0andB1field of the MRI scanner and the quality of the MRI images were measured. The effects of MRI imaging on the performance of both the PET detectors and scanner were also measured.Main results.The electronic and mechanical components of the PET insert affected the homogeneity of theB0field. The PET insert had no effect on the homogeneity ofB1produced by the dedicated mouse coil but slightly reduced the strength ofB1. The mean and standard deviation of the RF noise map were increased by 2.2% and 11.6%, respectively, while the PET insert was placed in the MRI scanner and powered on. Eddy current was produced while the PET insert was placed in the MRI scanner, and it was further increased while the PET insert was powered on. Despite the above-mentioned interferences from the PET insert, the MR images of a uniform cylindrical water phantom showed that the changes in the signal-to-noise ratio (SNR) and homogeneity as the PET insert was placed in the MRI scanner were acceptable regardless of whether the PET insert was powered off or powered on. The maximum reduction of SNR was less than 11%, and the maximum reduction of homogeneity was less than 2.5% while the PET insert was placed inside the MRI scanner and powered on for five commonly used MRI sequences. MRI using gradient echo (GRE), spin echo (SE) and fast spin echo (FSE) sequences had negligible effects on the flood histograms and energy resolution of the PET detectors, as well as the spatial resolution and sensitivity of the PET scanner.Significance.The mutual interference between the SIAT aPET and the 3 T uMR 790 MRI scanner are acceptable. Simultaneous PET/MRI imaging of small animals can be performed with the two scanners.
Collapse
Affiliation(s)
- Ziru Sang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhonghua Kuang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.,Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Xiaohui Wang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ning Ren
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - San Wu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ming Niu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Longhan Cong
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zheng Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhanli Hu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Tao Sun
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Dong Liang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Xin Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ye Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yongfeng Yang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
19
|
Liu J, Geng J. Recent progress on imaging technology and performance testing of PET/MR. RADIATION DETECTION TECHNOLOGY AND METHODS 2023. [DOI: 10.1007/s41605-022-00376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Same-day comparative protocol PET/CT-PET/MRI [ 68 Ga]Ga-DOTA-TOC in paragangliomas and pheochromocytomas: an approach to personalized medicine. Cancer Imaging 2023; 23:4. [PMID: 36627700 PMCID: PMC9832675 DOI: 10.1186/s40644-023-00521-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND PET/MRI is an emerging imaging modality which enables the evaluation and quantification of biochemical processes in tissues, complemented with accurate anatomical information and low radiation exposure. In the framework of theragnosis, PET/MRI is of special interest due to its ability to delineate small lesions, adequately quantify them, and therefore to plan targeted therapies. The aim of this study was to validate the diagnostic performance of [68 Ga]Ga-DOTA-TOC PET/MRI compared to PET/CT in advanced disease paragangliomas and pheochromocytomas (PGGLs) to assess in which clinical settings, PET/MRI may have a greater diagnostic yield. METHODS We performed a same-day protocol with consecutive acquisition of a PET/CT and a PET/MRI after a single [68 Ga]Ga-DOTA-TOC injection in 25 patients. Intermodality agreement, Krenning Score (KS), SUVmax (Standard Uptake Value), target-to-liver-ratio (TLR), clinical setting, location, and size were assessed. RESULTS The diagnostic accuracy with PET/MRI increased by 14.6% compared to PET/CT especially in bone and liver locations (mean size of new lesions was 3.73 mm). PET/MRI revealed a higher overall lesion uptake than PET/CT (TLR 4.12 vs 2.44) and implied an upward elevation of the KS in up to 60% of patients. The KS changed in 30.4% of the evaluated lesions (mean size 11.89 mm), in 18.4% of the lesions it increased from KS 2 on PET/CT to a KS ≥ 3 on PET/MRI and 24.96% of the lesions per patient with multifocal disease displayed a KS ≥ 3 on PET/MR, that were not detected or showed lower KS on PET/CT. In 12% of patients, PET/MRI modified clinical management. CONCLUSIONS PET/MRI showed minor advantages over conventional PET/CT in the detection of new lesions but increased the intensity of SSRs expression in a significant number of them, opening the door to select which patients and clinical settings can benefit from performing PET/MRI.
Collapse
|
21
|
Liu L, Chu M, Nie B, Jiang D, Xie K, Cui Y, Liu L, Kong Y, Chen Z, Nan H, Rosa-Neto P, Wu L. Altered metabolic connectivity within the limbic cortico-striato-thalamo-cortical circuit in presymptomatic and symptomatic behavioral variant frontotemporal dementia. Alzheimers Res Ther 2023; 15:3. [PMID: 36604747 PMCID: PMC9814421 DOI: 10.1186/s13195-022-01157-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Behavioral variant frontotemporal dementia (bvFTD) is predominantly considered a dysfunction in cortico-cortical transmission, with limited direct investigation of cortical-subcortical transmission. Thus, we aimed to characterize the metabolic connectivity between areas of the limbic cortico-striato-thalamic-cortical (CSTC) circuit in presymptomatic and symptomatic bvFTD patients. METHODS Thirty-three bvFTD patients and 33 unrelated healthy controls were recruited for this study. Additionally, six asymptomatic carriers of the MAPT P301L mutation were compared with 12 non-carriers who were all from the same family of bvFTD. Each participant underwent neuropsychological assessment, genetic testing, and a hybrid PET/MRI scan. Seed-based metabolic connectivity based on [18F]-fluorodeoxyglucose PET between the main components within the limbic CSTC circuit was explored according to the Oxford-GSK-Imanova Striatal Connectivity Atlas. RESULTS BvFTD patients exhibited reduced metabolic connectivity between the relays in the limbic CSTC circuit, which included the frontal region (ventromedial prefrontal cortex, orbitofrontal cortex, rectus gyrus, and anterior cingulate cortex), the limbic striatum, and thalamus compared to controls. In the bvFTD patients, the involvement of the limbic CSTC circuit was associated with the severity of behavior disruption, as measured by the frontal behavior inventory, the disinhibition subscale, and the apathy subscale. Notably, asymptomatic MAPT carriers had weakened frontostriatal connectivity but enhanced striatothalamus and thalamofrontal connectivity within the limbic CSTC circuit compared with noncarriers. CONCLUSION These findings suggested that aberrant metabolic connectivity within the limbic CSTC circuit is present in symptomatic and even asymptomatic stages of bvFTD. Thus, metabolic connectivity patterns could be used as a potential biomarker to detect the presymptomatic stage and track disease progression.
Collapse
Affiliation(s)
- Li Liu
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Min Chu
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Binbin Nie
- grid.418741.f0000 0004 0632 3097Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Deming Jiang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Kexin Xie
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Yue Cui
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Lin Liu
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China ,grid.452845.a0000 0004 1799 2077Department of Neurology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Kong
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Zhongyun Chen
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Haitian Nan
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| | - Pedro Rosa-Neto
- grid.14709.3b0000 0004 1936 8649McGill Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Montreal, H4H 1R3 Canada
| | - Liyong Wu
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, 100053 China
| |
Collapse
|
22
|
Lv X, Chu M, Liu Y, Jing D, Liu L, Cui Y, Wang Y, Jiang D, Song W, Yang C, Wu L. Neurofunctional Correlates of Activities of Daily Living in Patients with Posterior Cortical Atrophy. J Alzheimers Dis 2023; 93:295-305. [PMID: 36970906 DOI: 10.3233/jad-221229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Research on posterior cortical atrophy (PCA) has focused on cognitive decline, especially visual processing deficits. However, few studies have examined the impact of PCA on activities of daily living (ADL) and the neurofunctional and neuroanatomic bases of ADL. OBJECTIVE To identify brain regions associated with ADL in PCA patients. METHODS A total of 29 PCA patients, 35 typical Alzheimer's disease (tAD) patients, and 26 healthy volunteers were recruited. Each subject completed an ADL questionnaire that included basic and instrumental subscales (BADL and IADL, respectively), and underwent hybrid magnetic resonance imaging and 18F fluorodeoxyglucose positron emission tomography. Voxel-wise regression multivariable analysis was conducted to identify specific brain regions associated with ADL. RESULTS General cognitive status was similar between PCA and tAD patients; however, the former had lower total ADL scores and BADL and IADL scores. All three scores were associated with hypometabolism in bilateral parietal lobes (especially bilateral superior parietal gyri) at the whole-brain level, PCA-related hypometabolism level, and PCA-specific hypometabolism level. A cluster that included the right superior parietal gyrus showed an ADL×group interaction effect that was correlated with the total ADL score in the PCA group (r = -0.6908, p = 9.3599e-5) but not in the tAD group (r = 0.1006, p = 0.5904). There was no significant association between gray matter density and ADL scores. CONCLUSION Hypometabolism in bilateral superior parietal lobes contributes to a decline in ADL in patients with PCA and can potentially be targeted by noninvasive neuromodulatory interventions.
Collapse
Affiliation(s)
- Xuedan Lv
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Sixth Hospital, Beijing, China
| | - Donglai Jing
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Rongcheng People's Hospital, Hebei, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yihao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Weiqun Song
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Liu L, Chu M, Nie B, Liu L, Xie K, Cui Y, Kong Y, Chen Z, Nan H, Chen K, Rosa-Neto P, Wu L. Reconfigured metabolism brain network in asymptomatic microtubule-associated protein tau mutation carriers: a graph theoretical analysis. Alzheimers Res Ther 2022; 14:52. [PMID: 35410286 PMCID: PMC8996677 DOI: 10.1186/s13195-022-01000-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022]
Abstract
Background Studies exploring topological properties of the metabolic network during the presymptomatic stage of genetic frontotemporal dementia (FTD) are scarce. However, such knowledge is important for understanding brain function and disease pathogenesis. Therefore, we aimed to explore FTD-specific patterns of metabolism topology reconfiguration in microtubule-associated protein tau (MAPT) mutation carriers before the onset of symptoms. Methods Six asymptomatic carriers of the MAPT P301L mutation were compared with 12 non-carriers who all belonged to the same family of FTD. For comparison, we included 32 behavioral variant FTD (bvFTD) patients and 33 unrelated healthy controls. Each participant underwent neuropsychological assessments, genetic testing, and a hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) scan. Voxel-wise gray matter volumes and standardized uptake value ratios were calculated and compared for structural MRI and fluorodeoxyglucose (FDG)-PET, separately. The sparse inverse covariance estimation method (SICE) was applied to topological properties and metabolic connectomes of brain functional networks derived from 18F-FDG PET/MRI data. Independent component analysis was used to explore the metabolic connectivity of the salience (SN) and default mode networks (DMN). Results The asymptomatic MAPT carriers performed normal global parameters of the metabolism network, whereas bvFTD patients did not. However, we revealed lost hubs in the ventromedial prefrontal, orbitofrontal, and anterior cingulate cortices and reconfigured hubs in the anterior insula, precuneus, and posterior cingulate cortex in asymptomatic carriers compared with non-carriers, which overlapped with the comparisons between bvFTD patients and controls. Similarly, significant differences in local parameters of these nodes were present between asymptomatic carriers and non-carriers. The reduction in the connectivity of lost hub regions and the enhancement of connectivity between reconfigured hubs and components of the frontal cortex were marked during the asymptomatic stage. Metabolic connectivity within the SN and DMN was enhanced in asymptomatic carriers compared with non-mutation carriers but reduced in bvFTD patients relative to controls. Conclusions Our findings showed that metabolism topology reconfiguration, characterized by the earliest involvement of medial prefrontal areas and active compensation in task-related regions, was present in the presymptomatic phase of genetic FTD with MAPT mutation, which may be used as an imaging biomarker of increased risk of FTD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01000-z.
Collapse
|
24
|
Park H, Yi M, Lee JS. Silicon photomultiplier signal readout and multiplexing techniques for positron emission tomography: a review. Biomed Eng Lett 2022; 12:263-283. [PMID: 35892029 PMCID: PMC9308856 DOI: 10.1007/s13534-022-00234-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/21/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, silicon photomultiplier (SiPM) is replacing the photomultiplier tube (PMT) in positron emission tomography (PET) systems due to its superior properties, such as fast single-photon timing response, small gap between adjacent photosensitive pixels in the array, and insensitivity to magnetic fields. One of the technical challenges when developing SiPM-based PET systems or other position-sensitive radiation detectors is the large number of output channels coming from the SiPM array. Therefore, various signal multiplexing methods have been proposed to reduce the number of output channels and the load on the subsequent data acquisition (DAQ) system. However, the large PN-junction capacitance and quenching resistance of the SiPM yield undesirable resistance-capacitance delay when multiple SiPMs are combined, which subsequently causes the accumulation of dark counts and signal fluctuation of SiPMs. Therefore, without proper SiPM signal handling and processing, the SiPMs may yield worse timing characteristics than the PMTs. This article reviews the evolution of signal readout and multiplexing methods for the SiPM. In this review, we focus primarily on analog electronics for SiPM signal multiplexing, which allows for the reduction of DAQ channels required for the SiPM-based position-sensitive detectors used in PET and other radiation detector systems. Although the applications of most technologies described in the article are not limited to PET systems, the review highlights efforts to improve the physical performance (e.g. spatial, energy, and timing resolutions) of PET detectors and systems.
Collapse
Affiliation(s)
- Haewook Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
| | - Minseok Yi
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Engineering, Seoul, 03080 South Korea
| | - Jae Sung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080 South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 101, Daehak-ro, Jongno-gu, Seoul, 03080 South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Engineering, Seoul, 03080 South Korea
- Brightonix Imaging Inc, Seoul, 04782 South Korea
| |
Collapse
|
25
|
Carra P, Giuseppina Bisogni M, Ciarrocchi E, Morrocchi M, Sportelli G, Rosso V, Belcari N. A neural network-based algorithm for simultaneous event positioning and timestamping in monolithic scintillators. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac72f2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/24/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. Monolithic scintillator crystals coupled to silicon photomultiplier (SiPM) arrays are promising detectors for PET applications, offering spatial resolution around 1 mm and depth-of-interaction information. However, their timing resolution has always been inferior to that of pixellated crystals, while the best results on spatial resolution have been obtained with algorithms that cannot operate in real-time in a PET detector. In this study, we explore the capabilities of monolithic crystals with respect to spatial and timing resolution, presenting new algorithms that overcome the mentioned problems. Approach. Our algorithms were tested first using a simulation framework, then on experimentally acquired data. We tested an event timestamping algorithm based on neural networks which was then integrated into a second neural network for simultaneous estimation of the event position and timestamp. Both algorithms are implemented in a low-cost field-programmable gate array that can be integrated in the detector and can process more than 1 million events per second in real-time. Results. Testing the neural network for the simultaneous estimation of the event position and timestamp on experimental data we obtain 0.78 2D FWHM on the (x, y) plane, 1.2 depth-of-interaction FWHM and 156 coincidence time resolution on a
25
mm
×
25
mm
×
8
mm
×
LYSO monolith read-out by 64
3
mm
×
3
mm
Hamamatsu SiPMs. Significance. Our results show that monolithic crystals combined with artificial intelligence can rival pixellated crystals performance for time-of-flight PET applications, while having better spatial resolution and DOI resolution. Thanks to the use of very light neural networks, event characterization can be done on-line directly in the detector, solving the issues of scalability and computational complexity that up to now were preventing the use of monolithic crystals in clinical PET scanners.
Collapse
|
26
|
Leynes AP, Ahn S, Wangerin KA, Kaushik SS, Wiesinger F, Hope TA, Larson PEZ. Attenuation Coefficient Estimation for PET/MRI With Bayesian Deep Learning Pseudo-CT and Maximum-Likelihood Estimation of Activity and Attenuation. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:678-689. [PMID: 38223528 PMCID: PMC10785227 DOI: 10.1109/trpms.2021.3118325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A major remaining challenge for magnetic resonance-based attenuation correction methods (MRAC) is their susceptibility to sources of magnetic resonance imaging (MRI) artifacts (e.g., implants and motion) and uncertainties due to the limitations of MRI contrast (e.g., accurate bone delineation and density, and separation of air/bone). We propose using a Bayesian deep convolutional neural network that in addition to generating an initial pseudo-CT from MR data, it also produces uncertainty estimates of the pseudo-CT to quantify the limitations of the MR data. These outputs are combined with the maximum-likelihood estimation of activity and attenuation (MLAA) reconstruction that uses the PET emission data to improve the attenuation maps. With the proposed approach uncertainty estimation and pseudo-CT prior for robust MLAA (UpCT-MLAA), we demonstrate accurate estimation of PET uptake in pelvic lesions and show recovery of metal implants. In patients without implants, UpCT-MLAA had acceptable but slightly higher root-mean-squared-error (RMSE) than Zero-echotime and Dixon Deep pseudo-CT when compared to CTAC. In patients with metal implants, MLAA recovered the metal implant; however, anatomy outside the implant region was obscured by noise and crosstalk artifacts. Attenuation coefficients from the pseudo-CT from Dixon MRI were accurate in normal anatomy; however, the metal implant region was estimated to have attenuation coefficients of air. UpCT-MLAA estimated attenuation coefficients of metal implants alongside accurate anatomic depiction outside of implant regions.
Collapse
Affiliation(s)
- Andrew P Leynes
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA 94158 USA
- UC Berkeley-UC San Francisco Joint Graduate Program in Bioengineering, University of California at Berkeley, Berkeley, CA 94720 USA
| | - Sangtae Ahn
- Biology and Physics Department, GE Research, Niskayuna, NY 12309 USA
| | | | - Sandeep S Kaushik
- MR Applications Science Laboratory Europe, GE Healthcare, 80807 Munich, Germany
- Department of Computer Science, Technical University of Munich, 80333 Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Florian Wiesinger
- MR Applications Science Laboratory Europe, GE Healthcare, 80807 Munich, Germany
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, USA
- Department of Radiology, San Francisco VA Medical Center, San Francisco, CA 94121 USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA 94158 USA
- UC Berkeley-UC San Francisco Joint Graduate Program in Bioengineering, University of California at Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
27
|
Bailly P, Bouzerar R, Galan R, Meyer ME. Phantom study of an in-house amplitude-gating respiratory method with silicon photomultiplier technology positron emission tomography/computed tomography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106907. [PMID: 35660941 DOI: 10.1016/j.cmpb.2022.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE The objective of this phantom study was to determine whether breathing-synchronized, silicon photomultiplier (SiPM)-based PET/CT has a suitable acquisition time for routine clinical use. METHODS Acquisitions were performed in list mode on a 4-ring SiPM-based PET/CT system. The experimental setup consisted of an external respiratory tracking device placed on a commercial dynamic thorax phantom containing a sphere filled with [F-18]-fluorodeoxyglucose. Three-dimensional sinusoidal motion was imposed on the sphere. Data were processed using frequency binning and amplitude binning (the "DMI" and "OFFLINE" methods, respectively). PET sinograms were reconstructed with a Bayesian penalized likelihood algorithm. RESULTS Respiratory gating from a 150‑sec acquisition was successful. The DMI and OFFLINE methods gave similar activity profiles but both were slightly shifted in space; the latter profile was closest to the reference acquisition. CONCLUSION With SiPM PET/CT systems, the amplitude-based processing of breathing-synchronized data is likely to be feasible in routine clinical practice.
Collapse
Affiliation(s)
- Pascal Bailly
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France.
| | - Roger Bouzerar
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France
| | - Romain Galan
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Jules Verne University of Picardie, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France
| | - Marc-Etienne Meyer
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Jules Verne University of Picardie, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France
| |
Collapse
|
28
|
Okazawa H, Ikawa M, Tsujikawa T, Mori T, Makino A, Kiyono Y, Nakamoto Y, Kosaka H, Yoneda M. Cerebral Oxidative Stress in Early Alzheimer's Disease Evaluated by 64Cu-ATSM PET/MRI: A Preliminary Study. Antioxidants (Basel) 2022; 11:1022. [PMID: 35624886 PMCID: PMC9138060 DOI: 10.3390/antiox11051022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress imaging using diacetyl-bis (N4-methylthiosemicarbazone) (Cu-ATSM) was applied to the evaluation of patients with early Alzheimer's disease (eAD). Ten eAD patients (72 ± 9 years) and 10 age-matched healthy controls (HCs) (73 ± 9 years) participated in this study. They underwent dynamic PET/MRI using 11C-PiB and 64Cu-ATSM with multiple MRI sequences. To evaluate cerebral oxidative stress, three parameters of 64Cu-ATSM PET were compared: standardized uptake value (SUV), tracer influx rate (Kin), and a rate constant k3. The input functions were estimated by the image-derived input function method. The relative differences were analyzed by statistical parametric mapping (SPM) using SUV and Kin images. All eAD patients had positive and HC subjects had negative PiB accumulation, and MMSE scores were significantly different between them. The 64Cu-ATSM accumulation tended to be higher in eAD than in HCs for both SUV and Kin. When comparing absolute values, eAD patients had a greater Kin in the posterior cingulate cortex and a greater k3 in the hippocampus compared with lobar cortical values of HCs. In SPM analysis, eAD had an increased left operculum and decreased bilateral hippocampus and anterior cingulate cortex compared to HCs. 64Cu-ATSM PET/MRI and tracer kinetic analysis elucidated cerebral oxidative stress in the eAD patients, particularly in the cingulate cortex and hippocampus.
Collapse
Affiliation(s)
- Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Masamichi Ikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
| | - Tetsuya Tsujikawa
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Akira Makino
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan;
| | - Makoto Yoneda
- Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193, Japan; (M.I.); (T.T.); (T.M.); (A.M.); (Y.K.); (M.Y.)
- Faculty of Nursing and Social Welfare Science, Fukui Prefectural University, Fukui 910-1195, Japan
| |
Collapse
|
29
|
Fowler AM, Strigel RM. Clinical advances in PET-MRI for breast cancer. Lancet Oncol 2022; 23:e32-e43. [PMID: 34973230 PMCID: PMC9673821 DOI: 10.1016/s1470-2045(21)00577-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 01/03/2023]
Abstract
Imaging is paramount for the early detection and clinical staging of breast cancer, as well as to inform management decisions and direct therapy. PET-MRI is a quantitative hybrid imaging technology that combines metabolic and functional PET data with anatomical detail and functional perfusion information from MRI. The clinical applicability of PET-MRI for breast cancer is an active area of research. In this Review, we discuss the rationale and summarise the clinical evidence for the use of PET-MRI in the diagnosis, staging, prognosis, tumour phenotyping, and assessment of treatment response in breast cancer. The continued development and approval of targeted radiopharmaceuticals, together with radiomics and automated analysis tools, will further expand the opportunity for PET-MRI to provide added value for breast cancer imaging and patient care.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Roberta M Strigel
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
30
|
Bogdanovic B, Solari EL, Villagran Asiares A, McIntosh L, van Marwick S, Schachoff S, Nekolla SG. PET/MR Technology: Advancement and Challenges. Semin Nucl Med 2021; 52:340-355. [PMID: 34969520 DOI: 10.1053/j.semnuclmed.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023]
Abstract
When this article was written, it coincided with the 11th anniversary of the installation of our PET/MR device in Munich. In fact, this was the first fully integrated device to be in clinical use. During this time, we have observed many interesting behaviors, to put it kindly. However, it is more critical that in this process, our understanding of the system also improved - including the advantages and limitations from a technical, logistical, and medical perspective. The last decade of PET/MRI research has certainly been characterized by most sites looking for a "key application." There were many ideas in this context and before and after the devices became available, some of which were based on the earlier work with integrating data from single devices. These involved validating classical PET methods with MRI (eg, perfusion or oncology diagnostics). More important, however, were the scenarios where intermodal synergies could be expected. In this review, we look back on this decade-long journey, at the challenges overcome and those still to come.
Collapse
Affiliation(s)
- Borjana Bogdanovic
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Esteban Lucas Solari
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alberto Villagran Asiares
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Lachlan McIntosh
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sandra van Marwick
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sylvia Schachoff
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
31
|
Reduced Acquisition Time per Bed Position for PET/MRI Using 68Ga-RM2 or 68Ga-PSMA-11 in Patients With Prostate Cancer: A Retrospective Analysis. AJR Am J Roentgenol 2021; 218:333-340. [PMID: 34406051 DOI: 10.2214/ajr.21.25961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND. Growing clinical adoption of PET/MRI for prostate cancer (PC) evaluation has increased interest in reducing PET/MRI scanning times. Reducing acquisition time per bed position below current times of at least 5 minutes would allow shorter examination lengths. OBJECTIVE. The purpose of this study was to evaluate the effect of different reduced PET acquisition times in patients with PC who underwent 68Ga-PSMA-11 or 68Ga-RM2 PET/MRI using highly sensitive silicon photomultiplier-based PET detectors. METHODS. This study involved retrospective review of men with PC who underwent PET/MRI as part of one of two prospective trials. Fifty men (mean [± SD] age, 69.9 ± 6.8 years) who underwent 68Ga-RM2 PET/MRI and 50 men (mean age, 66.6 ± 5.7 years) who underwent 68Ga-PSMA-11 PET/MRI were included. PET/MRI used a time-of-flight-enabled system with silicon photomultiplier-based detectors. The acquisition time was 4 minutes per bed position. PET data were reconstructed using acquisition times of 30 seconds, 1 minute, 2 minutes, 3 minutes, and 4 minutes. Three readers independently assessed image quality for each reconstruction using a 5-point Likert scale (with 1 denoting nondiagnostic and 5 indicating excellent quality). One reader measured SUVmax for up to six lesions per patient. Two readers independently assessed lesion conspicuity using a a 3-point Likert scale (with 1 indicating that lesions were not visualized and 3 denoting that they were definitely visualized). RESULTS. Mean image quality across readers at 30 seconds, 1 minutes, 2 minutes, 3 minutes, and 4 minutes was, for 68Ga-RM2 PET/MRI, from 1.0 ± 0.2 to 1.7 ± 0.7, 2.0 ± 0.3 to 2.6 ± 0.8, 3.1 ± 0.5 to 3.9 ± 0.8, 4.6 ± 0.6 to 4.7 ± 0.6, and 4.8 ± 0.4 to 4.8 ± 0.5, respectively, and for 68Ga-PSMA-11 PET/MRI it was from 1.2 ± 0.4 to 1.8 ± 0.6, 2.2 ± 0.4 to 2.8 ± 0.7, 3.6 ± 0.6 to 4.1± 0.8, 4.8 ± 0.4 to 4.9 ± 0.4, and 4.9 ± 0.3 to 5.0 ± 0.2, respectively. The mean lesion SUVmax for 68Ga-RM2 PET/MRI was 11.1 ± 12.4, 10.2 ± 11.7, 9.6 ± 11.3, 9.5 ± 11.6, and 9.4 ± 11.6, respectively, and for 68Ga-PSMA-11 PET/MRI it was 14.7 ± 8.2, 12.9 ± 7.4, 12.1 ± 7.8, 11.7 ± 7.9, and 11.6 ± 7.9, respectively. Mean lesion conspicuity (reader 1/reader 2) was, for 68Ga-RM2 PET/MRI, 2.4 ± 0.5/2.7 ± 0.5, 2.9 ± 0.3/2.9 ± 0.3, 3.0 ± 0.0/3.0 ± 0.0, 3.0 ± 0.0/3.0 ± 0.0, and 3.0 ± 0.0/3.0 ± 0.0, respectively, and for 68Ga-PSMA-11 PET/MRI it was 2.6 ± 0.5/2.8 ± 0.4, 3.0 ± 0.2/2.9 ± 0.3, 3.0 ± 0.1/3.0 ± 0.2, 3.0 ± 0.0/3.0 ± 0.0, and 3.0 ± 0.0/3.0 ± 0.0, respectively. CONCLUSION. Our data support routine 3-minute acquisitions, which provided results very similar to those for 4-minute acquisitions. Two-minute acquisitions, although they lowered quality somewhat, provided acceptable performance and warrant consideration. CLINICAL IMPACT. When PC is evaluated using modern PET/MRI equipment, time per bed position may be reduced compared with historically used times. TRIAL REGISTRATION. ClinicalTrials.gov NCT02624518 and NCT02678351.
Collapse
|
32
|
18F-FDG PET/MR in focal epilepsy: A new step for improving the detection of epileptogenic lesions. Epilepsy Res 2021; 178:106819. [PMID: 34847426 DOI: 10.1016/j.eplepsyres.2021.106819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE Hybrid PET/MR is a promising tool in focal drug-resistant epilepsy, however the additional value for the detection of epileptogenic lesions and surgical decision-making remains to be established. METHODS We retrospectively compared 18F-FDG PET/MR images with those obtained by a previous 18F-FDG PET co-registered with MRI (PET+MR) in 25 consecutive patients (16 females, 13-60 years) investigated for focal drug-resistant epilepsy. Visual analysis was performed by two readers blinded from imaging modalities, asked to assess the technical characteristics (co-registration, quality of images), the confidence in results, the location of PET abnormalities and the presence of a structural lesion on MRI. Clinical impact on surgical strategy and outcome was assessed independently. RESULTS The location of epileptic focus was temporal in 9 patients and extra-temporal in 16 others. MRI was initially considered negative in 21 patients. PET stand-alone demonstrated metabolic abnormalities in 19 cases (76%), and the co-registration with MRI allowed the detection of 4 additional structural lesions. Compared to PET+MR, the PET/MR sensitivity was increased by 13% and new structural lesions (mainly focal cortical dysplasias) were detected in 6 patients (24%). Change of surgical decision-making was substantial for 10 patients (40%), consisting in avoiding invasive monitoring in 6 patients and modifying the planning in 4 others. Seizure-free outcome (follow-up>1 year) was obtained in 12/14 patients who underwent a cortical resection. CONCLUSION Hybrid PET/MR may improve the detection of epileptogenic lesions, allowing to optimize the presurgical work-up and to increase the proportion of successful surgery even in the more complex cases.
Collapse
|
33
|
Chu M, Liu L, Wang J, Liu L, Kong Y, Jing D, Xie K, Cui Y, Cui B, Zhang J, Ye H, Li J, Wang L, Rosa-Neto P, Gauthier S, Wu L. Investigating the Roles of Anterior Cingulate in Behavioral Variant Frontotemporal Dementia: A PET/MRI Study. J Alzheimers Dis 2021; 84:1771-1779. [PMID: 34719498 PMCID: PMC8764589 DOI: 10.3233/jad-215127] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: The anterior cingulate cortex (ACC) seems to play an important role in behavioral deficits and executive dysfunctions in patients with behavioral variant frontotemporal dementia (bvFTD), while its specific and independent contribution requires clarification. Objective: To identify whether ACC abnormalities in gray matter (GM) volume and standardized uptake value ratio (SUVR) images are associated with disease severity of bvFTD, by analyzing hybrid T1 and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET). Methods: We enrolled 21 bvFTD patients and 21 healthy controls in the study. Each subject underwent a hybrid PET/MRI study and a standardized neuropsychologic assessment battery. GM volume and SUVR are voxel-wise calculated and compared. Then we estimate the mean value inside ACC for further partial Pearson’s correlation to explore the association between GM volume/SUVR of the ACC and severity of behavioral deficit as well as executive dysfunction. Results: ACC was shown to be involved in both atrophy and hypometabolism patterns. The partial Pearson’s correlation analysis showed that the SUVR of the ACC was strongly correlated with frontal behavior inventory total score (left r = –0.85, right r = –0.85, p < 0.0001), disinhibition subscale score (left r = –0.72, p = 0.002; right = –0.75, p < 0.0001), and apathy subscale score (left = –0.87, right = –0.85, p < 0.0001). Conclusion: These findings demonstrated decreased ACC activity contributes to behavioral disturbances of both apathetic and disinhibition syndromes of bvFTD, which can be sensitively detected using 18F-FDG PET.
Collapse
Affiliation(s)
- Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Shenyang Fifth People Hospital, Shenyang, China
| | - Jingjuan Wang
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lin Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Second Hospital of ShanXi Medical University, Taiyuan, China
| | - Yu Kong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Donglai Jing
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Rongcheng People's Hospital, Hebei, China
| | - Kexin Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yue Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Bo Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hong Ye
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junjie Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lin Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Montreal, Canada
| | - Serge Gauthier
- McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, Montreal, Canada
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Shim HS, Park H, Lee JS. A temperature-dependent gain compensation technique for positron emission tomography detectors based on a silicon photomultiplier. Phys Med Biol 2021; 66. [PMID: 34587608 DOI: 10.1088/1361-6560/ac2b81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/29/2021] [Indexed: 11/11/2022]
Abstract
In this study, we propose a simple gain compensation technique for silicon photomultiplier (SiPM)-based positron emission tomography detectors, using a temperature sensor that automatically controls the bias voltage of the SiPM depending upon the ambient temperature. The temperature sensor output, for which the temperature coefficient can be controlled by the input voltage, is used as one end of the bias voltage. By adjusting the temperature coefficient, the proposed gain compensation method can be applied to various SiPMs with different breakdown voltages. As a proof of concept, the proposed method was evaluated for two scintillation detector setups. Applying the proposed method to a single-channel SiPM (ASD-NUV3S-P; AdvanSiD, Italy) coupled with a 3 mm × 3 mm × 20 mm LGSO crystal, the 511 keV photopeak position in the energy histogram changed by only 1.52% per 10 °C while, without gain compensation, it changed by 13.27% per 10 °C between 10 °C and 30 °C. On a 4 × 4 array MPPC (S14161-3050HS-04; Hamamatsu, Japan), coupled with a 3.12 mm × 3.12 mm × 15 mm 4 × 4 LSO array, the photopeak changes with and without gain compensation were 2.34% and 20.53% per 10 °C between 10 °C and 30 °C, respectively. On the wider range of temperature, between 0 °C and 40 °C, the photopeak changes with and without gain compensation were 3.09% and 20.89%, respectively. The energy resolution degradation of SiPM-based scintillation detectors operating at temperatures was negligible when the proposed gain compensation method was applied.
Collapse
Affiliation(s)
- Hyeong Seok Shim
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Republic of Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Haewook Park
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Sung Lee
- Interdisciplinary Program of Bioengineering, Seoul National University, Seoul, Republic of Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Republic of Korea.,Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Brightonix Imaging Inc., Seoul, Republic of Korea
| |
Collapse
|
35
|
Zarif Yussefian N, Toussaint M, Gaudin E, Lecomte R, Fontaine R. TOF Benefits and Trade-offs on Image Contrast-to-Noise Ratio Performance for a Small Animal PET Scanner. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3018678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Tran V, Lux F, Tournier N, Jego B, Maître X, Anisorac M, Comtat C, Jan S, Selmeczi K, Evans MJ, Tillement O, Kuhnast B, Truillet C. Quantitative Tissue Pharmacokinetics and EPR Effect of AGuIX Nanoparticles: A Multimodal Imaging Study in an Orthotopic Glioblastoma Rat Model and Healthy Macaque. Adv Healthc Mater 2021; 10:e2100656. [PMID: 34212539 DOI: 10.1002/adhm.202100656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/29/2021] [Indexed: 01/10/2023]
Abstract
AGuIX are emerging radiosensitizing nanoparticles (NPs) for precision radiotherapy (RT) under clinical evaluation (Phase 2). Despite being accompanied by MRI thanks to the presence of gadolinium (Gd) at its surface, more sensitive and quantifiable imaging technique should further leverage the full potential of this technology. In this study, it is shown that 89 Zr can be labeled on such NPs directly for positron emission tomography (PET) imaging with a simple and scalable method. The stability of such complexes is remarkable in vitro and in vivo. Using a glioblastoma orthotopic rat model, it is shown that injected 89 Zr-AGuIX is detectable inside the tumor for at least 1 week. Interestingly, the particles seem to efficiently infiltrate the tumor even in necrotic areas, which places great hope for the treatment of radioresistant tumor. Lastly, the first PET/MR whole-body imaging is performed in non-human primate (NHP), which further demonstrates the translational potential of these bimodal NP.
Collapse
Affiliation(s)
- Vu‐Long Tran
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| | - François Lux
- Institut Lumière Matière Université Claude Bernard Lyon I CNRS UMR 5306 Villeurbanne 69622 France
- Institut Universitaire de France (IUF) Paris France
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| | - Benoit Jego
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| | - Xavier Maître
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| | | | - Claude Comtat
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| | - Sébastien Jan
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| | | | - Michael J. Evans
- Department of Radiology and Biomedical Imaging University of California San Francisco 505 Parnassus Ave San Francisco CA 94143 USA
- Department of Pharmaceutical Chemistry University of California San Francisco 505 Parnassus Ave San Francisco CA 94143 USA
- Helen Diller Family Comprehensive Cancer Center University of California San Francisco 505 Parnassus Ave San Francisco CA 94143 USA
| | - Olivier Tillement
- Institut Lumière Matière Université Claude Bernard Lyon I CNRS UMR 5306 Villeurbanne 69622 France
| | - Bertrand Kuhnast
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| | - Charles Truillet
- Laboratoire d'Imagerie Biomédicale Multimodale Paris Saclay CEA/INSERM/CNRS/Université Paris‐Saclay Orsay 91401 France
| |
Collapse
|
37
|
Accurate Transmission-Less Attenuation Correction Method for Amyloid-β Brain PET Using Deep Neural Network. ELECTRONICS 2021. [DOI: 10.3390/electronics10151836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lack of physically measured attenuation maps (μ-maps) for attenuation and scatter correction is an important technical challenge in brain-dedicated stand-alone positron emission tomography (PET) scanners. The accuracy of the calculated attenuation correction is limited by the nonuniformity of tissue composition due to pathologic conditions and the complex structure of facial bones. The aim of this study is to develop an accurate transmission-less attenuation correction method for amyloid-β (Aβ) brain PET studies. We investigated the validity of a deep convolutional neural network trained to produce a CT-derived μ-map (μ-CT) from simultaneously reconstructed activity and attenuation maps using the MLAA (maximum likelihood reconstruction of activity and attenuation) algorithm for Aβ brain PET. The performance of three different structures of U-net models (2D, 2.5D, and 3D) were compared. The U-net models generated less noisy and more uniform μ-maps than MLAA μ-maps. Among the three different U-net models, the patch-based 3D U-net model reduced noise and cross-talk artifacts more effectively. The Dice similarity coefficients between the μ-map generated using 3D U-net and μ-CT in bone and air segments were 0.83 and 0.67. All three U-net models showed better voxel-wise correlation of the μ-maps compared to MLAA. The patch-based 3D U-net model was the best. While the uptake value of MLAA yielded a high percentage error of 20% or more, the uptake value of 3D U-nets yielded the lowest percentage error within 5%. The proposed deep learning approach that requires no transmission data, anatomic image, or atlas/template for PET attenuation correction remarkably enhanced the quantitative accuracy of the simultaneously estimated MLAA μ-maps from Aβ brain PET.
Collapse
|
38
|
Xie S, Zhu Z, Zhang X, Xie Q, Yu H, Zhang Y, Xu J, Peng Q. Optical Simulation and Experimental Assessment with Time-Walk Correction of TOF-PET Detectors with Multi-Ended Readouts. SENSORS 2021; 21:s21144681. [PMID: 34300421 PMCID: PMC8309550 DOI: 10.3390/s21144681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
As a commonly used solution, the multi-ended readout can measure the depth-of-interaction (DOI) for positron emission tomography (PET) detectors. In the present study, the effects of the multi-ended readout design were investigated using the leading-edge discriminator (LED) triggers on the timing performance of time-of-flight (TOF) PET detectors. At the very first, the photon transmission model of the four detectors, namely, single-ended readout, dual-ended readout, side dual-ended readout, and triple-ended readout, was established in Tracepro. The optical simulation revealed that the light output of the multi-ended readout was higher. Meanwhile, the readout circuit could be triggered earlier. Especially, in the triple-ended readout, the light output at 0.5 ns was observed to be nearly twice that of the single-ended readout after the first scintillating photon was generated. Subsequently, a reference detector was applied to test the multi-ended readout detectors that were constructed from a 6 × 6 × 25 mm3 LYSO crystal. Each module is composed of a crystal coupled with multiple SiPMs. Accordingly, its timing performance was improved by approximately 10% after the compensation of fourth-order polynomial fitting. Finally, the compensated full-width-at-half-maximum (FWHM) coincidence timing resolutions (CTR) of the dual-ended readout, side dual-ended readout, and triple-ended readout were 216.9 ps, 231.0 ps, and 203.6 ps, respectively.
Collapse
Affiliation(s)
- Siwei Xie
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China; (S.X.); (Z.Z.); (Y.Z.)
| | - Zhiliang Zhu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China; (S.X.); (Z.Z.); (Y.Z.)
| | - Xi Zhang
- State Key Lab of Digital Manufacturing Equipment & Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China; (X.Z.); (Q.X.); (H.Y.)
| | - Qiangqiang Xie
- State Key Lab of Digital Manufacturing Equipment & Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China; (X.Z.); (Q.X.); (H.Y.)
| | - Hongsen Yu
- State Key Lab of Digital Manufacturing Equipment & Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China; (X.Z.); (Q.X.); (H.Y.)
| | - Yibin Zhang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China; (S.X.); (Z.Z.); (Y.Z.)
| | - Jianfeng Xu
- State Key Lab of Digital Manufacturing Equipment & Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430070, China; (X.Z.); (Q.X.); (H.Y.)
- Correspondence: (J.X.); (Q.P.)
| | - Qiyu Peng
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China; (S.X.); (Z.Z.); (Y.Z.)
- Correspondence: (J.X.); (Q.P.)
| |
Collapse
|
39
|
Regmi SK, Sathianathen N, Stout TE, Konety BR. MRI/PET Imaging in elevated PSA and localized prostate cancer: a narrative review. Transl Androl Urol 2021; 10:3117-3129. [PMID: 34430415 PMCID: PMC8350235 DOI: 10.21037/tau-21-374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To review the recent milestones in MRI and PET based imaging and evaluate their evolving role in the setting of elevated PSA as well as localized prostate cancer. BACKGROUND The importance of multiparametric MRI (mpMRI) and PET based imaging for the diagnosis and staging of prostate cancer cannot be understated. Accurate staging has become another significant milestone with the use of PET scans, particularly with prostate specific radiotracers like 68-Gallium Prostate Specific Membrane Antigen (68Ga-PSMA). Integrated PET/MRI systems are commercially available and can be modulated to evaluate the unique needs of localized as well as recurrent prostate cancer. METHODS A literature search was performed using PubMed and Google Scholar using the MeSH compliant and other keywords that included prostate cancer, PSA, mpMRI, PET CT, PET/MRI. CONCLUSIONS mpMRI has now established itself as the gold-standard of local prostate imaging and has been incorporated into international guidelines as part of the diagnostic work-up of prostate cancer. PSMA PET/CT has shown superiority over conventional imaging even in staging of localized prostate cancer based on recent randomized control data. Imaging parameters from PET/MRI have been shown to be associated with malignancy, Gleason score and tumour volume. As mpMRI and PSMA PET/CT become more ubiquitous and established; we can anticipate more high-quality data, cost optimization and increasing availability of PET/MRI to be ready for primetime in localized prostate cancer.
Collapse
Affiliation(s)
- Subodh K. Regmi
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | | | - Thomas E. Stout
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
40
|
Won JY, Park H, Lee S, Son JW, Chung Y, Ko GB, Kim KY, Song J, Seo S, Ryu Y, Chung JY, Lee JS. Development and Initial Results of a Brain PET Insert for Simultaneous 7-Tesla PET/MRI Using an FPGA-Only Signal Digitization Method. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:1579-1590. [PMID: 33625980 DOI: 10.1109/tmi.2021.3062066] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In study, we developed a positron emission tomography (PET) insert for simultaneous brain imaging within 7-Tesla (7T) magnetic resonance (MR) imaging scanners. The PET insert has 18 sectors, and each sector is assembled with two-layer depth-of-interaction (DOI)-capable high-resolution block detectors. The PET scanner features a 16.7-cm-long axial field-of-view (FOV) to provide entire human brain images without bed movement. The PET scanner early digitizes a large number of block detector signals at a front-end data acquisition (DAQ) board using a novel field-programmable gate array (FPGA)-only signal digitization method. All the digitized PET data from the front-end DAQ boards are transferred using gigabit transceivers via non-magnetic high-definition multimedia interface (HDMI) cables. A back-end DAQ system provides a common clock and synchronization signal for FPGAs over the HDMI cables. An active cooling system using copper heat pipes is applied for thermal regulation. All the 2.17-mm-pitch crystals with two-layer DOI information were clearly identified in the block detectors, exhibiting a system-level energy resolution of 12.6%. The PET scanner yielded clear hot-rod and Hoffman brain phantom images and demonstrated 3D PET imaging capability without bed movement. We also performed a pilot simultaneous PET/MR imaging study of a brain phantom. The PET scanner achieved a spatial resolution of 2.5 mm at the center FOV (NU 4) and a sensitivity of 18.9 kcps/MBq (NU 2) and 6.19% (NU 4) in accordance with the National Electrical Manufacturers Association (NEMA) standards.
Collapse
|
41
|
Spangler-Bickell MG, Hurley SA, Deller TW, Jansen F, Bettinardi V, Carlson M, Zeineh M, Zaharchuk G, McMillan AB. Optimizing the frame duration for data-driven rigid motion estimation in brain PET imaging. Med Phys 2021; 48:3031-3041. [PMID: 33880778 PMCID: PMC9261293 DOI: 10.1002/mp.14889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/07/2021] [Accepted: 04/02/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Data-driven rigid motion estimation for PET brain imaging is usually performed using data frames sampled at low temporal resolution to reduce the overall computation time and to provide adequate signal-to-noise ratio in the frames. In recent work it has been demonstrated that list-mode reconstructions of ultrashort frames are sufficient for motion estimation and can be performed very quickly. In this work we take the approach of using image-based registration of reconstructions of very short frames for data-driven motion estimation, and optimize a number of reconstruction and registration parameters (frame duration, MLEM iterations, image pixel size, post-smoothing filter, reference image creation, and registration metric) to ensure accurate registrations while maximizing temporal resolution and minimizing total computation time. METHODS Data from 18 F-fluorodeoxyglucose (FDG) and 18 F-florbetaben (FBB) tracer studies with varying count rates are analyzed, for PET/MR and PET/CT scanners. For framed reconstructions using various parameter combinations interframe motion is simulated and image-based registrations are performed to estimate that motion. RESULTS For FDG and FBB tracers using 4 × 105 true and scattered coincidence events per frame ensures that 95% of the registrations will be accurate to within 1 mm of the ground truth. This corresponds to a frame duration of 0.5-1 sec for typical clinical PET activity levels. Using four MLEM iterations with no subsets, a transaxial pixel size of 4 mm, a post-smoothing filter with 4-6 mm full width at half maximum, and averaging two or more frames to create the reference image provides an optimal set of parameters to produce accurate registrations while keeping the reconstruction and processing time low. CONCLUSIONS It is shown that very short frames (≤1 sec) can be used to provide accurate and quick data-driven rigid motion estimates for use in an event-by-event motion corrected reconstruction.
Collapse
Affiliation(s)
- Matthew G Spangler-Bickell
- Department of Radiology, University of Wisconsin, Madison, WI, USA
- PET/MR Engineering, GE Healthcare, Waukesha, WI, USA
| | - Samuel A Hurley
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | | | - Floris Jansen
- PET/MR Engineering, GE Healthcare, Waukesha, WI, USA
| | | | | | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Greg Zaharchuk
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Alan B McMillan
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
42
|
Baratto L, Toriihara A, Hatami N, Aparici CM, Davidzon G, Levin CS, Iagaru A. Results of a Prospective Trial to Compare 68Ga-DOTA-TATE with SiPM-Based PET/CT vs. Conventional PET/CT in Patients with Neuroendocrine Tumors. Diagnostics (Basel) 2021; 11:diagnostics11060992. [PMID: 34070751 PMCID: PMC8228776 DOI: 10.3390/diagnostics11060992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
We prospectively enrolled patients with neuroendocrine tumors (NETs). They underwent a single 68Ga-DOTA-TATE injection followed by dual imaging and were randomly scanned using first either the conventional or the silicon photomultiplier (SiPM) positron emission tomography/computed tomography (PET/CT), followed by imaging using the other system. A total of 94 patients, 44 men and 50 women, between 35 and 91 years old (mean ± SD: 63 ± 11.2), were enrolled. Fifty-two out of ninety-four participants underwent SiPM PET/CT first and a total of 162 lesions were detected using both scanners. Forty-two out of ninety-four participants underwent conventional PET/CT first and a total of 108 lesions were detected using both scanners. Regardless of whether SiPM-based PET/CT was used first or second, maximum standardized uptake value (SUVmax) of lesions measured on SiPM was on average 20% higher when comparing two scanners with all enrolled patients, and the difference was statistically significant. SiPM-based PET/CT detected 19 more lesions in 13 patients compared with conventional PET/CT. No lesions were only identified by conventional PET/CT. In conclusion, we observed higher SUVmax for lesions measured from SiPM PET/CT compared with conventional PET/CT regardless of the order of the scans. SiPM PET/CT allowed for identification of more lesions than conventional PET/CT. While delayed imaging can lead to higher SUVmax in cancer lesions, in the series of lesions identified when SiPM PET/CT was used first, this was not the case; therefore, the data suggest superior performance of the SiPM PET/CT scanner in visualizing and quantifying lesions.
Collapse
Affiliation(s)
- Lucia Baratto
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, CA 94035, USA; (N.H.); (C.M.A.); (G.D.); (A.I.)
- Correspondence: (L.B.); (A.T.)
| | - Akira Toriihara
- PET Imaging Center, Asahi General Hospital, Asahi 289-1101, Japan
- Correspondence: (L.B.); (A.T.)
| | - Negin Hatami
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, CA 94035, USA; (N.H.); (C.M.A.); (G.D.); (A.I.)
| | - Carina M. Aparici
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, CA 94035, USA; (N.H.); (C.M.A.); (G.D.); (A.I.)
| | - Guido Davidzon
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, CA 94035, USA; (N.H.); (C.M.A.); (G.D.); (A.I.)
| | - Craig S. Levin
- Molecular Imaging Program, Department of Radiology, Stanford University, Stanford, CA 94305, USA;
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, CA 94035, USA; (N.H.); (C.M.A.); (G.D.); (A.I.)
| |
Collapse
|
43
|
Fung LK, Flores RE, Gu M, Sun KL, James D, Schuck RK, Jo B, Park JH, Lee BC, Jung JH, Kim SE, Saggar M, Sacchet MD, Warnock G, Khalighi MM, Spielman D, Chin FT, Hardan AY. Thalamic and prefrontal GABA concentrations but not GABA A receptor densities are altered in high-functioning adults with autism spectrum disorder. Mol Psychiatry 2021; 26:1634-1646. [PMID: 32376999 PMCID: PMC7644591 DOI: 10.1038/s41380-020-0756-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 03/11/2020] [Accepted: 04/23/2020] [Indexed: 01/04/2023]
Abstract
The gamma aminobutyric acid (GABA) neurotransmission system has been implicated in autism spectrum disorder (ASD). Molecular neuroimaging studies incorporating simultaneous acquisitions of GABA concentrations and GABAA receptor densities can identify objective molecular markers in ASD. We measured both total GABAA receptor densities by using [18F]flumazenil positron emission tomography ([18F]FMZ-PET) and GABA concentrations by using proton magnetic resonance spectroscopy (1H-MRS) in 28 adults with ASD and 29 age-matched typically developing (TD) individuals. Focusing on the bilateral thalami and the left dorsolateral prefrontal cortex (DLPFC) as our regions of interest, we found no differences in GABAA receptor densities between ASD and TD groups. However, 1H-MRS measurements revealed significantly higher GABA/Water (GABA normalized by water signal) in the left DLPFC of individuals with ASD than that of TD controls. Furthermore, a significant gender effect was observed in the thalami, with higher GABA/Water in males than in females. Hypothesizing that thalamic GABA correlates with ASD symptom severity in gender-specific ways, we stratified by diagnosis and investigated the interaction between gender and thalamic GABA/Water in predicting Autism-Spectrum Quotient (AQ) and Ritvo Autism Asperger's Diagnostic Scale-Revised (RAADS-R) total scores. We found that gender is a significant effect modifier of thalamic GABA/Water's relationship with AQ and RAADS-R scores for individuals with ASD, but not for TD controls. When we separated the ASD participants by gender, a negative correlation between thalamic GABA/Water and AQ was observed in male ASD participants. Remarkably, in female ASD participants, a positive correlation between thalamic GABA/Water and AQ was found.
Collapse
Affiliation(s)
- Lawrence K Fung
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA.
| | - Ryan E Flores
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Meng Gu
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Kevin L Sun
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - David James
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Rachel K Schuck
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Booil Jo
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Jun Hyung Park
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Seoul, South Korea
| | - Jae Ho Jung
- Bio Imaging Korea Seoul, Co., Ltd., Seoul, South Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Seoul, South Korea
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Matthew D Sacchet
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Daniel Spielman
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Frederick T Chin
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Antonio Y Hardan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
44
|
Kang SK, Lee JS. Anatomy-guided PET reconstruction using l1bowsher prior. Phys Med Biol 2021; 66. [PMID: 33780912 DOI: 10.1088/1361-6560/abf2f7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022]
Abstract
Advances in simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) technology have led to an active investigation of the anatomy-guided regularized PET image reconstruction algorithm based on MR images. Among the various priors proposed for anatomy-guided regularized PET image reconstruction, Bowsher's method based on second-order smoothing priors sometimes suffers from over-smoothing of detailed structures. Therefore, in this study, we propose a Bowsher prior based on thel1-norm and an iteratively reweighting scheme to overcome the limitation of the original Bowsher method. In addition, we have derived a closed solution for iterative image reconstruction based on this non-smooth prior. A comparison study between the originall2and proposedl1Bowsher priors was conducted using computer simulation and real human data. In the simulation and real data application, small lesions with abnormal PET uptake were better detected by the proposedl1Bowsher prior methods than the original Bowsher prior. The originall2Bowsher leads to a decreased PET intensity in small lesions when there is no clear separation between the lesions and surrounding tissue in the anatomical prior. However, the proposedl1Bowsher prior methods showed better contrast between the tumors and surrounding tissues owing to the intrinsic edge-preserving property of the prior which is attributed to the sparseness induced byl1-norm, especially in the iterative reweighting scheme. Besides, the proposed methods demonstrated lower bias and less hyper-parameter dependency on PET intensity estimation in the regions with matched anatomical boundaries in PET and MRI. Therefore, these methods will be useful for improving the PET image quality based on the anatomical side information.
Collapse
Affiliation(s)
- Seung Kwan Kang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Brightonix Imaging Inc., Seoul 04793, Republic of Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.,Brightonix Imaging Inc., Seoul 04793, Republic of Korea
| |
Collapse
|
45
|
Performance Evaluation of SimPET-X, a PET Insert for Simultaneous Mouse Total-Body PET/MR Imaging. Mol Imaging Biol 2021; 23:703-713. [PMID: 33768465 DOI: 10.1007/s11307-021-01595-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE In this study, a small animal PET insert (SimPET-X, Brightonix Imaging Inc.) for simultaneous PET/MR imaging studies is presented. This insert covers an 11-cm-long axial field-of-view (FOV) and enables imaging of mouse total-bodies and rat heads. PROCEDURES SimPET-X comprises 16 detector modules to yield a ring diameter of 63 mm and an axial FOV of 110 mm. The detector module supports four detector blocks, each comprising two 4 × 4 SiPM arrays coupled with a 20 × 9 array of LSO crystals (1.2 × 1.2 × 10 mm3). The physical characteristics of SimPET-X were measured in accordance with the NEMA NU4-2008 standard protocol. In addition, we assessed the compatibility of SimPET-X with a small animal-dedicated MRI (M7, Aspect Imaging) and conducted phantom and animal studies. RESULTS The radial spatial resolutions at the center based on 3D OSEM without and with the warm background were 0.73 mm and 0.99 mm, respectively. The absolute peak sensitivity of the system was 10.44% with an energy window of 100-900 keV and 8.27% with an energy window of 250-750 keV. The peak NECR and scatter fraction for the mouse phantom were 348 kcps at 26.2 MBq and 22.1% with an energy window of 250-750 keV, respectively. The standard deviation of pixel value in the uniform region of an NEMA IQ phantom was 4.57%. The spillover ratios for air- and water-filled chambers were 9.0% and 11.0%, respectively. In the hot-rod phantom image reconstructed using 3D OSEM-PSF, all small rods were resolved owing to the high spatial resolution of the SimPET-X system. There was no notable interference between SimPET-X and M7 MRI. SimPET-X provided high-quality mouse images with superior spatial resolution, sensitivity, and counting rate performance. CONCLUSION SimPET-X yielded a remarkably improved sensitivity and NECR compared with SimPETTM.
Collapse
|
46
|
Wu Z, Guo B, Huang B, Zhao B, Qin Z, Hao X, Liang M, Xie J, Li S. Does the beta regularization parameter of bayesian penalized likelihood reconstruction always affect the quantification accuracy and image quality of positron emission tomography computed tomography? J Appl Clin Med Phys 2021; 22:224-233. [PMID: 33683004 PMCID: PMC7984479 DOI: 10.1002/acm2.13129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/13/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022] Open
Abstract
Purpose This study aims to provide a detailed investigation on the noise penalization factor in Bayesian penalized likelihood (BPL)‐based algorithm, with the utilization of partial volume effect correction (PVC), so as to offer the suitable beta value and optimum standardized uptake value (SUV) parameters in clinical practice for small pulmonary nodules. Methods A National Electrical Manufacturers Association (NEMA) image‐quality phantom was scanned and images were reconstructed using BPL with beta values ranged from 100 to 1000. The recovery coefficient (RC), contrast recovery (CR), and background variability (BV) were measured to assess the quantification accuracy and image quality. In the clinical assessment, lesions were categorized into sub‐centimeter (<10 mm, n = 7) group and medium size (10–30 mm, n = 16) group. Signal‐to‐noise ratio (SNR) and contrast‐to‐noise ratio (CNR) were measured to evaluate the image quality and lesion detectability. With PVC was performed, the impact of beta values on SUVs (SUVmax, SUVmean, SUVpeak) of small pulmonary nodules was evaluated. Subjective image analysis was performed by two experienced readers. Results With the increasing of beta values, RC, CR, and BV decreased gradually in the phantom work. In the clinical study, SNR and CNR of both groups increased with the beta values (P < 0.001), although the sub‐centimeter group showed increases after the beta value reached over 700. In addition, highly significant negative correlations were observed between SUVs and beta values for both lesion‐size groups before the PVC (P < 0.001 for all). After the PVC, SUVpeak measured from the sub‐centimeter group was no significantly different among different beta values (P = 0.830). Conclusion Our study suggests using SUVpeak as the quantification parameter with PVC performed to mitigate the effects of beta regularization. Beta values between 300 and 400 were preferred for pulmonary nodules smaller than 30 mm.
Collapse
Affiliation(s)
- Zhifang Wu
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
- Molecular Imaging Precision Medical Collaborative Innovation CenterShanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Binwei Guo
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Bin Huang
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Bin Zhao
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Zhixing Qin
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Xinzhong Hao
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Meng Liang
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Jun Xie
- Department of Biochemistry and Molecular BiologyShanxi Medical UniversityTaiyuanShanxiP.R. China
| | - Sijin Li
- Department of Nuclear MedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxiP.R. China
- Molecular Imaging Precision Medical Collaborative Innovation CenterShanxi Medical UniversityTaiyuanShanxiP.R. China
| |
Collapse
|
47
|
Ward RD, Amorim B, Li W, King J, Umutlu L, Groshar D, Harisinghani M, Catalano O. Abdominal and pelvic 18F-FDG PET/MR: a review of current and emerging oncologic applications. Abdom Radiol (NY) 2021; 46:1236-1248. [PMID: 32949272 DOI: 10.1007/s00261-020-02766-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Abstract
Positron emission tomography (PET) using fluorodeoxyglucose (18F-FDG) combined with magnetic resonance imaging (MR) is an emerging hybrid modality that has shown utility in evaluating abdominal and pelvic disease entities. Together, the high soft tissue contrast and metabolic/functional imaging capabilities make this modality ideal for oncologic imaging in many organ systems. Its clinical utility continues to evolve and future research will help solidify its role in oncologic imaging. In this manuscript, we aim to (1) provide an overview of the various PET/MR systems, describing the strengths and weaknesses of each system, and (2) review the oncologic applications for 18F-FDG PET/MR in the abdomen and pelvis.
Collapse
Affiliation(s)
- Ryan D Ward
- Cleveland Clinic, Department of Abdominal Imaging, 9500 Euclid Ave, L10, Cleveland, OH, 44195, USA
| | - Barbara Amorim
- Division of Nuclear Medicine, University of Campinas, Rua Vital Brasil 251, Campinas, Brazil
| | - Weier Li
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Joseph King
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45122, Essen, Germany
| | - David Groshar
- Assuta Medical Center, Habrzel 20, 6971028, Tel-Aviv, Israel
- Sackler School of Medicine, Tel-Aviv, Israel
| | - Mukesh Harisinghani
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Onofrio Catalano
- Department of Abdominal Imaging, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA.
| |
Collapse
|
48
|
Lee JS. A Review of Deep-Learning-Based Approaches for Attenuation Correction in Positron Emission Tomography. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2020.3009269] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Mannheim JG, Cheng JCK, Vafai N, Shahinfard E, English C, McKenzie J, Zhang J, Barlow L, Sossi V. Cross-validation study between the HRRT and the PET component of the SIGNA PET/MRI system with focus on neuroimaging. EJNMMI Phys 2021; 8:20. [PMID: 33635449 PMCID: PMC7910400 DOI: 10.1186/s40658-020-00349-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/16/2020] [Indexed: 01/20/2023] Open
Abstract
Background The Siemens high-resolution research tomograph (HRRT - a dedicated brain PET scanner) is to this day one of the highest resolution PET scanners; thus, it can serve as useful benchmark when evaluating performance of newer scanners. Here, we report results from a cross-validation study between the HRRT and the whole-body GE SIGNA PET/MR focusing on brain imaging. Phantom data were acquired to determine recovery coefficients (RCs), % background variability (%BG), and image voxel noise (%). Cross-validation studies were performed with six healthy volunteers using [11C]DTBZ, [11C]raclopride, and [18F]FDG. Line profiles, regional time-activity curves, regional non-displaceable binding potentials (BPND) for [11C]DTBZ and [11C]raclopride scans, and radioactivity ratios for [18F]FDG scans were calculated and compared between the HRRT and the SIGNA PET/MR. Results Phantom data showed that the PET/MR images reconstructed with an ordered subset expectation maximization (OSEM) algorithm with time-of-flight (TOF) and TOF + point spread function (PSF) + filter revealed similar RCs for the hot spheres compared to those obtained on the HRRT reconstructed with an ordinary Poisson-OSEM algorithm with PSF and PSF + filter. The PET/MR TOF + PSF reconstruction revealed the highest RCs for all hot spheres. Image voxel noise of the PET/MR system was significantly lower. Line profiles revealed excellent spatial agreement between the two systems. BPND values revealed variability of less than 10% for the [11C]DTBZ scans and 19% for [11C]raclopride (based on one subject only). Mean [18F]FDG ratios to pons showed less than 12% differences. Conclusions These results demonstrated comparable performances of the two systems in terms of RCs with lower voxel-level noise (%) present in the PET/MR system. Comparison of in vivo human data confirmed the comparability of the two systems. The whole-body GE SIGNA PET/MR system is well suited for high-resolution brain imaging as no significant performance degradation was found compared to that of the reference standard HRRT.
Collapse
Affiliation(s)
- Julia G Mannheim
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada. .,Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls University Tuebingen, Tuebingen, Germany. .,Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
| | - Ju-Chieh Kevin Cheng
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.,Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nasim Vafai
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Elham Shahinfard
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolyn English
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessamyn McKenzie
- Djavad Mowafaghian Centre for Brain Health, Pacific Parkinson's Research Centre, University of British Columbia & Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Jing Zhang
- Global MR Applications & Workflow, GE Healthcare Canada, Vancouver, British Columbia, Canada
| | - Laura Barlow
- UBC MRI Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Chen Y, Wang J, Cui C, Su Y, Jing D, Wu L, Liang P, Liang Z. Evaluating the association between brain atrophy, hypometabolism, and cognitive decline in Alzheimer's disease: a PET/MRI study. Aging (Albany NY) 2021; 13:7228-7246. [PMID: 33640881 PMCID: PMC7993730 DOI: 10.18632/aging.202580] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/14/2021] [Indexed: 11/25/2022]
Abstract
Glucose metabolism reduction and brain volume losses are widely reported in Alzheimer’s disease (AD). Considering that neuroimaging changes in the hippocampus and default mode network (DMN) are promising important candidate biomarkers and have been included in the research criteria for the diagnosis of AD, it is hypothesized that atrophy and metabolic changes of the abovementioned regions could be evaluated concurrently to fully explore the neural mechanisms underlying cognitive impairment in AD. Twenty-three AD patients and Twenty-four age-, sex- and education level-matched normal controls underwent a clinical interview, a detailed neuropsychological assessment and a simultaneous 18F-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET)/high-resolution T1-weighted magnetic resonance imaging (MRI) scan on a hybrid GE SIGNA PET/MR scanner. Brain volume and glucose metabolism were examined in patients and controls to reveal group differences. Multiple linear regression models were employed to explore the relationship between multiple imaging features and cognitive performance in AD. The AD group had significantly reduced volume in the hippocampus and DMN regions (P < 0.001) relative to that of normal controls determined by using ROI analysis. Compared to normal controls, significantly decreased metabolism in the DMN (P < 0.001) was also found in AD patients, which still survived after controlling for gray matter atrophy (P < 0.001). These findings from ROI analysis were further confirmed by whole-brain confirmatory analysis (P < 0.001, FWE-corrected). Finally, multiple linear regression results showed that impairment of multiple cognitive tasks was significantly correlated with the combination of DMN hypometabolism and atrophy in the hippocampus and DMN regions. This study demonstrated that combining functional and structural features can better explain the cognitive decline of AD patients than unimodal FDG or brain volume changes alone. These findings may have important implications for understanding the neural mechanisms of cognitive decline in AD.
Collapse
Affiliation(s)
- Yifan Chen
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junkai Wang
- Department of Psychology, Tsinghua University, Beijing, China.,School of Psychology, Capital Normal University, Beijing, China.,Beijing Key Laboratory of Learning and Cognition, Beijing, China
| | - Chunlei Cui
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yusheng Su
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Donglai Jing
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - LiYong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peipeng Liang
- School of Psychology, Capital Normal University, Beijing, China.,Beijing Key Laboratory of Learning and Cognition, Beijing, China
| | - Zhigang Liang
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|