1
|
Li B, Zeng Q, Warfield SK, Karimi D. FetDTIAlign: A deep learning framework for affine and deformable registration of fetal brain dMRI. Neuroimage 2025; 311:121190. [PMID: 40221066 DOI: 10.1016/j.neuroimage.2025.121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/31/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Diffusion MRI (dMRI) offers unique insights into the microstructure of fetal brain tissue in utero. Longitudinal and cross-sectional studies of fetal dMRI have the potential to reveal subtle but crucial changes associated with normal and abnormal neurodevelopment. However, these studies depend on precise spatial alignment of data across scans and subjects, which is particularly challenging in fetal imaging due to the low data quality, rapid brain development, and limited anatomical landmarks for accurate registration. Existing registration methods, primarily developed for superior-quality adult data, are not well-suited for addressing these complexities. To bridge this gap, we introduce FetDTIAlign, a deep learning approach tailored to fetal brain dMRI, enabling accurate affine and deformable registration. FetDTIAlign integrates a novel dual-encoder architecture and iterative feature-based inference, effectively minimizing the impact of noise and low resolution to achieve accurate alignment. Additionally, it strategically employs different network configurations and domain-specific image features at each registration stage, addressing the unique challenges of affine and deformable registration, enhancing both robustness and accuracy. We validated FetDTIAlign on a dataset covering gestational ages centered between 23 and 36 weeks, encompassing 60 white matter tracts. For all age groups, FetDTIAlign consistently showed superior anatomical correspondence and the best visual alignment in both affine and deformable registration, outperforming two classical optimization-based methods and a deep learning-based pipeline. Further validation on external data from the Developing Human Connectome Project demonstrated the generalizability of our method to data collected with different acquisition protocols. Our results show the feasibility of using deep learning for fetal brain dMRI registration, providing a more accurate and reliable alternative to classical techniques. By enabling precise cross-subject and tract-specific analyses, FetDTIAlign paves the way for new discoveries in early brain development. The code is available at https://gitlab.com/blibli/fetdtialign.
Collapse
Affiliation(s)
- Bo Li
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Qi Zeng
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Davood Karimi
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Calixto C, Cortes‐Albornoz MC, Velasco‐Annis C, Karimi D, Afacan O, Warfield SK, Gholipour A, Jaimes C. Regional Changes in the Fetal Telencephalic Wall Diffusion Metrics Across Late Second and Third Trimesters. Hum Brain Mapp 2025; 46:e70159. [PMID: 39950579 PMCID: PMC11826438 DOI: 10.1002/hbm.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
During the second and third trimesters of human gestation, the brain undergoes rapid neurodevelopment thanks to critical processes such as neuronal migration, radial glial scaffolding, and synaptic sprouting. Unfortunately, gathering high-quality MRI data on the healthy fetal brain is complex, making it challenging to understand this development. To address this issue, we conducted a study using motion-corrected diffusion tensor imaging (DTI) to analyze changes in the cortical gray matter (CP) and sub-cortical white matter (scWM) microstructure in 44 healthy fetuses between 23 and 36 weeks of gestational age. We automatically segmented these two tissues and parcellated them into eight regions based on anatomy, including the frontal, parietal, occipital, and temporal lobes, cingulate, sensory and motor cortices, and the insula. We were able to observe distinct patterns of diffusion MRI signals across these regions. Specifically, we found that in the CP, fractional anisotropy (FA) consistently decreased with age, while mean diffusivity (MD) followed a downward-open parabolic trend. Conversely, in the scWM, FA exhibited an upward-open parabolic trajectory, while MD followed a downward-open parabolic trend. Our study underscores the potential for diffusion as a biomarker for normal and abnormal neurodevelopment before birth, especially since most neurodiagnostic tools are not yet available at this stage.
Collapse
Affiliation(s)
- Camilo Calixto
- Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory. Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
- Icahn School of Medicine at Mount SinaiNew York CityNew YorkUSA
| | - Maria C. Cortes‐Albornoz
- Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory. Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
- Massachusetts General HospitalBostonMassachusettsUSA
| | - Clemente Velasco‐Annis
- Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory. Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
| | - Davood Karimi
- Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory. Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
| | - Onur Afacan
- Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory. Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
| | - Simon K. Warfield
- Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory. Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
| | - Ali Gholipour
- Harvard Medical SchoolBostonMassachusettsUSA
- Computational Radiology Laboratory. Department of RadiologyBoston Children's HospitalBostonMassachusettsUSA
- Department of Radiological SciencesUniversity of California IrvineIrvineCaliforniaUSA
| | - Camilo Jaimes
- Harvard Medical SchoolBostonMassachusettsUSA
- Massachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
3
|
Calixto C, Dorigatti Soldatelli M, Jaimes C, Pierotich L, Warfield SK, Gholipour A, Karimi D. A detailed spatiotemporal atlas of the white matter tracts for the fetal brain. Proc Natl Acad Sci U S A 2025; 122:e2410341121. [PMID: 39793058 PMCID: PMC11725871 DOI: 10.1073/pnas.2410341121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers. We employed advanced fetal dMRI processing techniques and tractography to map and characterize the developmental trajectories of these tracts. Our findings reveal that the development of these tracts is characterized by complex patterns of fractional anisotropy (FA) and mean diffusivity (MD), coinciding with the intensity of histogenic processes such as axonal growth, involution of the radial-glial scaffolding, and synaptic pruning. This atlas can serve as a useful resource for neuroscience research and clinical practice, improving our understanding of the fetal brain and potentially aiding in the early diagnosis of neurodevelopmental disorders. By detailing the normal progression of white matter tract development, the atlas can be used as a benchmark for identifying deviations that may indicate neurological anomalies or predispositions to disorders.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Matheus Dorigatti Soldatelli
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Camilo Jaimes
- Harvard Medical School, Boston, MA02115
- Massachusetts General Hospital, Boston, MA02114
| | - Lana Pierotich
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Simon K. Warfield
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Ali Gholipour
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
- Department of Radiological Sciences, University of California Irvine, Irvine, CA92868
| | - Davood Karimi
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| |
Collapse
|
4
|
Calixto C, Soldatelli MD, Li B, Vasung L, Jaimes C, Gholipour A, Warfield SK, Karimi D. White Matter Tract Crossing and Bottleneck Regions in the Fetal Brain. Hum Brain Mapp 2025; 46:e70132. [PMID: 39812160 PMCID: PMC11733681 DOI: 10.1002/hbm.70132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/26/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
There is a growing interest in using diffusion MRI to study the white matter tracts and structural connectivity of the fetal brain. Recent progress in data acquisition and processing suggests that this imaging modality has a unique role in elucidating the normal and abnormal patterns of neurodevelopment in utero. However, there have been no efforts to quantify the prevalence of crossing tracts and bottleneck regions, important issues that have been investigated for adult brains. In this work, we determined the brain regions with crossing tracts and bottlenecks between 23 and 36 gestational weeks. We performed probabilistic tractography on 62 fetal brain scans and extracted a set of 51 distinct white matter tracts, which we grouped into 10 major tract bundle groups. We analyzed the results to determine the patterns of tract crossings and bottlenecks. Our results showed that 20%-25% of the white matter voxels included two or three crossing tracts. Bottlenecks were more prevalent. Between 75% and 80% of the voxels were characterized as bottlenecks, with more than 40% of the voxels involving four or more tracts. These results highlight the relevance of these regions to key developmental processes, specifically, the dispersion of projection fibers, the protracted growth of commissural pathways, and the emergence of association tracts that contribute to the formation of complex intersection regions. These developmental interactions lead to a high prevalence of crossing fibers and bottleneck areas, reflecting the intricate organization required for establishing structural and functional connectivity. Additionally, our results highlight the challenge of fetal brain tractography and structural connectivity assessment and call for innovative image acquisition and analysis methods to mitigate these problems.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory, Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Matheus D. Soldatelli
- Computational Radiology Laboratory, Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Bo Li
- Computational Radiology Laboratory, Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Lana Vasung
- Department of Pediatrics at Boston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Camilo Jaimes
- Massachusetts General HospitalBostonMassachusettsUSA
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
- Department of Radiological SciencesUniversity of California IrvineIrvineCaliforniaUSA
| | - Simon K. Warfield
- Computational Radiology Laboratory, Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| | - Davood Karimi
- Computational Radiology Laboratory, Department of RadiologyBoston Children's Hospital, and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
5
|
Li Q, Shen S, Lei M. Sensitivity of Functional Arterial Spin Labelling in Detecting Cerebral Blood Flow Changes. Br J Hosp Med (Lond) 2024; 85:1-21. [PMID: 39831492 DOI: 10.12968/hmed.2024.0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aims/Background Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) method. ASL techniques can quantitatively measure cerebral perfusion by fitting a kinetic model to the difference between labelled images (tag images) and ones which are acquired without labelling (control images). ASL functional MRI (fMRI) provides quantitative perfusion maps by using arterial water as an endogenous tracer instead of depending on vascular blood oxygenation level.This study aimed to assess the number of pulsed ASL blocks that were needed to provide accurate and reliable regional estimates of cerebral blood flow (CBF) changes when participants engaged in visually guided saccade and fixation task; evaluate the localization to cortical control saccade versus fixation; investigate the relationship between the sensitivity of ASL fMRI and the number of blocks; and compare the sensitivity of blood oxygen level-dependent (BOLD) fMRI and ASL fMRI. Methods The experiment was a block-design paradigm consisting of two conditions: fixation and saccade. No response other than the eye movements of the participants was recorded during the scans. ASL and BOLD fMRI scans were conducted on all participants during the same session. The fMRI study consisted of two functional experiments: a CBF contrast was provided using the ASL sequence, and an optimized BOLD contrast was provided using the BOLD sequence. Results From group analysis in all divided blocks of ASL sessions (4, 6, 8...... 14, 16, 18......26, 28, 30), ASL yielded significant activation clusters in the visual cortex of the bilateral hemisphere from block 4. There was no false activation from block 4. No activation cluster was found by reversing analysis of block 2. Robust and consistent activation in the visual cortex was observed in each of the 14 divided blocks group analysis, and no activation was found in the eye field of the brain. The sensitivity of 4-block was found to be better than that of 8-block. More significant activation clusters of the visual cortex were found in BOLD than in ASL. No activation cluster of parietal eye field (PEF), frontal eye field (FEF) and supplementary eye field (SEF) was detected in ASL. The voxel size of the activation cluster increased with the increasing number of blocks, and the percent signal change in the activation cluster decreased with the escalating block number. The voxel size was positively correlated with the number of blocks (correlation coefficient = 0.98, p < 0.0001), and the percent signal change negatively correlated with the number of blocks (correlation coefficient = -0.90, p < 0.0001). Conclusion The 4-block pulsed functional ASL (fASL) presents accurate and reliable activation, with minimal time-on-task effect and little adverse impact of time, in participants engaging in visually guided saccade and fixation tasks. Despite having lower sensitivity than BOLD fMRI, ASL can determine accurate activation location. Although the time-on-task effects affect the observation for the sensitivity of ASL over task time, it is suggested that ASL fMRI may provide a powerful method for pinpointing the time-on-task effect over a long period of time.
Collapse
Affiliation(s)
- Qing Li
- Department of Neurology, Wuhan Brain Hospital, General Hospital of Yangtze River Shipping, Wuhan, Hubei, China
| | - Shan Shen
- Centre for Integrative Neuroscience and Neurodynamic, University of Reading, Reading, UK
| | - Ming Lei
- Department of Neurology, Wuhan Brain Hospital, General Hospital of Yangtze River Shipping, Wuhan, Hubei, China
| |
Collapse
|
6
|
Calixto C, Jaimes C, Soldatelli MD, Warfield SK, Gholipour A, Karimi D. Anatomically constrained tractography of the fetal brain. Neuroimage 2024; 297:120723. [PMID: 39029605 PMCID: PMC11382095 DOI: 10.1016/j.neuroimage.2024.120723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024] Open
Abstract
Diffusion-weighted Magnetic Resonance Imaging (dMRI) is increasingly used to study the fetal brain in utero. An important computation enabled by dMRI is streamline tractography, which has unique applications such as tract-specific analysis of the brain white matter and structural connectivity assessment. However, due to the low fetal dMRI data quality and the challenging nature of tractography, existing methods tend to produce highly inaccurate results. They generate many false streamlines while failing to reconstruct the streamlines that constitute the major white matter tracts. In this paper, we advocate for anatomically constrained tractography based on an accurate segmentation of the fetal brain tissue directly in the dMRI space. We develop a deep learning method to compute the segmentation automatically. Experiments on independent test data show that this method can accurately segment the fetal brain tissue and drastically improve the tractography results. It enables the reconstruction of highly curved tracts such as optic radiations. Importantly, our method infers the tissue segmentation and streamline propagation direction from a diffusion tensor fit to the dMRI data, making it applicable to routine fetal dMRI scans. The proposed method can facilitate the study of fetal brain white matter tracts with dMRI.
Collapse
Affiliation(s)
- Camilo Calixto
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Camilo Jaimes
- Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | | | - Simon K Warfield
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Ali Gholipour
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA
| | - Davood Karimi
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Calixto C, Taymourtash A, Karimi D, Snoussi H, Velasco-Annis C, Jaimes C, Gholipour A. Advances in Fetal Brain Imaging. Magn Reson Imaging Clin N Am 2024; 32:459-478. [PMID: 38944434 PMCID: PMC11216711 DOI: 10.1016/j.mric.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Over the last 20 years, there have been remarkable developments in fetal brain MR imaging analysis methods. This article delves into the specifics of structural imaging, diffusion imaging, functional MR imaging, and spectroscopy, highlighting the latest advancements in motion correction, fetal brain development atlases, and the challenges and innovations. Furthermore, this article explores the clinical applications of these advanced imaging techniques in comprehending and diagnosing fetal brain development and abnormalities.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Athena Taymourtash
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Spitalgasse 23, Wien 1090, Austria
| | - Davood Karimi
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Haykel Snoussi
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Clemente Velasco-Annis
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Camilo Jaimes
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02215, USA
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, 401 Park Dr, 7th Floor West, Boston, MA 02215, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
8
|
Calixto C, Soldatelli MD, Li B, Pierotich L, Gholipour A, Warfield SK, Karimi D. White matter tract crossing and bottleneck regions in the fetal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.603804. [PMID: 39091823 PMCID: PMC11291018 DOI: 10.1101/2024.07.20.603804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
There is a growing interest in using diffusion MRI to study the white matter tracts and structural connectivity of the fetal brain. Recent progress in data acquisition and processing suggests that this imaging modality has a unique role in elucidating the normal and abnormal patterns of neurodevelopment in utero. However, there have been no efforts to quantify the prevalence of crossing tracts and bottleneck regions, important issues that have been extensively researched for adult brains. In this work, we determined the brain regions with crossing tracts and bottlenecks between 23 and 36 gestational weeks. We performed probabilistic tractography on 59 fetal brain scans and extracted a set of 51 distinct white tracts, which we grouped into 10 major tract bundle groups. We analyzed the results to determine the patterns of tract crossings and bottlenecks. Our results showed that 20-25% of the white matter voxels included two or three crossing tracts. Bottlenecks were more prevalent. Between 75-80% of the voxels were characterized as bottlenecks, with more than 40% of the voxels involving four or more tracts. The results of this study highlight the challenge of fetal brain tractography and structural connectivity assessment and call for innovative image acquisition and analysis methods to mitigate these problems.
Collapse
Affiliation(s)
- Camilo Calixto
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matheus D Soldatelli
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Li
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lana Pierotich
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Davood Karimi
- Department of Radiology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Calixto C, Machado-Rivas F, Karimi D, Velasco C, Cortes-Albornoz MC, Afacan O, Warfield SK, Gholipour A, Jaimes C. Population Atlas Analysis of Emerging Brain Structural Connections in the Human Fetus. J Magn Reson Imaging 2024; 60:152-160. [PMID: 37842932 PMCID: PMC11018715 DOI: 10.1002/jmri.29057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND A lack of in utero imaging data hampers our understanding of the connections in the human fetal brain. Generalizing observations from postmortem subjects and premature newborns is inaccurate due to technical and biological differences. PURPOSE To evaluate changes in fetal brain structural connectivity between 23 and 35 weeks postconceptional age using a spatiotemporal atlas of diffusion tensor imaging (DTI). STUDY TYPE Retrospective. POPULATION Publicly available diffusion atlases, based on 60 healthy women (age 18-45 years) with normal prenatal care, from 23 and 35 weeks of gestation. FIELD STRENGTH/SEQUENCE 3.0 Tesla/DTI acquired with diffusion-weighted echo planar imaging (EPI). ASSESSMENT We performed whole-brain fiber tractography from DTI images. The cortical plate of each diffusion atlas was segmented and parcellated into 78 regions derived from the Edinburgh Neonatal Atlas (ENA33). Connectivity matrices were computed, representing normalized fiber connections between nodes. We examined the relationship between global efficiency (GE), local efficiency (LE), small-worldness (SW), nodal efficiency (NE), and betweenness centrality (BC) with gestational age (GA) and with laterality. STATISTICAL TESTS Linear regression was used to analyze changes in GE, LE, NE, and BC throughout gestation, and to assess changes in laterality. The t-tests were used to assess SW. P-values were corrected using Holm-Bonferroni method. A corrected P-value <0.05 was considered statistically significant. RESULTS Network analysis revealed a significant weekly increase in GE (5.83%/week, 95% CI 4.32-7.37), LE (5.43%/week, 95% CI 3.63-7.25), and presence of SW across GA. No significant hemisphere differences were found in GE (P = 0.971) or LE (P = 0.458). Increasing GA was significantly associated with increasing NE in 41 nodes, increasing BC in 3 nodes, and decreasing BC in 2 nodes. DATA CONCLUSION Extensive network development and refinement occur in the second and third trimesters, marked by a rapid increase in global integration and local segregation. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory. Department of Radiology. Boston Children’s Hospital. Boston, MA
- Harvard Medical School. Boston, MA
| | - Fedel Machado-Rivas
- Harvard Medical School. Boston, MA
- Massachusetts General Hospital. Boston, MA
| | - Davood Karimi
- Computational Radiology Laboratory. Department of Radiology. Boston Children’s Hospital. Boston, MA
- Harvard Medical School. Boston, MA
| | - Clemente Velasco
- Computational Radiology Laboratory. Department of Radiology. Boston Children’s Hospital. Boston, MA
- Harvard Medical School. Boston, MA
| | | | - Onur Afacan
- Computational Radiology Laboratory. Department of Radiology. Boston Children’s Hospital. Boston, MA
- Harvard Medical School. Boston, MA
| | - Simon K. Warfield
- Computational Radiology Laboratory. Department of Radiology. Boston Children’s Hospital. Boston, MA
- Harvard Medical School. Boston, MA
| | - Ali Gholipour
- Computational Radiology Laboratory. Department of Radiology. Boston Children’s Hospital. Boston, MA
- Harvard Medical School. Boston, MA
| | - Camilo Jaimes
- Harvard Medical School. Boston, MA
- Massachusetts General Hospital. Boston, MA
| |
Collapse
|
10
|
Calixto C, Soldatelli MD, Jaimes C, Warfield SK, Gholipour A, Karimi D. A detailed spatio-temporal atlas of the white matter tracts for the fetal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590815. [PMID: 38712296 PMCID: PMC11071632 DOI: 10.1101/2024.04.26.590815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This study presents the construction of a comprehensive spatiotemporal atlas detailing the development of white matter tracts in the fetal brain using diffusion magnetic resonance imaging (dMRI). Our research leverages data collected from fetal MRI scans conducted between 22 and 37 weeks of gestation, capturing the dynamic changes in the brain's microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers. We employed advanced fetal dMRI processing techniques and tractography to map and characterize the developmental trajectories of these tracts. Our findings reveal that the development of these tracts is characterized by complex patterns of fractional anisotropy (FA) and mean diffusivity (MD), reflecting key neurodevelopmental processes such as axonal growth, involution of the radial-glial scaffolding, and synaptic pruning. This atlas can serve as a useful resource for neuroscience research and clinical practice, improving our understanding of the fetal brain and potentially aiding in the early diagnosis of neurodevelopmental disorders. By detailing the normal progression of white matter tract development, the atlas can be used as a benchmark for identifying deviations that may indicate neurological anomalies or predispositions to disorders.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | | | - Camilo Jaimes
- Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | - Simon K Warfield
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | - Ali Gholipour
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | - Davood Karimi
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| |
Collapse
|
11
|
Calixto C, Machado-Rivas F, Cortes-Albornoz MC, Karimi D, Velasco-Annis C, Afacan O, Warfield SK, Gholipour A, Jaimes C. Characterizing microstructural development in the fetal brain using diffusion MRI from 23 to 36 weeks of gestation. Cereb Cortex 2024; 34:bhad409. [PMID: 37948665 PMCID: PMC10793585 DOI: 10.1093/cercor/bhad409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
We utilized motion-corrected diffusion tensor imaging (DTI) to evaluate microstructural changes in healthy fetal brains during the late second and third trimesters. Data were derived from fetal magnetic resonance imaging scans conducted as part of a prospective study spanning from 2013 March to 2019 May. The study included 44 fetuses between the gestational ages (GAs) of 23 and 36 weeks. We reconstructed fetal brain DTI using a motion-tracked slice-to-volume registration framework. Images were segmented into 14 regions of interest (ROIs) through label propagation using a fetal DTI atlas, with expert refinement. Statistical analysis involved assessing changes in fractional anisotropy (FA) and mean diffusivity (MD) throughout gestation using mixed-effects models, and identifying points of change in trajectory for ROIs with nonlinear trends. Results showed significant GA-related changes in FA and MD in all ROIs except in the thalamus' FA and corpus callosum's MD. Hemispheric asymmetries were found in the FA of the periventricular white matter (pvWM), intermediate zone, and subplate and in the MD of the ganglionic eminence and pvWM. This study provides valuable insight into the normal patterns of development of MD and FA in the fetal brain. These changes are closely linked with cytoarchitectonic changes and display indications of early functional specialization.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Fedel Machado-Rivas
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Maria C Cortes-Albornoz
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Davood Karimi
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Clemente Velasco-Annis
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA 02115, United States
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
| | - Camilo Jaimes
- Department of Radiology, Harvard Medical School, Boston, MA 02115, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States
| |
Collapse
|
12
|
Xu J, Moyer D, Gagoski B, Iglesias JE, Grant PE, Golland P, Adalsteinsson E. NeSVoR: Implicit Neural Representation for Slice-to-Volume Reconstruction in MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:1707-1719. [PMID: 37018704 PMCID: PMC10287191 DOI: 10.1109/tmi.2023.3236216] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Reconstructing 3D MR volumes from multiple motion-corrupted stacks of 2D slices has shown promise in imaging of moving subjects, e. g., fetal MRI. However, existing slice-to-volume reconstruction methods are time-consuming, especially when a high-resolution volume is desired. Moreover, they are still vulnerable to severe subject motion and when image artifacts are present in acquired slices. In this work, we present NeSVoR, a resolution-agnostic slice-to-volume reconstruction method, which models the underlying volume as a continuous function of spatial coordinates with implicit neural representation. To improve robustness to subject motion and other image artifacts, we adopt a continuous and comprehensive slice acquisition model that takes into account rigid inter-slice motion, point spread function, and bias fields. NeSVoR also estimates pixel-wise and slice-wise variances of image noise and enables removal of outliers during reconstruction and visualization of uncertainty. Extensive experiments are performed on both simulated and in vivo data to evaluate the proposed method. Results show that NeSVoR achieves state-of-the-art reconstruction quality while providing two to ten-fold acceleration in reconstruction times over the state-of-the-art algorithms.
Collapse
|
13
|
Liu H, Gong G, Zou W, Hu N, Wang J. Topologically preserved registration of 3D CT images with deep networks. Phys Med Biol 2023; 68. [PMID: 36623316 DOI: 10.1088/1361-6560/acb197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Objective. Computed Tomography (CT) image registration makes fast and accurate imaging-based disease diagnosis possible. We aim to develop a framework which can perform accurate local registration of organs in 3D CT images while preserving the topology of transformation.Approach. In this framework, the Faster R-CNN method is first used to detect local areas containing organs from fixed and moving images whose results are then registered with a weakly supervised deep neural network. In this network, a novel 3D channel coordinate attention (CA) module is introduced to reduce the loss of position information. The image edge loss and the organ labelling loss are used to weakly supervise the training process of our deep network, which enables the network learning to focus on registering organs and image structures. An intuitive inverse module is also used to reduce the folding of deformation field. More specifically, the folding is suppressed directly by simultaneously maximizing forward and backward registration accuracy in the image domain rather than indirectly by measuring the consistency of forward and inverse deformation fields as usual.Main results. Our method achieves an average dice similarity coefficient (DSC) of 0.954 and an average Similarity (Sim) of 0.914 on publicly available liver datasets (LiTS for training and Sliver07 for testing) and achieves an average DSC of 0.914 and an average Sim of 0.947 on our home-built left ventricular myocardium (LVM) dataset.Significance. Experimental results show that our proposed method can significantly improve the registration accuracy of organs such as the liver and LVM. Moreover, our inverse module can intuitively improve the inherent topological preservation of transformations.
Collapse
Affiliation(s)
- Huaying Liu
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, People's Republic of China
| | - Guanzhong Gong
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, People's Republic of China
| | - Wei Zou
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, People's Republic of China
| | - Nan Hu
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, People's Republic of China
| | - Jiajun Wang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|
14
|
Kebiri H, Canales-Rodríguez EJ, Lajous H, de Dumast P, Girard G, Alemán-Gómez Y, Koob M, Jakab A, Bach Cuadra M. Through-Plane Super-Resolution With Autoencoders in Diffusion Magnetic Resonance Imaging of the Developing Human Brain. Front Neurol 2022; 13:827816. [PMID: 35585848 PMCID: PMC9109939 DOI: 10.3389/fneur.2022.827816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal brain diffusion magnetic resonance images (MRI) are often acquired with a lower through-plane than in-plane resolution. This anisotropy is often overcome by classical upsampling methods such as linear or cubic interpolation. In this work, we employ an unsupervised learning algorithm using an autoencoder neural network for single-image through-plane super-resolution by leveraging a large amount of data. Our framework, which can also be used for slice outliers replacement, overperformed conventional interpolations quantitatively and qualitatively on pre-term newborns of the developing Human Connectome Project. The evaluation was performed on both the original diffusion-weighted signal and the estimated diffusion tensor maps. A byproduct of our autoencoder was its ability to act as a denoiser. The network was able to generalize fetal data with different levels of motions and we qualitatively showed its consistency, hence supporting the relevance of pre-term datasets to improve the processing of fetal brain images.
Collapse
Affiliation(s)
- Hamza Kebiri
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Erick J. Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hélène Lajous
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Priscille de Dumast
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
| | - Gabriel Girard
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yasser Alemán-Gómez
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Mériam Koob
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - András Jakab
- Center for MR Research University Children's Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Meritxell Bach Cuadra
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Tax CMW, Bastiani M, Veraart J, Garyfallidis E, Okan Irfanoglu M. What's new and what's next in diffusion MRI preprocessing. Neuroimage 2022; 249:118830. [PMID: 34965454 PMCID: PMC9379864 DOI: 10.1016/j.neuroimage.2021.118830] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/26/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Diffusion MRI (dMRI) provides invaluable information for the study of tissue microstructure and brain connectivity, but suffers from a range of imaging artifacts that greatly challenge the analysis of results and their interpretability if not appropriately accounted for. This review will cover dMRI artifacts and preprocessing steps, some of which have not typically been considered in existing pipelines or reviews, or have only gained attention in recent years: brain/skull extraction, B-matrix incompatibilities w.r.t the imaging data, signal drift, Gibbs ringing, noise distribution bias, denoising, between- and within-volumes motion, eddy currents, outliers, susceptibility distortions, EPI Nyquist ghosts, gradient deviations, B1 bias fields, and spatial normalization. The focus will be on "what's new" since the notable advances prior to and brought by the Human Connectome Project (HCP), as presented in the predecessing issue on "Mapping the Connectome" in 2013. In addition to the development of novel strategies for dMRI preprocessing, exciting progress has been made in the availability of open source tools and reproducible pipelines, databases and simulation tools for the evaluation of preprocessing steps, and automated quality control frameworks, amongst others. Finally, this review will consider practical considerations and our view on "what's next" in dMRI preprocessing.
Collapse
Affiliation(s)
- Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, The Netherlands; Cardiff University Brain Research Imaging Centre, School of Physics and Astronomy, Cardiff University, UK.
| | - Matteo Bastiani
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | - Jelle Veraart
- Center for Biomedical Imaging, New York University Grossman School of Medicine, NY, USA
| | | | - M Okan Irfanoglu
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Machado-Rivas F, Afacan O, Khan S, Marami B, Velasco-Annis C, Lidov H, Warfield SK, Gholipour A, Jaimes C. Spatiotemporal changes in diffusivity and anisotropy in fetal brain tractography. Hum Brain Mapp 2021; 42:5771-5784. [PMID: 34487404 PMCID: PMC8559496 DOI: 10.1002/hbm.25653] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 02/03/2023] Open
Abstract
Population averaged diffusion atlases can be utilized to characterize complex microstructural changes with less bias than data from individual subjects. In this study, a fetal diffusion tensor imaging (DTI) atlas was used to investigate tract-based changes in anisotropy and diffusivity in vivo from 23 to 38 weeks of gestational age (GA). Healthy pregnant volunteers with typically developing fetuses were imaged at 3 T. Acquisition included structural images processed with a super-resolution algorithm and DTI images processed with a motion-tracked slice-to-volume registration algorithm. The DTI from individual subjects were used to generate 16 templates, each specific to a week of GA; this was accomplished by means of a tensor-to-tensor diffeomorphic deformable registration method integrated with kernel regression in age. Deterministic tractography was performed to outline the forceps major, forceps minor, bilateral corticospinal tracts (CST), bilateral inferior fronto-occipital fasciculus (IFOF), bilateral inferior longitudinal fasciculus (ILF), and bilateral uncinate fasciculus (UF). The mean fractional anisotropy (FA) and mean diffusivity (MD) was recorded for all tracts. For a subset of tracts (forceps major, CST, and IFOF) we manually divided the tractograms into anatomy conforming segments to evaluate within-tract changes. We found tract-specific, nonlinear, age related changes in FA and MD. Early in gestation, these trends appear to be dominated by cytoarchitectonic changes in the transient white matter fetal zones while later in gestation, trends conforming to the progression of myelination were observed. We also observed significant (local) heterogeneity in within-tract developmental trajectories for the CST, IFOF, and forceps major.
Collapse
Affiliation(s)
- Fedel Machado-Rivas
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Onur Afacan
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Shadab Khan
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Bahram Marami
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Clemente Velasco-Annis
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Hart Lidov
- Department of Pathology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Simon K Warfield
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Gholipour
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Camilo Jaimes
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Karimi D, Jaimes C, Machado-Rivas F, Vasung L, Khan S, Warfield SK, Gholipour A. Deep learning-based parameter estimation in fetal diffusion-weighted MRI. Neuroimage 2021; 243:118482. [PMID: 34455242 PMCID: PMC8573718 DOI: 10.1016/j.neuroimage.2021.118482] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) of fetal brain is challenged by frequent fetal motion and signal to noise ratio that is much lower than non-fetal imaging. As a result, accurate and robust parameter estimation in fetal DW-MRI remains an open problem. Recently, deep learning techniques have been successfully used for DW-MRI parameter estimation in non-fetal subjects. However, none of those prior works has addressed the fetal brain because obtaining reliable fetal training data is challenging. To address this problem, in this work we propose a novel methodology that utilizes fetal scans as well as scans from prematurely-born infants. High-quality newborn scans are used to estimate accurate maps of the parameter of interest. These parameter maps are then used to generate DW-MRI data that match the measurement scheme and noise distribution that are characteristic of fetal data. In order to demonstrate the effectiveness and reliability of the proposed data generation pipeline, we used the generated data to train a convolutional neural network (CNN) to estimate color fractional anisotropy (CFA). We evaluated the trained CNN on independent sets of fetal data in terms of reconstruction accuracy, precision, and expert assessment of reconstruction quality. Results showed significantly lower reconstruction error (n=100,p<0.001) and higher reconstruction precision (n=20,p<0.001) for the proposed machine learning pipeline compared with standard estimation methods. Expert assessments on 20 fetal test scans showed significantly better overall reconstruction quality (p<0.001) and more accurate reconstruction of 11 regions of interest (p<0.001) with the proposed method.
Collapse
Affiliation(s)
- Davood Karimi
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, USA.
| | - Camilo Jaimes
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, USA
| | - Fedel Machado-Rivas
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, USA
| | - Lana Vasung
- Department of Pediatrics at Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts, USA
| | - Shadab Khan
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, USA
| | - Simon K Warfield
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, USA
| | - Ali Gholipour
- Computational Radiology Laboratory (CRL), Department of Radiology, Boston Children's Hospital, and Harvard Medical School, USA
| |
Collapse
|
18
|
Machado-Rivas F, Afacan O, Khan S, Marami B, Rollins CK, Ortinau C, Velasco-Annis C, Warfield SK, Gholipour A, Jaimes C. Tractography of the Cerebellar Peduncles in Second- and Third-Trimester Fetuses. AJNR Am J Neuroradiol 2021; 42:194-200. [PMID: 33431505 PMCID: PMC7814802 DOI: 10.3174/ajnr.a6869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/24/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Little is known about microstructural development of cerebellar white matter in vivo. This study aimed to investigate developmental changes of the cerebellar peduncles in second- and third-trimester healthy fetuses using motion-corrected DTI and tractography. MATERIALS AND METHODS 3T data of 81 healthy fetuses were reviewed. Structural imaging consisted of multiplanar T2-single-shot sequences; DTI consisted of a series of 12-direction diffusion. A robust motion-tracked section-to-volume registration algorithm reconstructed images. ROI-based deterministic tractography was performed using anatomic landmarks described in postnatal tractography. Asymmetry was evaluated qualitatively with a perceived difference of >25% between sides. Linear regression evaluated gestational age as a predictor of tract volume, ADC, and fractional anisotropy. RESULTS Twenty-four cases were excluded due to low-quality reconstructions. Fifty-eight fetuses with a median gestational age of 30.6 weeks (interquartile range, 7 weeks) were analyzed. The superior cerebellar peduncle was identified in 39 subjects (69%), and it was symmetric in 15 (38%). The middle cerebellar peduncle was identified in all subjects and appeared symmetric; in 13 subjects (22%), two distinct subcomponents were identified. The inferior cerebellar peduncle was not found in any subject. There was a significant increase in volume for the superior cerebellar peduncle and middle cerebellar peduncle (both, P < .05), an increase in fractional anisotropy (both, P < .001), and a decrease in ADC (both, P < .001) with gestational age. The middle cerebellar peduncle had higher volume (P < .001) and fractional anisotropy (P = .002) and lower ADC (P < .001) than the superior cerebellar peduncle after controlling for gestational age. CONCLUSIONS A robust motion-tracked section-to-volume registration algorithm enabled deterministic tractography of the superior cerebellar peduncle and middle cerebellar peduncle in vivo and allowed characterization of developmental changes.
Collapse
Affiliation(s)
- F Machado-Rivas
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - O Afacan
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - S Khan
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - B Marami
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - C K Rollins
- Department of Radiology, Department of Neurology (C.K.R.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - C Ortinau
- Department of Pediatrics (C.O.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - C Velasco-Annis
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
| | - S K Warfield
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - A Gholipour
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - C Jaimes
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center (C.J.), Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| |
Collapse
|
19
|
Coll-Font J, Afacan O, Hoge S, Garg H, Shashi K, Marami B, Gholipour A, Chow J, Warfield S, Kurugol S. Retrospective Distortion and Motion Correction for Free-Breathing DW-MRI of the Kidneys Using Dual-Echo EPI and Slice-to-Volume Registration. J Magn Reson Imaging 2021; 53:1432-1443. [PMID: 33382173 DOI: 10.1002/jmri.27473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Diffusion-weighted MRI (DW-MRI) of the kidneys is a technique that provides information about the microstructure of renal tissue without requiring exogenous contrasts such as gadolinium, and it can be used for diagnosis in cases of renal disease and assessing response-to-therapy. However, physiological motion and large geometric distortions due to main B0 field inhomogeneities degrade the image quality, reduce the accuracy of quantitative imaging markers, and impede their subsequent clinical applicability. PURPOSE To retrospectively correct for geometric distortion for free-breathing DW-MRI of the kidneys at 3T, in the presence of a nonstatic distortion field due to breathing and bulk motion. STUDY TYPE Prospective. SUBJECTS Ten healthy volunteers (ages 29-38, four females). FIELD STRENGTH/SEQUENCE 3T; DW-MR dual-echo echo-planar imaging (EPI) sequence (10 b-values and 17 directions) and a T2 volume. ASSESSMENT The distortion correction was evaluated subjectively (Likert scale 0-5) and numerically with cross-correlation between the DW images at b = 0 s/mm2 and a T2 volume. The intravoxel incoherent motion (IVIM) and diffusion tensor (DTI) model-fitting performance was evaluated using the root-mean-squared error (nRMSE) and the coefficient of variation (CV%) of their parameters. STATISTICAL TESTS Statistical comparisons were done using Wilcoxon tests. RESULTS The proposed method improved the Likert scores by 1.1 ± 0.8 (P < 0.05), the cross-correlation with the T2 reference image by 0.13 ± 0.05 (P < 0.05), and reduced the nRMSE by 0.13 ± 0.03 (P < 0.05) and 0.23 ± 0.06 (P < 0.05) for IVIM and DTI, respectively. The CV% of the IVIM parameters (slow and fast diffusion, and diffusion fraction for IVIM and mean diffusivity, and fractional anisotropy for DTI) was reduced by 2.26 ± 3.98% (P = 6.971 × 10-2 ), 11.24 ± 26.26% (P = 6.971 × 10-2 ), 4.12 ± 12.91% (P = 0.101), 3.22 ± 0.55% (P < 0.05), and 2.42 ± 1.15% (P < 0.05). DATA CONCLUSION The results indicate that the proposed Di + MoCo method can effectively correct for time-varying geometric distortions and for misalignments due to breathing motion. Consequently, the image quality and precision of the DW-MRI model parameters improved. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jaume Coll-Font
- Cardiovascular Research Center, Cardiology, Massachusetts General Hospital, 149 13th St, Charlestown, United States, 02129, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Onur Afacan
- Harvard Medical School, Boston, Massachusetts, USA
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Scott Hoge
- Harvard Medical School, Boston, Massachusetts, USA
- Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Harsha Garg
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Kumar Shashi
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Bahram Marami
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ali Gholipour
- Harvard Medical School, Boston, Massachusetts, USA
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jeanne Chow
- Harvard Medical School, Boston, Massachusetts, USA
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Simon Warfield
- Harvard Medical School, Boston, Massachusetts, USA
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sila Kurugol
- Harvard Medical School, Boston, Massachusetts, USA
- Radiology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Choi JJ, Yang E, Soul JS, Jaimes C. Fetal magnetic resonance imaging: supratentorial brain malformations. Pediatr Radiol 2020; 50:1934-1947. [PMID: 33252760 DOI: 10.1007/s00247-020-04696-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/16/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022]
Abstract
Fetal MRI is the modality of choice to study supratentorial brain malformations. To accurately interpret the MRI, the radiologist needs to understand the normal sequence of events that occurs during prenatal brain development; this includes familiarity with the processes of hemispheric cleavage, formation of interhemispheric commissures, neuro-glial proliferation and migration, and cortical folding. Disruption of these processes results in malformations observed on fetal MRI including holoprosencephaly, callosal agenesis, heterotopic gray matter, lissencephaly and other malformations of cortical development (focal cortical dysplasia, polymicrogyria). The radiologist should also be familiar with findings that have high association with specific conditions affecting the central nervous system or other organ systems. This review summarizes and illustrates common patterns of supratentorial brain malformations and emphasizes aspects that are important to patient care.
Collapse
Affiliation(s)
- Jungwhan John Choi
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, USA
| | - Janet S Soul
- Harvard Medical School, Boston, MA, USA.,Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Camilo Jaimes
- Department of Radiology, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, USA. .,Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
21
|
Singh A, Salehi SSM, Gholipour A. Deep Predictive Motion Tracking in Magnetic Resonance Imaging: Application to Fetal Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3523-3534. [PMID: 32746102 PMCID: PMC7787194 DOI: 10.1109/tmi.2020.2998600] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fetal magnetic resonance imaging (MRI) is challenged by uncontrollable, large, and irregular fetal movements. It is, therefore, performed through visual monitoring of fetal motion and repeated acquisitions to ensure diagnostic-quality images are acquired. Nevertheless, visual monitoring of fetal motion based on displayed slices, and navigation at the level of stacks-of-slices is inefficient. The current process is highly operator-dependent, increases scanner usage and cost, and significantly increases the length of fetal MRI scans which makes them hard to tolerate for pregnant women. To help build automatic MRI motion tracking and navigation systems to overcome the limitations of the current process and improve fetal imaging, we have developed a new real-time image-based motion tracking method based on deep learning that learns to predict fetal motion directly from acquired images. Our method is based on a recurrent neural network, composed of spatial and temporal encoder-decoders, that infers motion parameters from anatomical features extracted from sequences of acquired slices. We compared our trained network on held-out test sets (including data with different characteristics, e.g. different fetuses scanned at different ages, and motion trajectories recorded from volunteer subjects) with networks designed for estimation as well as methods adopted to make predictions. The results show that our method outperformed alternative techniques, and achieved real-time performance with average errors of 3.5 and 8 degrees for the estimation and prediction tasks, respectively. Our real-time deep predictive motion tracking technique can be used to assess fetal movements, to guide slice acquisitions, and to build navigation systems for fetal MRI.
Collapse
|
22
|
Christiaens D, Cordero-Grande L, Pietsch M, Hutter J, Price AN, Hughes EJ, Vecchiato K, Deprez M, Edwards AD, Hajnal JV, Tournier JD. Scattered slice SHARD reconstruction for motion correction in multi-shell diffusion MRI. Neuroimage 2020; 225:117437. [PMID: 33068713 PMCID: PMC7779423 DOI: 10.1016/j.neuroimage.2020.117437] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/22/2020] [Accepted: 10/01/2020] [Indexed: 11/18/2022] Open
Abstract
Subject motion in dMRI leads to a set of scattered slices with unique contrast. We introduce a slice-to-volume reconstruction framework for multi-shell HARDI data Based on a data-driven representation as spherical harmonics and radial decomposition (SHARD). The method is evaluated in test-retest scans and in the neonatal dHCP cohort. Results show robust reconstruction in severely motion-corrupted scans.
Diffusion MRI offers a unique probe into neural microstructure and connectivity in the developing brain. However, analysis of neonatal brain imaging data is complicated by inevitable subject motion, leading to a series of scattered slices that need to be aligned within and across diffusion-weighted contrasts. Here, we develop a reconstruction method for scattered slice multi-shell high angular resolution diffusion imaging (HARDI) data, jointly estimating an uncorrupted data representation and motion parameters at the slice or multiband excitation level. The reconstruction relies on data-driven representation of multi-shell HARDI data using a bespoke spherical harmonics and radial decomposition (SHARD), which avoids imposing model assumptions, thus facilitating to compare various microstructure imaging methods in the reconstructed output. Furthermore, the proposed framework integrates slice-level outlier rejection, distortion correction, and slice profile correction. We evaluate the method in the neonatal cohort of the developing Human Connectome Project (650 scans). Validation experiments demonstrate accurate slice-level motion correction across the age range and across the range of motion in the population. Results in the neonatal data show successful reconstruction even in severely motion-corrupted subjects. In addition, we illustrate how local tissue modelling can extract advanced microstructure features such as orientation distribution functions from the motion-corrected reconstructions.
Collapse
Affiliation(s)
- Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid & CIBER-BBN, Madrid, Spain
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Emer J Hughes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Maria Deprez
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| |
Collapse
|
23
|
Sui Y, Afacan O, Gholipour A, Warfield SK. SLIMM: Slice localization integrated MRI monitoring. Neuroimage 2020; 223:117280. [PMID: 32853815 PMCID: PMC7735257 DOI: 10.1016/j.neuroimage.2020.117280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
Functional MRI (fMRI) is extremely challenging to perform in subjects who move because subject motion disrupts blood oxygenation level dependent (BOLD) signal measurement. It has become common to use retrospective framewise motion detection and censoring in fMRI studies to eliminate artifacts arising from motion. Data censoring results in significant loss of data and statistical power unless the data acquisition is extended to acquire more data not corrupted by motion. Acquiring more data than is necessary leads to longer than necessary scan duration, which is more expensive and may lead to additional subject non-compliance. Therefore, it is well established that real-time prospective motion monitoring is crucial to ensure data quality and reduce imaging costs. In addition, real-time monitoring of motion allows for feedback to the operator and the subject during the acquisition, to enable intervention to reduce the subject motion. The most widely used form of motion monitoring for fMRI is based on volume-to-volume registration (VVR), which quantifies motion as the misalignment between subsequent volumes. However, motion is not constrained to occur only at the boundaries of volume acquisition, but instead may occur at any time. Consequently, each slice of an fMRI acquisition may be displaced by motion, and assessment of whole volume to volume motion may be insensitive to both intra-volume and inter-volume motion that is revealed by displacement of the slices. We developed the first slice-by-slice self-navigated motion monitoring system for fMRI by developing a real-time slice-to-volume registration (SVR) algorithm. Our real-time SVR algorithm, which is the core of the system, uses a local image patch-based matching criterion along with a Levenberg-Marquardt optimizer, all accelerated via symmetric multi-processing, with interleaved and simultaneous multi-slice acquisition schemes. Extensive experimental results on real motion data demonstrated that our fast motion monitoring system, named Slice Localization Integrated MRI Monitoring (SLIMM), provides more accurate motion measurements than a VVR based approach. Therefore, SLIMM offers improved online motion monitoring which is particularly important in fMRI for challenging patient populations. Real-time motion monitoring is crucial for online data quality control and assurance, for enabling feedback to the subject and the operator to act to mitigate motion, and in adaptive acquisition strategies that aim to ensure enough data of sufficient quality is acquired without acquiring excess data.
Collapse
Affiliation(s)
- Yao Sui
- Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Onur Afacan
- Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ali Gholipour
- Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Afacan O, Hoge WS, Wallace TE, Gholipour A, Kurugol S, Warfield SK. Simultaneous Motion and Distortion Correction Using Dual-Echo Diffusion-Weighted MRI. J Neuroimaging 2020; 30:276-285. [PMID: 32374453 DOI: 10.1111/jon.12708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/02/2020] [Accepted: 03/19/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Geometric distortions resulting from large pose changes reduce the accuracy of motion measurements and interfere with the ability to generate artifact-free information. Our goal is to develop an algorithm and pulse sequence to enable motion-compensated, geometric distortion compensated diffusion-weighted MRI, and to evaluate its efficacy in correcting for the field inhomogeneity and position changes, induced by large and frequent head motions. METHODS Dual echo planar imaging (EPI) with a blip-reversed phase encoding distortion correction technique was evaluated in five volunteers in two separate experiments and compared with static field map distortion correction. In the first experiment, dual-echo EPI images were acquired in two head positions designed to induce a large field inhomogeneity change. A field map and a distortion-free structural image were acquired at each position to assess the ability of dual-echo EPI to generate reliable field maps and enable geometric distortion correction in both positions. In the second experiment, volunteers were asked to move to multiple random positions during a diffusion scan. Images were reconstructed using the dual-echo correction and a slice-to-volume registration (SVR) registration algorithm. The accuracy of SVR motion estimates was compared to externally measured ground truth motion parameters. RESULTS Our results show that dual-echo EPI can produce slice-level field maps with comparable quality to field maps generated by the reference gold standard method. We also show that slice-level distortion correction improves the accuracy of SVR algorithms as slices acquired at different orientations have different levels of distortion, which can create errors in the registration process. CONCLUSIONS Dual-echo acquisitions with blip-reversed phase encoding can be used to generate slice-level distortion-free images, which is critical for motion-robust slice to volume registration. The distortion corrected images not only result in better motion estimates, but they also enable a more accurate final diffusion image reconstruction.
Collapse
Affiliation(s)
- Onur Afacan
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - W Scott Hoge
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Tess E Wallace
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Ali Gholipour
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Sila Kurugol
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
25
|
Prohl AK, Scherrer B, Tomas-Fernandez X, Davis PE, Filip-Dhima R, Prabhu SP, Peters JM, Bebin EM, Krueger DA, Northrup H, Wu JY, Sahin M, Warfield SK. Early white matter development is abnormal in tuberous sclerosis complex patients who develop autism spectrum disorder. J Neurodev Disord 2019; 11:36. [PMID: 31838998 PMCID: PMC6912944 DOI: 10.1186/s11689-019-9293-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 11/11/2019] [Indexed: 11/23/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is prevalent in tuberous sclerosis complex (TSC), occurring in approximately 50% of patients, and is hypothesized to be caused by disruption of neural circuits early in life. Tubers, or benign hamartomas distributed stochastically throughout the brain, are the most conspicuous of TSC neuropathology, but have not been consistently associated with ASD. Widespread neuropathology of the white matter, including deficits in myelination, neuronal migration, and axon formation, exist and may underlie ASD in TSC. We sought to identify the neural circuits associated with ASD in TSC by identifying white matter microstructural deficits in a prospectively recruited, longitudinally studied cohort of TSC infants. Methods TSC infants were recruited within their first year of life and longitudinally imaged at time of recruitment, 12 months of age, and at 24 months of age. Autism was diagnosed at 24 months of age with the ADOS-2. There were 108 subjects (62 TSC-ASD, 55% male; 46 TSC+ASD, 52% male) with at least one MRI and a 24-month ADOS, for a total of 187 MRI scans analyzed (109 TSC-ASD; 78 TSC+ASD). Diffusion tensor imaging properties of multiple white matter fiber bundles were sampled using a region of interest approach. Linear mixed effects modeling was performed to test the hypothesis that infants who develop ASD exhibit poor white matter microstructural integrity over the first 2 years of life compared to those who do not develop ASD. Results Subjects with TSC and ASD exhibited reduced fractional anisotropy in 9 of 17 white matter regions, sampled from the arcuate fasciculus, cingulum, corpus callosum, anterior limbs of the internal capsule, and the sagittal stratum, over the first 2 years of life compared to TSC subjects without ASD. Mean diffusivity trajectories did not differ between groups. Conclusions Underconnectivity across multiple white matter fiber bundles develops over the first 2 years of life in subjects with TSC and ASD. Future studies examining brain-behavior relationships are needed to determine how variation in the brain structure is associated with ASD symptoms.
Collapse
Affiliation(s)
- Anna K Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Benoit Scherrer
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Xavier Tomas-Fernandez
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Peter E Davis
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Rajna Filip-Dhima
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Sanjay P Prabhu
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Jurriaan M Peters
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA.,Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Darcy A Krueger
- Department of Neurology and Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Joyce Y Wu
- Division of Pediatric Neurology, University of California at Los Angeles Mattel Children's Hospital, David Geffen School of Medicine, University of California, California, Los Angeles, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Simon K Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts, USA.
| | | |
Collapse
|
26
|
Marami B, Scherrer B, Khan S, Afacan O, Prabhu SP, Sahin M, Warfield SK, Gholipour A. Motion-robust diffusion compartment imaging using simultaneous multi-slice acquisition. Magn Reson Med 2019; 81:3314-3329. [PMID: 30443929 PMCID: PMC6414287 DOI: 10.1002/mrm.27613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE To achieve motion-robust diffusion compartment imaging (DCI) in near continuously moving subjects based on simultaneous multi-slice, diffusion-weighted brain MRI. METHODS Simultaneous multi-slice (SMS) acquisition enables fast and dense sampling of k- and q-space. We propose to achieve motion-robust DCI via slice-level motion correction by exploiting the rigid coupling between simultaneously acquired slices. This coupling provides 3D coverage of the anatomy that substantially constraints the slice-to-volume alignment problem. This is incorporated into an explicit model of motion dynamics that handles continuous and large subject motion in robust DCI reconstruction. RESULTS We applied the proposed technique, called Motion Tracking based on Simultanous Multislice Registration (MT-SMR) to multi b-value SMS diffusion-weighted brain MRI of healthy volunteers and motion-corrupted scans of 20 pediatric subjects. Quantitative and qualitative evaluation based on fractional anisotropy in unidirectional fiber regions, and DCI in crossing-fiber regions show robust reconstruction in the presence of motion. CONCLUSION The proposed approach has the potential to extend routine use of SMS DCI in very challenging populations, such as young children, newborns, and non-cooperative patients.
Collapse
Affiliation(s)
- Bahram Marami
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Icahn School of Medicine at Mount Sinai New York, New York
| | - Benoit Scherrer
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Shadab Khan
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Onur Afacan
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Sanjay P Prabhu
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- Harvard Medical School, Boston, Massachusetts
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Mohseni Salehi SS, Khan S, Erdogmus D, Gholipour A. Real-Time Deep Pose Estimation With Geodesic Loss for Image-to-Template Rigid Registration. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:470-481. [PMID: 30138909 PMCID: PMC6438698 DOI: 10.1109/tmi.2018.2866442] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
With an aim to increase the capture range and accelerate the performance of state-of-the-art inter-subject and subject-to-template 3-D rigid registration, we propose deep learning-based methods that are trained to find the 3-D position of arbitrarily-oriented subjects or anatomy in a canonical space based on slices or volumes of medical images. For this, we propose regression convolutional neural networks (CNNs) that learn to predict the angle-axis representation of 3-D rotations and translations using image features. We use and compare mean square error and geodesic loss to train regression CNNs for 3-D pose estimation used in two different scenarios: slice-to-volume registration and volume-to-volume registration. As an exemplary application, we applied the proposed methods to register arbitrarily oriented reconstructed images of fetuses scanned in-utero at a wide gestational age range to a standard atlas space. Our results show that in such registration applications that are amendable to learning, the proposed deep learning methods with geodesic loss minimization achieved 3-D pose estimation with a wide capture range in real-time (<100ms). We also tested the generalization capability of the trained CNNs on an expanded age range and on images of newborn subjects with similar and different MR image contrasts. We trained our models on T2-weighted fetal brain MRI scans and used them to predict the 3-D pose of newborn brains based on T1-weighted MRI scans. We showed that the trained models generalized well for the new domain when we performed image contrast transfer through a conditional generative adversarial network. This indicates that the domain of application of the trained deep regression CNNs can be further expanded to image modalities and contrasts other than those used in training. A combination of our proposed methods with accelerated optimization-based registration algorithms can dramatically enhance the performance of automatic imaging devices and image processing methods of the future.
Collapse
|
28
|
Sairanen V, Leemans A, Tax CMW. Fast and accurate Slicewise OutLIer Detection (SOLID) with informed model estimation for diffusion MRI data. Neuroimage 2018; 181:331-346. [PMID: 29981481 DOI: 10.1016/j.neuroimage.2018.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/22/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model estimation is commonly used to exclude intensity errors as outliers. Slicewise outliers, however, become distributed over multiple adjacent slices after image registration and transformation. This challenges outlier detection with voxelwise procedures due to partial volume effects. Detecting the outlier slices before any transformations are applied to diffusion weighted images is therefore required. In this work, we present i) an automated tool coined SOLID for slicewise outlier detection prior to geometrical image transformation, and ii) a framework to naturally interpret data uncertainty information from SOLID and include it as such in model estimators. SOLID uses a straightforward intensity metric, is independent of the choice of the diffusion MRI model, and can handle datasets with a few or irregularly distributed gradient directions. The SOLID-informed estimation framework prevents the need to completely reject diffusion weighted images or individual voxel measurements by downweighting measurements with their degree of uncertainty, thereby supporting convergence and well-conditioning of iterative estimation algorithms. In comprehensive simulation experiments, SOLID detects outliers with a high sensitivity and specificity, and can achieve higher or at least similar sensitivity and specificity compared to other tools that are based on more complex and time-consuming procedures for the scenarios investigated. SOLID was further validated on data from 54 neonatal subjects which were visually inspected for outlier slices with the interactive tool developed as part of this study, showing its potential to quickly highlight problematic volumes and slices in large population studies. The informed model estimation framework was evaluated both in simulations and in vivo human data.
Collapse
Affiliation(s)
- Viljami Sairanen
- Department of Physics, University of Helsinki, Helsinki, Finland; HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - A Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - C M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, United Kingdom
| |
Collapse
|
29
|
Ma L, Cai C, Yang H, Cai S, Qian J, Xiao L, Zhong K, Chen Z. Motion-tolerant diffusion mapping based on single-shot overlapping-echo detachment (OLED) planar imaging. Magn Reson Med 2017; 80:200-210. [DOI: 10.1002/mrm.27023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Lingceng Ma
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance; Xiamen University; Xiamen China
| | - Congbo Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance; Xiamen University; Xiamen China
- Department of Communication Engineering; Xiamen University; Xiamen China
| | - Hongyi Yang
- High Magnet Field Laboratory, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences; Hefei China
| | - Shuhui Cai
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance; Xiamen University; Xiamen China
| | - Junchao Qian
- High Magnet Field Laboratory, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences; Hefei China
| | - Lizhi Xiao
- State Key Laboratory of Petroleum Resources and Prospecting; China University of Petroleum; Beijing China
| | - Kai Zhong
- High Magnet Field Laboratory, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences; Hefei China
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance; Xiamen University; Xiamen China
| |
Collapse
|
30
|
Ebner M, Chung KK, Prados F, Cardoso MJ, Chard DT, Vercauteren T, Ourselin S. Volumetric reconstruction from printed films: Enabling 30 year longitudinal analysis in MR neuroimaging. Neuroimage 2017; 165:238-250. [PMID: 29017867 PMCID: PMC5737406 DOI: 10.1016/j.neuroimage.2017.09.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/08/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022] Open
Abstract
Hospitals often hold historical MR image data printed on films without being able to make it accessible to modern image processing techniques. Having the possibility to recover geometrically consistent, volumetric images from scans acquired decades ago will enable more comprehensive, longitudinal studies to understand disease progressions. In this paper, we propose a consistent framework to reconstruct a volumetric representation from printed films holding thick single-slice brain MR image acquisitions dating back to the 1980's. We introduce a flexible framework based on semi-automatic slice extraction, followed by automated slice-to-volume registration with inter-slice transformation regularisation and slice intensity correction. Our algorithm is robust against numerous detrimental effects being present in archaic films. A subsequent, isotropic total variation deconvolution technique revitalises the visual appearance of the obtained volumes. We assess the accuracy and perform the validation of our reconstruction framework on a uniquely long-term MRI dataset where a ground-truth is available. This method will be used to facilitate a robust longitudinal analysis spanning 30 years of MRI scans.
Collapse
Affiliation(s)
- Michael Ebner
- Translational Imaging Group (TIG), Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK.
| | - Karen K Chung
- Nuclear Magnetic Resonance (NMR) Research Unit, Queen Square Multiple Sclerosis (MS) Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK.
| | - Ferran Prados
- Translational Imaging Group (TIG), Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK; Nuclear Magnetic Resonance (NMR) Research Unit, Queen Square Multiple Sclerosis (MS) Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK.
| | - M Jorge Cardoso
- Translational Imaging Group (TIG), Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK.
| | - Declan T Chard
- Nuclear Magnetic Resonance (NMR) Research Unit, Queen Square Multiple Sclerosis (MS) Centre, Department of Neuroinflammation, UCL Institute of Neurology, London, UK; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK.
| | - Tom Vercauteren
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, UK; Translational Imaging Group (TIG), Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK.
| | - Sébastien Ourselin
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, UK; Translational Imaging Group (TIG), Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK; National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC), London, UK.
| |
Collapse
|
31
|
Kurugol S, Marami B, Afacan O, Warfield SK, Gholipour A. Motion-Robust Spatially Constrained Parameter Estimation in Renal Diffusion-Weighted MRI by 3D Motion Tracking and Correction of Sequential Slices. MOLECULAR IMAGING, RECONSTRUCTION AND ANALYSIS OF MOVING BODY ORGANS, AND STROKE IMAGING AND TREATMENT : FIFTH INTERNATIONAL WORKSHOP, CMMI 2017, SECOND INTERNATIONAL WORKSHOP, RAMBO 2017, AND FIRST INTERNATIONAL WORKSHOP, SWITCH 2017, ... 2017; 10555:75-85. [PMID: 29457154 DOI: 10.1007/978-3-319-67564-0_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, we introduce a novel motion-robust spatially constrained parameter estimation (MOSCOPE) technique for kidney diffusion-weighted MRI. The proposed motion compensation technique does not require a navigator, trigger, or breath-hold but only uses the intrinsic features of the acquired data to track and compensate for motion to reconstruct precise models of the renal diffusion signal. We have developed a technique for physiological motion tracking based on robust state estimation and sequential registration of diffusion sensitized slices acquired within 200ms. This allows a sampling rate of 5Hz for state estimation in motion tracking that is sufficiently faster than both respiratory and cardiac motion rates in children and adults, which range between 0.8 to 0.2Hz, and 2.5 to 1Hz, respectively. We then apply the estimated motion parameters to data from each slice and use motion-compensated data for 1) robust intra-voxel incoherent motion (IVIM) model estimation in the kidney using a spatially constrained model fitting approach, and 2) robust weighted least squares estimation of the diffusion tensor model. Experimental results, including precision of IVIM model parameters using bootstrap-sampling and in-vivo whole kidney tractography, showed significant improvement in precision and accuracy of these models using the proposed method compared to models based on the original data and volumetric registration.
Collapse
Affiliation(s)
- Sila Kurugol
- Dept. of Radiology, Boston Children's Hospital and Harvard Medical School
| | - Bahram Marami
- Dept. of Radiology, Boston Children's Hospital and Harvard Medical School
| | - Onur Afacan
- Dept. of Radiology, Boston Children's Hospital and Harvard Medical School
| | - Simon K Warfield
- Dept. of Radiology, Boston Children's Hospital and Harvard Medical School
| | - Ali Gholipour
- Dept. of Radiology, Boston Children's Hospital and Harvard Medical School
| |
Collapse
|
32
|
Ferrante E, Paragios N. Slice-to-volume medical image registration: A survey. Med Image Anal 2017; 39:101-123. [DOI: 10.1016/j.media.2017.04.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/08/2017] [Accepted: 04/27/2017] [Indexed: 11/25/2022]
|
33
|
Marami B, Mohseni Salehi SS, Afacan O, Scherrer B, Rollins CK, Yang E, Estroff JA, Warfield SK, Gholipour A. Temporal slice registration and robust diffusion-tensor reconstruction for improved fetal brain structural connectivity analysis. Neuroimage 2017; 156:475-488. [PMID: 28433624 DOI: 10.1016/j.neuroimage.2017.04.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/14/2017] [Indexed: 01/29/2023] Open
Abstract
Diffusion weighted magnetic resonance imaging, or DWI, is one of the most promising tools for the analysis of neural microstructure and the structural connectome of the human brain. The application of DWI to map early development of the human connectome in-utero, however, is challenged by intermittent fetal and maternal motion that disrupts the spatial correspondence of data acquired in the relatively long DWI acquisitions. Fetuses move continuously during DWI scans. Reliable and accurate analysis of the fetal brain structural connectome requires careful compensation of motion effects and robust reconstruction to avoid introducing bias based on the degree of fetal motion. In this paper we introduce a novel robust algorithm to reconstruct in-vivo diffusion-tensor MRI (DTI) of the moving fetal brain and show its effect on structural connectivity analysis. The proposed algorithm involves multiple steps of image registration incorporating a dynamic registration-based motion tracking algorithm to restore the spatial correspondence of DWI data at the slice level and reconstruct DTI of the fetal brain in the standard (atlas) coordinate space. A weighted linear least squares approach is adapted to remove the effect of intra-slice motion and reconstruct DTI from motion-corrected data. The proposed algorithm was tested on data obtained from 21 healthy fetuses scanned in-utero at 22-38 weeks gestation. Significantly higher fractional anisotropy values in fiber-rich regions, and the analysis of whole-brain tractography and group structural connectivity, showed the efficacy of the proposed method compared to the analyses based on original data and previously proposed methods. The results of this study show that slice-level motion correction and robust reconstruction is necessary for reliable in-vivo structural connectivity analysis of the fetal brain. Connectivity analysis based on graph theoretic measures show high degree of modularity and clustering, and short average characteristic path lengths indicative of small-worldness property of the fetal brain network. These findings comply with previous findings in newborns and a recent study on fetuses. The proposed algorithm can provide valuable information from DWI of the fetal brain not available in the assessment of the original 2D slices and may be used to more reliably study the developing fetal brain connectome.
Collapse
Affiliation(s)
- Bahram Marami
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Seyed Sadegh Mohseni Salehi
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Department of Electrical Engineering, Northeastern University, Boston, MA, USA
| | - Onur Afacan
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Benoit Scherrer
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Caitlin K Rollins
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Judy A Estroff
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ali Gholipour
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Marami B, Scherrer B, Afacan O, Warfield SK, Gholipour A. Motion-Robust Reconstruction based on Simultaneous Multi-Slice Registration for Diffusion-Weighted MRI of Moving Subjects. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2016; 9902:544-552. [PMID: 28127590 DOI: 10.1007/978-3-319-46726-9_63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Simultaneous multi-slice (SMS) echo-planar imaging has had a huge impact on the acceleration and routine use of diffusion-weighted MRI (DWI) in neuroimaging studies in particular the human connectome project; but also holds the potential to facilitate DWI of moving subjects, as proposed by the new technique developed in this paper. We present a novel registration-based motion tracking technique that takes advantage of the multi-plane coverage of the anatomy by simultaneously acquired slices to enable robust reconstruction of neural microstructure from SMS DWI of moving subjects. Our technique constitutes three main components: 1) motion tracking and estimation using SMS registration, 2) detection and rejection of intra-slice motion, and 3) robust reconstruction. Quantitative results from 14 volunteer subject experiments and the analysis of motion-corrupted SMS DWI of 6 children indicate robust reconstruction in the presence of continuous motion and the potential to extend the use of SMS DWI in very challenging populations.
Collapse
Affiliation(s)
- Bahram Marami
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benoit Scherrer
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Onur Afacan
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Simon K Warfield
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Gholipour
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|