1
|
Liu X, Tan H, Wang W, Chen Z. Deep learning based retinal vessel segmentation and hypertensive retinopathy quantification using heterogeneous features cross-attention neural network. Front Med (Lausanne) 2024; 11:1377479. [PMID: 38841586 PMCID: PMC11150614 DOI: 10.3389/fmed.2024.1377479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Retinal vessels play a pivotal role as biomarkers in the detection of retinal diseases, including hypertensive retinopathy. The manual identification of these retinal vessels is both resource-intensive and time-consuming. The fidelity of vessel segmentation in automated methods directly depends on the fundus images' quality. In instances of sub-optimal image quality, applying deep learning-based methodologies emerges as a more effective approach for precise segmentation. We propose a heterogeneous neural network combining the benefit of local semantic information extraction of convolutional neural network and long-range spatial features mining of transformer network structures. Such cross-attention network structure boosts the model's ability to tackle vessel structures in the retinal images. Experiments on four publicly available datasets demonstrate our model's superior performance on vessel segmentation and the big potential of hypertensive retinopathy quantification.
Collapse
Affiliation(s)
- Xinghui Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Cardiovascular Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hongwen Tan
- Department of Cardiovascular Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Wu Wang
- Electrical Engineering College, Guizhou University, Guiyang, China
| | - Zhangrong Chen
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Li M, Huang K, Zeng C, Chen Q, Zhang W. Visualization and quantization of 3D retinal vessels in OCTA images. OPTICS EXPRESS 2024; 32:471-481. [PMID: 38175076 DOI: 10.1364/oe.504877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Optical coherence tomography angiography (OCTA) has been increasingly used in the analysis of ophthalmic diseases in recent years. Automatic vessel segmentation in 2D OCTA projection images is commonly used in clinical practice. However, OCTA provides a 3D volume of the retinal blood vessels with rich spatial distribution information, and it is incomplete to segment retinal vessels only in 2D projection images. Here, considering that it is difficult to manually label 3D vessels, we introduce a 3D vessel segmentation and reconstruction method for OCTA images with only 2D vessel labels. We implemented 3D vessel segmentation in the OCTA volume using a specially trained 2D vessel segmentation model. The 3D vessel segmentation results are further used to calculate 3D vessel parameters and perform 3D reconstruction. The experimental results on the public dataset OCTA-500 demonstrate that 3D vessel parameters have higher sensitivity to vascular alteration than 2D vessel parameters, which makes it meaningful for clinical analysis. The 3D vessel reconstruction provides vascular visualization in different retinal layers that can be used to monitor the development of retinal diseases. Finally, we also illustrate the use of 3D reconstruction results to determine the relationship between the location of arteries and veins.
Collapse
|
3
|
Zhou W, Bai W, Ji J, Yi Y, Zhang N, Cui W. Dual-path multi-scale context dense aggregation network for retinal vessel segmentation. Comput Biol Med 2023; 164:107269. [PMID: 37562323 DOI: 10.1016/j.compbiomed.2023.107269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/22/2023] [Accepted: 07/16/2023] [Indexed: 08/12/2023]
Abstract
There has been steady progress in the field of deep learning-based blood vessel segmentation. However, several challenging issues still continue to limit its progress, including inadequate sample sizes, the neglect of contextual information, and the loss of microvascular details. To address these limitations, we propose a dual-path deep learning framework for blood vessel segmentation. In our framework, the fundus images are divided into concentric patches with different scales to alleviate the overfitting problem. Then, a Multi-scale Context Dense Aggregation Network (MCDAU-Net) is proposed to accurately extract the blood vessel boundaries from these patches. In MCDAU-Net, a Cascaded Dilated Spatial Pyramid Pooling (CDSPP) module is designed and incorporated into intermediate layers of the model, enhancing the receptive field and producing feature maps enriched with contextual information. To improve segmentation performance for low-contrast vessels, we propose an InceptionConv (IConv) module, which can explore deeper semantic features and suppress the propagation of non-vessel information. Furthermore, we design a Multi-scale Adaptive Feature Aggregation (MAFA) module to fuse the multi-scale feature by assigning adaptive weight coefficients to different feature maps through skip connections. Finally, to explore the complementary contextual information and enhance the continuity of microvascular structures, a fusion module is designed to combine the segmentation results obtained from patches of different sizes, achieving fine microvascular segmentation performance. In order to assess the effectiveness of our approach, we conducted evaluations on three widely-used public datasets: DRIVE, CHASE-DB1, and STARE. Our findings reveal a remarkable advancement over the current state-of-the-art (SOTA) techniques, with the mean values of Se and F1 scores being an increase of 7.9% and 4.7%, respectively. The code is available at https://github.com/bai101315/MCDAU-Net.
Collapse
Affiliation(s)
- Wei Zhou
- College of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Weiqi Bai
- College of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Jianhang Ji
- College of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Yugen Yi
- School of Software, Jiangxi Normal University, Nanchang, China.
| | - Ningyi Zhang
- School of Software, Jiangxi Normal University, Nanchang, China
| | - Wei Cui
- Institute for Infocomm Research, The Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
4
|
Tan X, Chen X, Meng Q, Shi F, Xiang D, Chen Z, Pan L, Zhu W. OCT 2Former: A retinal OCT-angiography vessel segmentation transformer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 233:107454. [PMID: 36921468 DOI: 10.1016/j.cmpb.2023.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/25/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE Retinal vessel segmentation plays an important role in the automatic retinal disease screening and diagnosis. How to segment thin vessels and maintain the connectivity of vessels are the key challenges of the retinal vessel segmentation task. Optical coherence tomography angiography (OCTA) is a noninvasive imaging technique that can reveal high-resolution retinal vessels. Aiming at make full use of its characteristic of high resolution, a new end-to-end transformer based network named as OCT2Former (OCT-a Transformer) is proposed to segment retinal vessel accurately in OCTA images. METHODS The proposed OCT2Former is based on encoder-decoder structure, which mainly includes dynamic transformer encoder and lightweight decoder. Dynamic transformer encoder consists of dynamic token aggregation transformer and auxiliary convolution branch, in which the multi-head dynamic token aggregation attention based dynamic token aggregation transformer is designed to capture the global retinal vessel context information from the first layer throughout the network and the auxiliary convolution branch is proposed to compensate for the lack of inductive bias of the transformer and assist in the efficient feature extraction. A convolution based lightweight decoder is proposed to decode features efficiently and reduce the complexity of the proposed OCT2Former. RESULTS The proposed OCT2Former is validated on three publicly available datasets i.e. OCTA-SS, ROSE-1, OCTA-500 (subset OCTA-6M and OCTA-3M). The Jaccard indexes of the proposed OCT2Former on these datasets are 0.8344, 0.7855, 0.8099 and 0.8513, respectively, outperforming the best convolution based network 1.43, 1.32, 0.75 and 1.46%, respectively. CONCLUSION The experimental results have demonstrated that the proposed OCT2Former can achieve competitive performance on retinal OCTA vessel segmentation tasks.
Collapse
Affiliation(s)
- Xiao Tan
- MIPAV Lab, the School of Electronic and Information Engineering, Soochow University, Jiangsu, China
| | - Xinjian Chen
- MIPAV Lab, the School of Electronic and Information Engineering, Soochow University, Jiangsu, China; The State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu, China
| | - Qingquan Meng
- MIPAV Lab, the School of Electronic and Information Engineering, Soochow University, Jiangsu, China
| | - Fei Shi
- MIPAV Lab, the School of Electronic and Information Engineering, Soochow University, Jiangsu, China
| | - Dehui Xiang
- MIPAV Lab, the School of Electronic and Information Engineering, Soochow University, Jiangsu, China
| | - Zhongyue Chen
- MIPAV Lab, the School of Electronic and Information Engineering, Soochow University, Jiangsu, China
| | - Lingjiao Pan
- School of Electrical and Information Engineering, Jiangsu University of Technology, Jiangsu, China
| | - Weifang Zhu
- MIPAV Lab, the School of Electronic and Information Engineering, Soochow University, Jiangsu, China.
| |
Collapse
|
5
|
Kv R, Prasad K, Peralam Yegneswaran P. Segmentation and Classification Approaches of Clinically Relevant Curvilinear Structures: A Review. J Med Syst 2023; 47:40. [PMID: 36971852 PMCID: PMC10042761 DOI: 10.1007/s10916-023-01927-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/25/2023] [Indexed: 03/29/2023]
Abstract
Detection of curvilinear structures from microscopic images, which help the clinicians to make an unambiguous diagnosis is assuming paramount importance in recent clinical practice. Appearance and size of dermatophytic hyphae, keratitic fungi, corneal and retinal vessels vary widely making their automated detection cumbersome. Automated deep learning methods, endowed with superior self-learning capacity, have superseded the traditional machine learning methods, especially in complex images with challenging background. Automatic feature learning ability using large input data with better generalization and recognition capability, but devoid of human interference and excessive pre-processing, is highly beneficial in the above context. Varied attempts have been made by researchers to overcome challenges such as thin vessels, bifurcations and obstructive lesions in retinal vessel detection as revealed through several publications reviewed here. Revelations of diabetic neuropathic complications such as tortuosity, changes in the density and angles of the corneal fibers have been successfully sorted in many publications reviewed here. Since artifacts complicate the images and affect the quality of analysis, methods addressing these challenges have been described. Traditional and deep learning methods, that have been adapted and published between 2015 and 2021 covering retinal vessels, corneal nerves and filamentous fungi have been summarized in this review. We find several novel and meritorious ideas and techniques being put to use in the case of retinal vessel segmentation and classification, which by way of cross-domain adaptation can be utilized in the case of corneal and filamentous fungi also, making suitable adaptations to the challenges to be addressed.
Collapse
Affiliation(s)
- Rajitha Kv
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Keerthana Prasad
- Manipal School of Information Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Prakash Peralam Yegneswaran
- Department of Microbiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
6
|
Pan Y, Liu J, Cai Y, Yang X, Zhang Z, Long H, Zhao K, Yu X, Zeng C, Duan J, Xiao P, Li J, Cai F, Yang X, Tan Z. Fundus image classification using Inception V3 and ResNet-50 for the early diagnostics of fundus diseases. Front Physiol 2023; 14:1126780. [PMID: 36875027 PMCID: PMC9975334 DOI: 10.3389/fphys.2023.1126780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/27/2023] [Indexed: 02/17/2023] Open
Abstract
Purpose: We aim to present effective and computer aided diagnostics in the field of ophthalmology and improve eye health. This study aims to create an automated deep learning based system for categorizing fundus images into three classes: normal, macular degeneration and tessellated fundus for the timely recognition and treatment of diabetic retinopathy and other diseases. Methods: A total of 1,032 fundus images were collected from 516 patients using fundus camera from Health Management Center, Shenzhen University General Hospital Shenzhen University, Shenzhen 518055, Guangdong, China. Then, Inception V3 and ResNet-50 deep learning models are used to classify fundus images into three classes, Normal, Macular degeneration and tessellated fundus for the timely recognition and treatment of fundus diseases. Results: The experimental results show that the effect of model recognition is the best when the Adam is used as optimizer method, the number of iterations is 150, and 0.00 as the learning rate. According to our proposed approach we, achieved the highest accuracy of 93.81% and 91.76% by using ResNet-50 and Inception V3 after fine-tuned and adjusted hyper parameters according to our classification problem. Conclusion: Our research provides a reference to the clinical diagnosis or screening for diabetic retinopathy and other eye diseases. Our suggested computer aided diagnostics framework will prevent incorrect diagnoses caused by the low image quality and individual experience, and other factors. In future implementations, the ophthalmologists can implement more advanced learning algorithms to improve the accuracy of diagnosis.
Collapse
Affiliation(s)
- Yuhang Pan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Junru Liu
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Yuting Cai
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Xuemei Yang
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhucheng Zhang
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Hong Long
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Ketong Zhao
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Xia Yu
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Cui Zeng
- General Practice Alliance, Shenzhen, Guangdong, China.,University Town East Community Health Service Center, Shenzhen, Guangdong, China
| | - Jueni Duan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Ping Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Jingbo Li
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China
| | - Feiyue Cai
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China.,General Practice Alliance, Shenzhen, Guangdong, China
| | - Xiaoyun Yang
- Ophthalmology Department, Shenzhen OCT Hospital, Shenzhen, Guangdong, China
| | - Zhen Tan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, China.,General Practice Alliance, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Tan Y, Yang KF, Zhao SX, Li YJ. Retinal Vessel Segmentation With Skeletal Prior and Contrastive Loss. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2238-2251. [PMID: 35320091 DOI: 10.1109/tmi.2022.3161681] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The morphology of retinal vessels is closely associated with many kinds of ophthalmic diseases. Although huge progress in retinal vessel segmentation has been achieved with the advancement of deep learning, some challenging issues remain. For example, vessels can be disturbed or covered by other components presented in the retina (such as optic disc or lesions). Moreover, some thin vessels are also easily missed by current methods. In addition, existing fundus image datasets are generally tiny, due to the difficulty of vessel labeling. In this work, a new network called SkelCon is proposed to deal with these problems by introducing skeletal prior and contrastive loss. A skeleton fitting module is developed to preserve the morphology of the vessels and improve the completeness and continuity of thin vessels. A contrastive loss is employed to enhance the discrimination between vessels and background. In addition, a new data augmentation method is proposed to enrich the training samples and improve the robustness of the proposed model. Extensive validations were performed on several popular datasets (DRIVE, STARE, CHASE, and HRF), recently developed datasets (UoA-DR, IOSTAR, and RC-SLO), and some challenging clinical images (from RFMiD and JSIEC39 datasets). In addition, some specially designed metrics for vessel segmentation, including connectivity, overlapping area, consistency of vessel length, revised sensitivity, specificity, and accuracy were used for quantitative evaluation. The experimental results show that, the proposed model achieves state-of-the-art performance and significantly outperforms compared methods when extracting thin vessels in the regions of lesions or optic disc. Source code is available at https://www.github.com/tyb311/SkelCon.
Collapse
|
8
|
Jia D, Zhuang X. Learning-based algorithms for vessel tracking: A review. Comput Med Imaging Graph 2021; 89:101840. [PMID: 33548822 DOI: 10.1016/j.compmedimag.2020.101840] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/07/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Abstract
Developing efficient vessel-tracking algorithms is crucial for imaging-based diagnosis and treatment of vascular diseases. Vessel tracking aims to solve recognition problems such as key (seed) point detection, centerline extraction, and vascular segmentation. Extensive image-processing techniques have been developed to overcome the problems of vessel tracking that are mainly attributed to the complex morphologies of vessels and image characteristics of angiography. This paper presents a literature review on vessel-tracking methods, focusing on machine-learning-based methods. First, the conventional machine-learning-based algorithms are reviewed, and then, a general survey of deep-learning-based frameworks is provided. On the basis of the reviewed methods, the evaluation issues are introduced. The paper is concluded with discussions about the remaining exigencies and future research.
Collapse
Affiliation(s)
- Dengqiang Jia
- School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiahai Zhuang
- School of Data Science, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Giarratano Y, Bianchi E, Gray C, Morris A, MacGillivray T, Dhillon B, Bernabeu MO. Automated Segmentation of Optical Coherence Tomography Angiography Images: Benchmark Data and Clinically Relevant Metrics. Transl Vis Sci Technol 2020; 9:5. [PMID: 33344049 PMCID: PMC7718823 DOI: 10.1167/tvst.9.13.5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/18/2020] [Indexed: 01/23/2023] Open
Abstract
Purpose To generate the first open dataset of retinal parafoveal optical coherence tomography angiography (OCTA) images with associated ground truth manual segmentations, and to establish a standard for OCTA image segmentation by surveying a broad range of state-of-the-art vessel enhancement and binarization procedures. Methods Handcrafted filters and neural network architectures were used to perform vessel enhancement. Thresholding methods and machine learning approaches were applied to obtain the final binarization. Evaluation was performed by using pixelwise metrics and newly proposed topological metrics. Finally, we compare the error in the computation of clinically relevant vascular network metrics (e.g., foveal avascular zone area and vessel density) across segmentation methods. Results Our results show that, for the set of images considered, deep learning architectures (U-Net and CS-Net) achieve the best performance (Dice = 0.89). For applications where manually segmented data are not available to retrain these approaches, our findings suggest that optimally oriented flux (OOF) is the best handcrafted filter (Dice = 0.86). Moreover, our results show up to 25% differences in vessel density accuracy depending on the segmentation method used. Conclusions In this study, we derive and validate the first open dataset of retinal parafoveal OCTA images with associated ground truth manual segmentations. Our findings should be taken into account when comparing the results of clinical studies and performing meta-analyses. Finally, we release our data and source code to support standardization efforts in OCTA image segmentation. Translational Relevance This work establishes a standard for OCTA retinal image segmentation and introduces the importance of evaluating segmentation performance in terms of clinically relevant metrics.
Collapse
Affiliation(s)
| | | | - Calum Gray
- Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Andrew Morris
- Usher Institute, University of Edinburgh, Edinburgh, UK.,Health Data Research UK, London, UK
| | - Tom MacGillivray
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Baljean Dhillon
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
10
|
Mookiah MRK, Hogg S, MacGillivray TJ, Prathiba V, Pradeepa R, Mohan V, Anjana RM, Doney AS, Palmer CNA, Trucco E. A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med Image Anal 2020; 68:101905. [PMID: 33385700 DOI: 10.1016/j.media.2020.101905] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022]
Abstract
The eye affords a unique opportunity to inspect a rich part of the human microvasculature non-invasively via retinal imaging. Retinal blood vessel segmentation and classification are prime steps for the diagnosis and risk assessment of microvascular and systemic diseases. A high volume of techniques based on deep learning have been published in recent years. In this context, we review 158 papers published between 2012 and 2020, focussing on methods based on machine and deep learning (DL) for automatic vessel segmentation and classification for fundus camera images. We divide the methods into various classes by task (segmentation or artery-vein classification), technique (supervised or unsupervised, deep and non-deep learning, hand-crafted methods) and more specific algorithms (e.g. multiscale, morphology). We discuss advantages and limitations, and include tables summarising results at-a-glance. Finally, we attempt to assess the quantitative merit of DL methods in terms of accuracy improvement compared to other methods. The results allow us to offer our views on the outlook for vessel segmentation and classification for fundus camera images.
Collapse
Affiliation(s)
| | - Stephen Hogg
- VAMPIRE project, Computing (SSEN), University of Dundee, Dundee DD1 4HN, UK
| | - Tom J MacGillivray
- VAMPIRE project, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Vijayaraghavan Prathiba
- Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Rajendra Pradeepa
- Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Viswanathan Mohan
- Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Ranjit Mohan Anjana
- Madras Diabetes Research Foundation and Dr. Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai 600086, India
| | - Alexander S Doney
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Colin N A Palmer
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Emanuele Trucco
- VAMPIRE project, Computing (SSEN), University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
11
|
A Low-Cost Automated Digital Microscopy Platform for Automatic Identification of Diatoms. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Currently, microalgae (i.e., diatoms) constitute a generally accepted bioindicator of water quality and therefore provide an index of the status of biological ecosystems. Diatom detection for specimen counting and sample classification are two difficult time-consuming tasks for the few existing expert diatomists. To mitigate this challenge, in this work, we propose a fully operative low-cost automated microscope, integrating algorithms for: (1) stage and focus control, (2) image acquisition (slide scanning, stitching, contrast enhancement), and (3) diatom detection and a prospective specimen classification (among 80 taxa). Deep learning algorithms have been applied to overcome the difficult selection of image descriptors imposed by classical machine learning strategies. With respect to the mentioned strategies, the best results were obtained by deep neural networks with a maximum precision of 86% (with the YOLO network) for detection and 99.51% for classification, among 80 different species (with the AlexNet network). All the developed operational modules are integrated and controlled by the user from the developed graphical user interface running in the main controller. With the developed operative platform, it is noteworthy that this work provides a quite useful toolbox for phycologists in their daily challenging tasks to identify and classify diatoms.
Collapse
|
12
|
Lo Castro D, Tegolo D, Valenti C. A visual framework to create photorealistic retinal vessels for diagnosis purposes. J Biomed Inform 2020; 108:103490. [PMID: 32640292 DOI: 10.1016/j.jbi.2020.103490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 11/30/2022]
Abstract
The methods developed in recent years for synthesising an ocular fundus can be been divided into two main categories. The first category of methods involves the development of an anatomical model of the eye, where artificial images are generated using appropriate parameters for modelling the vascular networks and fundus. The second type of method has been made possible by the development of deep learning techniques and improvements in the performance of hardware (especially graphics cards equipped with a large number of cores). The methodology proposed here to produce high-resolution synthetic fundus images is intended to be an alternative to the increasingly widespread use of generative adversarial networks to overcome the problems that arise in producing slightly modified versions of the same real images. This will allow the simulation of pathologies and the prediction of eye-related diseases. The proposed approach is based on the principle of least action and correctly places the vessels on the simulated eye fundus without using real morphometric information. An a posteriori analysis of the average characteristics such as the size, length, bifurcations, and endpoint positioning confirmed the substantial accuracy of the proposed approach compared to real data. A graphical user interface allows the user to make any changes in real time by controlling the positions of control points.
Collapse
Affiliation(s)
- Dario Lo Castro
- Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, Italy.
| | - Domenico Tegolo
- Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, Italy; Institute of Biophysics, National Research Council, Palermo, Italy.
| | - Cesare Valenti
- Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, Italy.
| |
Collapse
|
13
|
Sengupta S, Singh A, Leopold HA, Gulati T, Lakshminarayanan V. Ophthalmic diagnosis using deep learning with fundus images - A critical review. Artif Intell Med 2019; 102:101758. [PMID: 31980096 DOI: 10.1016/j.artmed.2019.101758] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022]
Abstract
An overview of the applications of deep learning for ophthalmic diagnosis using retinal fundus images is presented. We describe various retinal image datasets that can be used for deep learning purposes. Applications of deep learning for segmentation of optic disk, optic cup, blood vessels as well as detection of lesions are reviewed. Recent deep learning models for classification of diseases such as age-related macular degeneration, glaucoma, and diabetic retinopathy are also discussed. Important critical insights and future research directions are given.
Collapse
Affiliation(s)
- Sourya Sengupta
- Theoretical and Experimental Epistemology Lab, School of Optometry and Vision Science, University of Waterloo, Ontario, Canada; Department of Systems Design Engineering, University of Waterloo, Ontario, Canada.
| | - Amitojdeep Singh
- Theoretical and Experimental Epistemology Lab, School of Optometry and Vision Science, University of Waterloo, Ontario, Canada; Department of Systems Design Engineering, University of Waterloo, Ontario, Canada
| | - Henry A Leopold
- Theoretical and Experimental Epistemology Lab, School of Optometry and Vision Science, University of Waterloo, Ontario, Canada; Department of Systems Design Engineering, University of Waterloo, Ontario, Canada
| | - Tanmay Gulati
- Department of Computer Science and Engineering, Manipal Institute of Technology, India
| | - Vasudevan Lakshminarayanan
- Theoretical and Experimental Epistemology Lab, School of Optometry and Vision Science, University of Waterloo, Ontario, Canada; Department of Systems Design Engineering, University of Waterloo, Ontario, Canada
| |
Collapse
|
14
|
Cherukuri V, G VKB, Bala R, Monga V. Deep Retinal Image Segmentation with Regularization Under Geometric Priors. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 29:2552-2567. [PMID: 31613766 DOI: 10.1109/tip.2019.2946078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Vessel segmentation of retinal images is a key diagnostic capability in ophthalmology. This problem faces several challenges including low contrast, variable vessel size and thickness, and presence of interfering pathology such as micro-aneurysms and hemorrhages. Early approaches addressing this problem employed hand-crafted filters to capture vessel structures, accompanied by morphological post-processing. More recently, deep learning techniques have been employed with significantly enhanced segmentation accuracy. We propose a novel domain enriched deep network that consists of two components: 1) a representation network that learns geometric features specific to retinal images, and 2) a custom designed computationally efficient residual task network that utilizes the features obtained from the representation layer to perform pixel-level segmentation. The representation and task networks are jointly learned for any given training set. To obtain physically meaningful and practically effective representation filters, we propose two new constraints that are inspired by expected prior structure on these filters: 1) orientation constraint that promotes geometric diversity of curvilinear features, and 2) a data adaptive noise regularizer that penalizes false positives. Multi-scale extensions are developed to enable accurate detection of thin vessels. Experiments performed on three challenging benchmark databases under a variety of training scenarios show that the proposed prior guided deep network outperforms state of the art alternatives as measured by common evaluation metrics, while being more economical in network size and inference time.
Collapse
|
15
|
Deep Learning Versus Classic Methods for Multi-taxon Diatom Segmentation. PATTERN RECOGNITION AND IMAGE ANALYSIS 2019. [DOI: 10.1007/978-3-030-31332-6_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Moriconi S, Zuluaga MA, Jager HR, Nachev P, Ourselin S, Cardoso MJ. Inference of Cerebrovascular Topology With Geodesic Minimum Spanning Trees. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:225-239. [PMID: 30059296 PMCID: PMC6319031 DOI: 10.1109/tmi.2018.2860239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
A vectorial representation of the vascular network that embodies quantitative features-location, direction, scale, and bifurcations-has many potential cardio- and neuro-vascular applications. We present VTrails, an end-to-end approach to extract geodesic vascular minimum spanning trees from angiographic data by solving a connectivity-optimized anisotropic level-set over a voxel-wise tensor field representing the orientation of the underlying vasculature. Evaluating real and synthetic vascular images, we compare VTrails against the state-of-the-art ridge detectors for tubular structures by assessing the connectedness of the vesselness map and inspecting the synthesized tensor field. The inferred geodesic trees are then quantitatively evaluated within a topologically aware framework, by comparing the proposed method against popular vascular segmentation tool kits on clinical angiographies. VTrails potentials are discussed towards integrating groupwise vascular image analyses. The performance of VTrails demonstrates its versatility and usefulness also for patient-specific applications in interventional neuroradiology and vascular surgery.
Collapse
|
17
|
Wang Y, Yao Q, Kwok JT, Ni LM. Scalable Online Convolutional Sparse Coding. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2018; 27:4850-4859. [PMID: 29969396 DOI: 10.1109/tip.2018.2842152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Convolutional sparse coding (CSC) improves sparse coding by learning a shift-invariant dictionary from the data. However, most existing CSC algorithms operate in the batch mode and are computationally expensive. In this paper, we alleviate this problem by online learning. The key is a reformulation of the CSC objective so that convolution can be handled easily in the frequency domain, and much smaller history matrices are needed. To solve the resultant optimization problem, we use the alternating direction method of multipliers (ADMMs), and its subproblems have efficient closed-form solutions. Theoretical analysis shows that the learned dictionary converges to a stationary point of the optimization problem. Extensive experiments are performed on both the standard CSC benchmark data sets and much larger data sets such as the ImageNet. Results show that the proposed algorithm outperforms the state-of-the-art batch and online CSC methods. It is more scalable, has faster convergence, and better reconstruction performance.
Collapse
|
18
|
Orlando JI, Prokofyeva E, Del Fresno M, Blaschko MB. An ensemble deep learning based approach for red lesion detection in fundus images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 153:115-127. [PMID: 29157445 DOI: 10.1016/j.cmpb.2017.10.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/06/2017] [Accepted: 10/12/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Diabetic retinopathy (DR) is one of the leading causes of preventable blindness in the world. Its earliest sign are red lesions, a general term that groups both microaneurysms (MAs) and hemorrhages (HEs). In daily clinical practice, these lesions are manually detected by physicians using fundus photographs. However, this task is tedious and time consuming, and requires an intensive effort due to the small size of the lesions and their lack of contrast. Computer-assisted diagnosis of DR based on red lesion detection is being actively explored due to its improvement effects both in clinicians consistency and accuracy. Moreover, it provides comprehensive feedback that is easy to assess by the physicians. Several methods for detecting red lesions have been proposed in the literature, most of them based on characterizing lesion candidates using hand crafted features, and classifying them into true or false positive detections. Deep learning based approaches, by contrast, are scarce in this domain due to the high expense of annotating the lesions manually. METHODS In this paper we propose a novel method for red lesion detection based on combining both deep learned and domain knowledge. Features learned by a convolutional neural network (CNN) are augmented by incorporating hand crafted features. Such ensemble vector of descriptors is used afterwards to identify true lesion candidates using a Random Forest classifier. RESULTS We empirically observed that combining both sources of information significantly improve results with respect to using each approach separately. Furthermore, our method reported the highest performance on a per-lesion basis on DIARETDB1 and e-ophtha, and for screening and need for referral on MESSIDOR compared to a second human expert. CONCLUSIONS Results highlight the fact that integrating manually engineered approaches with deep learned features is relevant to improve results when the networks are trained from lesion-level annotated data. An open source implementation of our system is publicly available at https://github.com/ignaciorlando/red-lesion-detection.
Collapse
Affiliation(s)
- José Ignacio Orlando
- Pladema Institute, UNCPBA, Gral. Pinto 399, Tandil, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina.
| | - Elena Prokofyeva
- Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium; Federal Agency for Medicines and Health Products (FAMHP), Brussels, Belgium
| | - Mariana Del Fresno
- Pladema Institute, UNCPBA, Gral. Pinto 399, Tandil, Argentina; Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, CIC-PBA, Buenos Aires, Argentina
| | | |
Collapse
|