1
|
Li D, Bian Z, Li S, He J, Zeng D, Ma J. Noise Characteristics Modeled Unsupervised Network for Robust CT Image Reconstruction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3849-3861. [PMID: 35939459 DOI: 10.1109/tmi.2022.3197400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deep learning (DL)-based methods show great potential in computed tomography (CT) imaging field. The DL-based reconstruction methods are usually evaluated on the training and testing datasets which are obtained from the same distribution, i.e., the same CT scan protocol (i.e., the region setting, kVp, mAs, etc.). In this work, we focus on analyzing the robustness of the DL-based methods against protocol-specific distribution shifts (i.e., the training and testing datasets are from different region settings, different kVp settings, or different mAs settings, respectively). The results show that the DL-based reconstruction methods are sensitive to the protocol-specific perturbations which can be attributed to the noise distribution shift between the training and testing datasets. Based on these findings, we presented a low-dose CT reconstruction method using an unsupervised strategy with the consideration of noise distribution to address the issue of protocol-specific perturbations. Specifically, unpaired sinogram data is enrolled into the network training, which represents unique information for specific imaging protocol, and a Gaussian mixture model (GMM) is introduced to characterize the noise distribution in CT images. It can be termed as GMM based unsupervised CT reconstruction network (GMM-unNet) method. Moreover, an expectation-maximization algorithm is designed to optimize the presented GMM-unNet method. Extensive experiments are performed on three datasets from different scan protocols, which demonstrate that the presented GMM-unNet method outperforms the competing methods both qualitatively and quantitatively.
Collapse
|
2
|
Venkatakrishnan S, Ziabari AK, Bingham P, Helmreich G. Model-based reconstruction for enhanced x-ray CT of dense tri-structural isotropic particles. APPLIED OPTICS 2022; 61:C73-C79. [PMID: 35201000 DOI: 10.1364/ao.439579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
Tri-structural isotropic (TRISO) fuel particles are a key component of next generation nuclear fuels. Using x-ray computed tomography (CT) to characterize TRISO particles is challenging because of the strong attenuation of the x-ray beam by the uranium core, leading to severe photon starvation in a substantial fraction of the measurements. Furthermore, the overall acquisition time for a high-resolution CT scan can be very long when using conventional laboratory-based x-ray systems and reconstruction algorithms. Specifically, when analytic methods such as the Feldkamp-Davis-Kress (FDK) algorithm are used for reconstruction, it results in severe streak artifacts and noise in the corresponding 3D volume, which makes subsequent analysis of the particles challenging. In this paper, we develop and apply model-based image reconstruction (MBIR) algorithms to improve the quality of CT reconstructions for TRISO particles to facilitate better characterization. We demonstrate that the proposed MBIR algorithms can significantly suppress artifacts with minimal pre-processing compared to conventional approaches. We also demonstrate that the proposed MBIR approach can obtain high-quality reconstruction compared to the FDK approach even when using a fraction of the typically acquired measurements, thereby enabling dramatically faster measurement times for TRISO particles.
Collapse
|
3
|
Choi S, Moon S, Baek J. A metal artifact reduction method for small field of view CT imaging. PLoS One 2021; 16:e0227656. [PMID: 33444344 PMCID: PMC7808647 DOI: 10.1371/journal.pone.0227656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Several sinogram inpainting based metal artifact reduction (MAR) methods have been proposed to reduce metal artifact in CT imaging. The sinogram inpainting method treats metal trace regions as missing data and estimates the missing information. However, a general assumption with these methods is that data truncation does not occur and that all metal objects still reside within the field-of-view (FOV). These assumptions are usually violated when the FOV is smaller than the object. Thus, existing inpainting based MAR methods are not effective. In this paper, we propose a new MAR method to effectively reduce metal artifact in the presence of data truncation. The main principle of the proposed method involves using a newly synthesized sinogram instead of the originally measured sinogram. The initial reconstruction step involves obtaining a small FOV image with the truncation artifact removed. The final step is to conduct sinogram inpainting based MAR methods, i.e., linear and normalized MAR methods, on the synthesized sinogram from the previous step. The proposed method was verified for extended cardiac-torso simulations, clinical data, and experimental data, and its performance was quantitatively compared with those of previous methods (i.e., linear and normalized MAR methods directly applied to the originally measured sinogram data). The effectiveness of the proposed method was further demonstrated by reducing the residual metal artifact that were present in the reconstructed images obtained using the previous method.
Collapse
Affiliation(s)
- Seungwon Choi
- School of Integrated Technology and Yonsei Institute of Convergence Technology, Yonsei University, Yeonsu-gu, Incheon, South Korea
| | - Seunghyuk Moon
- School of Integrated Technology and Yonsei Institute of Convergence Technology, Yonsei University, Yeonsu-gu, Incheon, South Korea
| | - Jongduk Baek
- School of Integrated Technology and Yonsei Institute of Convergence Technology, Yonsei University, Yeonsu-gu, Incheon, South Korea
- * E-mail:
| |
Collapse
|
4
|
Hao S, Liu J, Chen Y, Liu B, Wei C, Zhu J, Li B. A wavelet transform-based photon starvation artifacts suppression algorithm in CT imaging. ACTA ACUST UNITED AC 2020; 65:235039. [DOI: 10.1088/1361-6560/abb171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Ye S, Ravishankar S, Long Y, Fessler JA. SPULTRA: Low-Dose CT Image Reconstruction With Joint Statistical and Learned Image Models. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:729-741. [PMID: 31425021 PMCID: PMC7170173 DOI: 10.1109/tmi.2019.2934933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Low-dose CT image reconstruction has been a popular research topic in recent years. A typical reconstruction method based on post-log measurements is called penalized weighted-least squares (PWLS). Due to the underlying limitations of the post-log statistical model, the PWLS reconstruction quality is often degraded in low-dose scans. This paper investigates a shifted-Poisson (SP) model based likelihood function that uses the pre-log raw measurements that better represents the measurement statistics, together with a data-driven regularizer exploiting a Union of Learned TRAnsforms (SPULTRA). Both the SP induced data-fidelity term and the regularizer in the proposed framework are nonconvex. The proposed SPULTRA algorithm uses quadratic surrogate functions for the SP induced data-fidelity term. Each iteration involves a quadratic subproblem for updating the image, and a sparse coding and clustering subproblem that has a closed-form solution. The SPULTRA algorithm has a similar computational cost per iteration as its recent counterpart PWLS-ULTRA that uses post-log measurements, and it provides better image reconstruction quality than PWLS-ULTRA, especially in low-dose scans.
Collapse
|
6
|
Chang Z, Ye DH, Srivastava S, Thibault JB, Sauer K, Bouman C. Prior-Guided Metal Artifact Reduction for Iterative X-Ray Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1532-1542. [PMID: 30571617 DOI: 10.1109/tmi.2018.2886701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-attenuation materials pose significant challenges to computed tomographic imaging. Formed of high mass-density and high atomic number elements, they cause more severe beam hardening and scattering artifacts than do water-like materials. Pre-corrected line-integral density measurements are no longer linearly proportional to the path lengths, leading to reconstructed image suffering from streaking artifacts extending from metal, often along highest-density directions. In this paper, a novel prior-based iterative approach is proposed to reduce metal artifacts. It combines the superiority of statistical methods with the benefits of sinogram completion methods to estimate and correct metal-induced biases. Preliminary results show minimized residual artifacts and significantly improved image quality.
Collapse
|
7
|
Maamoun I, Khalil MM. Assessment of iterative image reconstruction on kidney and liver donors: Potential role of adaptive iterative dose reduction 3D (AIDR 3D) technology. Eur J Radiol 2018; 109:124-129. [PMID: 30527293 DOI: 10.1016/j.ejrad.2018.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/30/2018] [Accepted: 10/19/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the radiation exposure levels in two different types of subjects including liver and kidney donors in diagnostic assessment of transplant operation and also the significance of dose reduction on total effective dose. MATERIALS AND METHODS A number of Sixty subjects (40 males and 20 females, average age of 35 ± 10 years) were randomly prospectively recruited and equally divided into two distinct groups namely kidney donors (KD, 24 M and 6 F) and liver donors (LD, 21 M and 9 female). Kidney donors were divided into full dose (KFD, n = 20) group and low dose (KLD, n = 10) group. They had undergone dynamic renal scan using Tc99 m-DTPA, CT renal angiography and x-ray plain radiograph. Liver donors were divided into full dose (LFD, n = 20) and low dose (LLD, n = 10) groups and performed CT liver volumetry. The CT dose index (CTDIvol), dose length product (DLP), total milli-ampere product time mAs, effective dose and image noise index were measured in all subjects of kidney and liver donors comparing full dose and low dose protocols. RESULTS In comparison of all subjects of kidney donor groups (KFD vs KLD), the parameters (mAs = 16386.8 ± 3140.7 vs 2830.286 ± 831.676), (CTDIvol = 183.19 ± 32.58 mGy vs. 45.5 ± 13.3 mGy), DLP = 2884 ± 859.0 mGy.cm vs. 1437.5 ± 399 mGy.cm) and (effective dose = 49.0 ± 9.0 mSv vs. 18.9 mSv±5.7 mSv) were significant, p < 0.0005. Statistical evaluation of liver donors groups (LFD vs LLD) showed that (mAs = 14348.8 ± 4571.8 vs 3123.357 ± 794.5), (CTDIvol = 333.6 ± 59.5 mGy vs. 51.4 ± 13 mGy), (DLP = 3268.3 ± 604.3 mGy.cm vs 1260.5 ± 404.6 mGy.cm) and (effective dose = 43.3 mSv±12.9 mSv vs. 21.6 ± 5.9 mSv) are statistically significant, p < 0.0005. Nevertheless, the comparative evaluation of the image quality noise index of KFD vs KLD groups and LFD vs LLD showed a no statistical significance p > 0.05. CONCLUSION Renal and liver donors bear a relatively significant radiation dose due to diagnostic evaluation and patient management. The CT iterative reconstruction using AIDR3D proved very valuable tool in dose reduction such that it can reduce 37% in kidney donors and 48% in liver donors while able to maintain an acceptable image quality. Monitoring of those subjects on the clinical and radiobiological levels are recommended.
Collapse
Affiliation(s)
- I Maamoun
- Department of Intensive Care, Nuclear Cardiology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Magdy M Khalil
- Department of Physics, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
8
|
Zhang H, Wang J, Zeng D, Tao X, Ma J. Regularization strategies in statistical image reconstruction of low-dose x-ray CT: A review. Med Phys 2018; 45:e886-e907. [PMID: 30098050 PMCID: PMC6181784 DOI: 10.1002/mp.13123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 08/04/2018] [Indexed: 12/17/2022] Open
Abstract
Statistical image reconstruction (SIR) methods have shown potential to substantially improve the image quality of low-dose x-ray computed tomography (CT) as compared to the conventional filtered back-projection (FBP) method. According to the maximum a posteriori (MAP) estimation, the SIR methods are typically formulated by an objective function consisting of two terms: (a) a data-fidelity term that models imaging geometry and physical detection processes in projection data acquisition, and (b) a regularization term that reflects prior knowledge or expectations of the characteristics of the to-be-reconstructed image. SIR desires accurate system modeling of data acquisition, while the regularization term also has a strong influence on the quality of reconstructed images. A variety of regularization strategies have been proposed for SIR in the past decades, based on different assumptions, models, and prior knowledge. In this paper, we review the conceptual and mathematical bases of these regularization strategies and briefly illustrate their efficacies in SIR of low-dose CT.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiation OncologyStanford UniversityStanfordCA94304USA
| | - Jing Wang
- Department of Radiation OncologyUT Southwestern Medical CenterDallasTX75390USA
| | - Dong Zeng
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Xi Tao
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| | - Jianhua Ma
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
9
|
Zhang R, Cruz-Bastida JP, Gomez-Cardona D, Hayes JW, Li K, Chen GH. Quantitative accuracy of CT numbers: Theoretical analyses and experimental studies. Med Phys 2018; 45:4519-4528. [PMID: 30102414 DOI: 10.1002/mp.13119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022] Open
Abstract
PURPOSE The CT number accuracy, that is, CT number bias, plays an important role in clinical diagnosis. When strategies to reduce radiation dose are discussed, it is important to make sure that the CT number bias is controlled within an acceptable range. The purpose of this paper was to investigate the dependence of CT number bias on radiation dose level and on image contrast (i.e., the difference in CT number between the ROI and the background) in Computed Tomography (CT). METHODS A lesion-background model was introduced to theoretically study how the CT number bias changes with radiation exposure level and with CT number contrast when a simple linear reconstruction algorithm such as filtered backprojection (FBP) is used. The theoretical results were validated with experimental studies using a benchtop CT system equipped with a photon-counting detector (XC-HYDRA FX50, XCounter AB, Sweden) and a clinical diagnostic MDCT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI, USA) equipped with an energy-integrating detector. The Catphan phantom (Catphan 600, the Phantom Laboratory, Salem, NY, USA) was scanned at different mAs levels and 50 scans were performed for each mAs. The bias of CT number was evaluated for each combination of mAs and ROIs with different contrast levels. An anthropomorphic phantom (ATOM 10-year-old phantom, Model 706, CIRS Inc. Norfolk, VA, USA) with much more heterogeneous object content was used to test the applicability of the theory to the more general image object cases. RESULTS Both theoretical and experimental studies showed that the CT number bias is inversely proportional to the radiation exposure level yet linearly dependent on the CT number contrast between the lesion and the background, that is, Bias ( μ ^ 1 FBP ) = α mAs ( 1 + β Δ H U ) . CONCLUSIONS The quantitative accuracy of CT numbers can be problematic and thus needs some extra attention when radiation dose is reduced. In this work, we showed that the bias of the FBP reconstruction increases as mAs is reduced; both positive and negative bias can be observed depending on the contrast difference between a targeted ROI and its surrounding background tissues.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Juan P Cruz-Bastida
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Daniel Gomez-Cardona
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - John W Hayes
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Ke Li
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Guang-Hong Chen
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI, 53705, USA.,Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI, 53792, USA
| |
Collapse
|
10
|
Zhang H, Ma J, Wang J, Moore W, Liang Z. Assessment of prior image induced nonlocal means regularization for low-dose CT reconstruction: Change in anatomy. Med Phys 2018; 44:e264-e278. [PMID: 28901622 DOI: 10.1002/mp.12378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/04/2017] [Accepted: 05/18/2017] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Repeated computed tomography (CT) scans are prescribed for some clinical applications such as lung nodule surveillance. Several studies have demonstrated that incorporating a high-quality prior image into the reconstruction of subsequent low-dose CT (LDCT) acquisitions can either improve image quality or reduce data fidelity requirements. Our proposed previous normal-dose image induced nonlocal means (ndiNLM) regularization method for LDCT is an example of such a method. However, one major concern with prior image based methods is that they might produce false information when the prior image and the current LDCT image show different structures (for example, if a lung nodule emerges, grows, shrinks, or disappears over time). This study aims to assess the performance of the ndiNLM regularization method in situations with change in anatomy. METHOD We incorporated the ndiNLM regularization into the statistical image reconstruction (SIR) framework for reconstruction of subsequent LDCT images. Because of its patch-based search mechanism, a rough registration between the prior image and the current LDCT image is adequate for the SIR-ndiNLM method. We assessed the performance of the SIR-ndiNLM method in lung nodule surveillance for two different scenarios: (a) the nodule was not found in a baseline exam but appears in a follow-up LDCT scan; (b) the nodule was present in a baseline exam but disappears in a follow-up LDCT scan. We further investigated the effect of nodule size on the performance of the SIR-ndiNLM method. RESULTS We found that a relatively large search-window (e.g., 33 × 33) should be used for the SIR-ndiNLM method to account for misalignment between the prior image and the current LDCT image, and to ensure that enough similar patches can be found in the prior image. With proper selection of other parameters, experimental results with two patient datasets demonstrated that the SIR-ndiNLM method did not miss true nodules nor introduce false nodules in the lung nodule surveillance scenarios described above. We also found that the SIR-ndiNLM reconstruction shows improved image quality when the prior image is similar to the current LDCT image in anatomy. These gains in image quality might appear small upon visual inspection, but they can be detected using quantitative measures. Finally, the SIR-ndiNLM method also performed well in ultra-low-dose conditions and with different nodule sizes. CONCLUSIONS This study assessed the performance of the SIR-ndiNLM method in situations in which the prior image and the current LDCT image show substantial anatomical differences, specifically, changes in lung nodules. The experimental results demonstrate that the SIR-ndiNLM method does not introduce false lung nodules nor miss true nodules, which relieves the concern that this method might produce false information. However, there is insufficient evidence that these findings will hold true for all kinds of anatomical changes.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Radiology, Stony Brook University, NY, 11794, USA.,Department of Biomedical Engineering, Stony Brook University, NY, 11794, USA
| | - Jianhua Ma
- Department of Biomedical Engineering, Southern Medical University, Guangdong, 510515, China
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, TX, 75390, USA
| | - William Moore
- Department of Radiology, Stony Brook University, NY, 11794, USA
| | - Zhengrong Liang
- Department of Radiology, Stony Brook University, NY, 11794, USA.,Department of Biomedical Engineering, Stony Brook University, NY, 11794, USA
| |
Collapse
|