1
|
Xia Z, Zhou T, Mamoon S, Lu J. Inferring brain causal and temporal-lag networks for recognizing abnormal patterns of dementia. Med Image Anal 2024; 94:103133. [PMID: 38458094 DOI: 10.1016/j.media.2024.103133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 11/21/2022] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Brain functional network analysis has become a popular method to explore the laws of brain organization and identify biomarkers of neurological diseases. However, it is still a challenging task to construct an ideal brain network due to the limited understanding of the human brain. Existing methods often ignore the impact of temporal-lag on the results of brain network modeling, which may lead to some unreliable conclusions. To overcome this issue, we propose a novel brain functional network estimation method, which can simultaneously infer the causal mechanisms and temporal-lag values among brain regions. Specifically, our method converts the lag learning into an instantaneous effect estimation problem, and further embeds the search objectives into a deep neural network model as parameters to be learned. To verify the effectiveness of the proposed estimation method, we perform experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database by comparing the proposed model with several existing methods, including correlation-based and causality-based methods. The experimental results show that our brain networks constructed by the proposed estimation method can not only achieve promising classification performance, but also exhibit some characteristics of physiological mechanisms. Our approach provides a new perspective for understanding the pathogenesis of brain diseases. The source code is released at https://github.com/NJUSTxiazw/CTLN.
Collapse
Affiliation(s)
- Zhengwang Xia
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Tao Zhou
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Saqib Mamoon
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Jianfeng Lu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.
| |
Collapse
|
2
|
Xu Y, Guo J, Yang N, Zhu C, Zheng T, Zhao W, Liu J, Song J. Predicting rectal cancer prognosis from histopathological images and clinical information using multi-modal deep learning. Front Oncol 2024; 14:1353446. [PMID: 38690169 PMCID: PMC11060749 DOI: 10.3389/fonc.2024.1353446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Objective The objective of this study was to provide a multi-modal deep learning framework for forecasting the survival of rectal cancer patients by utilizing both digital pathological images data and non-imaging clinical data. Materials and methods The research included patients diagnosed with rectal cancer by pathological confirmation from January 2015 to December 2016. Patients were allocated to training and testing sets in a randomized manner, with a ratio of 4:1. The tissue microarrays (TMAs) and clinical indicators were obtained. Subsequently, we selected distinct deep learning models to individually forecast patient survival. We conducted a scanning procedure on the TMAs in order to transform them into digital pathology pictures. Additionally, we performed pre-processing on the clinical data of the patients. Subsequently, we selected distinct deep learning algorithms to conduct survival prediction analysis using patients' pathological images and clinical data, respectively. Results A total of 292 patients with rectal cancer were randomly allocated into two groups: a training set consisting of 234 cases, and a testing set consisting of 58 instances. Initially, we make direct predictions about the survival status by using pre-processed Hematoxylin and Eosin (H&E) pathological images of rectal cancer. We utilized the ResNest model to extract data from histopathological images of patients, resulting in a survival status prediction with an AUC (Area Under the Curve) of 0.797. Furthermore, we employ a multi-head attention fusion (MHAF) model to combine image features and clinical features in order to accurately forecast the survival rate of rectal cancer patients. The findings of our experiment show that the multi-modal structure works better than directly predicting from histopathological images. It achieves an AUC of 0.837 in predicting overall survival (OS). Conclusions Our study highlights the potential of multi-modal deep learning models in predicting survival status from histopathological images and clinical information, thus offering valuable insights for clinical applications.
Collapse
Affiliation(s)
- Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiedong Guo
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Na Yang
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Can Zhu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianlei Zheng
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Weiguo Zhao
- Artificial Intelligence Unit, Department of Medical Equipment Management, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jia Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Ma Y, Cui W, Liu J, Guo Y, Chen H, Li Y. A Multi-Graph Cross-Attention-Based Region-Aware Feature Fusion Network Using Multi-Template for Brain Disorder Diagnosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1045-1059. [PMID: 37874702 DOI: 10.1109/tmi.2023.3327283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Functional connectivity (FC) networks based on resting-state functional magnetic imaging (rs-fMRI) are reliable and sensitive for brain disorder diagnosis. However, most existing methods are limited by using a single template, which may be insufficient to reveal complex brain connectivities. Furthermore, these methods usually neglect the complementary information between static and dynamic brain networks, and the functional divergence among different brain regions, leading to suboptimal diagnosis performance. To address these limitations, we propose a novel multi-graph cross-attention based region-aware feature fusion network (MGCA-RAFFNet) by using multi-template for brain disorder diagnosis. Specifically, we first employ multi-template to parcellate the brain space into different regions of interest (ROIs). Then, a multi-graph cross-attention network (MGCAN), including static and dynamic graph convolutions, is developed to explore the deep features contained in multi-template data, which can effectively analyze complex interaction patterns of brain networks for each template, and further adopt a dual-view cross-attention (DVCA) to acquire complementary information. Finally, to efficiently fuse multiple static-dynamic features, we design a region-aware feature fusion network (RAFFNet), which is beneficial to improve the feature discrimination by considering the underlying relations among static-dynamic features in different brain regions. Our proposed method is evaluated on both public ADNI-2 and ABIDE-I datasets for diagnosing mild cognitive impairment (MCI) and autism spectrum disorder (ASD). Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art methods. Our source code is available at https://github.com/mylbuaa/MGCA-RAFFNet.
Collapse
|
4
|
Liu J, Yang W, Ma Y, Dong Q, Li Y, Hu B. Effective hyper-connectivity network construction and learning: Application to major depressive disorder identification. Comput Biol Med 2024; 171:108069. [PMID: 38394798 DOI: 10.1016/j.compbiomed.2024.108069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024]
Abstract
Functional connectivity (FC) derived from resting-state fMRI (rs-fMRI) is a primary approach for identifying brain diseases, but it is limited to capturing the pairwise correlation between regions-of-interest (ROIs) in the brain. Thus, hyper-connectivity which describes the higher-order relationship among multiple ROIs is receiving increasing attention. However, most hyper-connectivity methods overlook the directionality of connections. The direction of information flow constitutes a pivotal factor in shaping brain activity and cognitive processes. Neglecting this directional aspect can lead to an incomplete understanding of high-order interactions within the brain. To this end, we propose a novel effective hyper-connectivity (EHC) network that integrates direction detection and hyper-connectivity modeling. It characterizes the high-order directional information flow among multiple ROIs, providing a more comprehensive understanding of brain activity. Then, we develop a directed hypergraph convolutional network (DHGCN) to acquire deep representations from EHC network and functional indicators of ROIs. In contrast to conventional hypergraph convolutional networks designed for undirected hypergraphs, DHGCN is specifically tailored to handle directed hypergraph data structures. Moreover, unlike existing methods that primarily focus on fMRI time series, our proposed DHGCN model also incorporates multiple functional indicators, providing a robust framework for feature learning. Finally, deep representations generated via DHGCN, combined with demographic factors, are used for major depressive disorder (MDD) identification. Experimental results demonstrate that the proposed framework outperforms both FC and undirected hyper-connectivity models, as well as surpassing other state-of-the-art methods. The identification of EHC abnormalities through our framework can enhance the analysis of brain function in individuals with MDD.
Collapse
Affiliation(s)
- Jingyu Liu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenxin Yang
- School of Information Science and Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Yulan Ma
- School of Automation Science and Electrical Engineering, State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, 100191, China
| | - Qunxi Dong
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yang Li
- School of Automation Science and Electrical Engineering, State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, 100191, China.
| | - Bin Hu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
5
|
Liu J, Cui W, Chen Y, Ma Y, Dong Q, Cai R, Li Y, Hu B. Deep Fusion of Multi-Template Using Spatio-Temporal Weighted Multi-Hypergraph Convolutional Networks for Brain Disease Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:860-873. [PMID: 37847616 DOI: 10.1109/tmi.2023.3325261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Conventional functional connectivity network (FCN) based on resting-state fMRI (rs-fMRI) can only reflect the relationship between pairwise brain regions. Thus, the hyper-connectivity network (HCN) has been widely used to reveal high-order interactions among multiple brain regions. However, existing HCN models are essentially spatial HCN, which reflect the spatial relevance of multiple brain regions, but ignore the temporal correlation among multiple time points. Furthermore, the majority of HCN construction and learning frameworks are limited to using a single template, while the multi-template carries richer information. To address these issues, we first employ multiple templates to parcellate the rs-fMRI into different brain regions. Then, based on the multi-template data, we propose a spatio-temporal weighted HCN (STW-HCN) to capture more comprehensive high-order temporal and spatial properties of brain activity. Next, a novel deep fusion model of multi-template called spatio-temporal weighted multi-hypergraph convolutional network (STW-MHGCN) is proposed to fuse the STW-HCN of multiple templates, which extracts the deep interrelation information between different templates. Finally, we evaluate our method on the ADNI-2 and ABIDE-I datasets for mild cognitive impairment (MCI) and autism spectrum disorder (ASD) analysis. Experimental results demonstrate that the proposed method is superior to the state-of-the-art approaches in MCI and ASD classification, and the abnormal spatio-temporal hyper-edges discovered by our method have significant significance for the brain abnormalities analysis of MCI and ASD.
Collapse
|
6
|
Bian C, Xia N, Xie A, Cong S, Dong Q. Adversarially Trained Persistent Homology Based Graph Convolutional Network for Disease Identification Using Brain Connectivity. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:503-516. [PMID: 37643097 DOI: 10.1109/tmi.2023.3309874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Brain disease propagation is associated with characteristic alterations in the structural and functional connectivity networks of the brain. To identify disease-specific network representations, graph convolutional networks (GCNs) have been used because of their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks. However, existing GCNs generally focus on learning the discriminative region of interest (ROI) features, often ignoring important topological information that enables the integration of connectome patterns of brain activity. In addition, most methods fail to consider the vulnerability of GCNs to perturbations in network properties of the brain, which considerably degrades the reliability of diagnosis results. In this study, we propose an adversarially trained persistent homology-based graph convolutional network (ATPGCN) to capture disease-specific brain connectome patterns and classify brain diseases. First, the brain functional/structural connectivity is constructed using different neuroimaging modalities. Then, we develop a novel strategy that concatenates the persistent homology features from a brain algebraic topology analysis with readout features of the global pooling layer of a GCN model to collaboratively learn the individual-level representation. Finally, we simulate the adversarial perturbations by targeting the risk ROIs from clinical prior, and incorporate them into a training loop to evaluate the robustness of the model. The experimental results on three independent datasets demonstrate that ATPGCN outperforms existing classification methods in disease identification and is robust to minor perturbations in network architecture. Our code is available at https://github.com/CYB08/ATPGCN.
Collapse
|
7
|
Borchert RJ, Azevedo T, Badhwar A, Bernal J, Betts M, Bruffaerts R, Burkhart MC, Dewachter I, Gellersen HM, Low A, Lourida I, Machado L, Madan CR, Malpetti M, Mejia J, Michopoulou S, Muñoz-Neira C, Pepys J, Peres M, Phillips V, Ramanan S, Tamburin S, Tantiangco HM, Thakur L, Tomassini A, Vipin A, Tang E, Newby D, Ranson JM, Llewellyn DJ, Veldsman M, Rittman T. Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: A systematic review. Alzheimers Dement 2023; 19:5885-5904. [PMID: 37563912 DOI: 10.1002/alz.13412] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Artificial intelligence (AI) and neuroimaging offer new opportunities for diagnosis and prognosis of dementia. METHODS We systematically reviewed studies reporting AI for neuroimaging in diagnosis and/or prognosis of cognitive neurodegenerative diseases. RESULTS A total of 255 studies were identified. Most studies relied on the Alzheimer's Disease Neuroimaging Initiative dataset. Algorithmic classifiers were the most commonly used AI method (48%) and discriminative models performed best for differentiating Alzheimer's disease from controls. The accuracy of algorithms varied with the patient cohort, imaging modalities, and stratifiers used. Few studies performed validation in an independent cohort. DISCUSSION The literature has several methodological limitations including lack of sufficient algorithm development descriptions and standard definitions. We make recommendations to improve model validation including addressing key clinical questions, providing sufficient description of AI methods and validating findings in independent datasets. Collaborative approaches between experts in AI and medicine will help achieve the promising potential of AI tools in practice. HIGHLIGHTS There has been a rapid expansion in the use of machine learning for diagnosis and prognosis in neurodegenerative disease Most studies (71%) relied on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with no other individual dataset used more than five times There has been a recent rise in the use of more complex discriminative models (e.g., neural networks) that performed better than other classifiers for classification of AD vs healthy controls We make recommendations to address methodological considerations, addressing key clinical questions, and validation We also make recommendations for the field more broadly to standardize outcome measures, address gaps in the literature, and monitor sources of bias.
Collapse
Affiliation(s)
- Robin J Borchert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Tiago Azevedo
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - AmanPreet Badhwar
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
- Centre de recherche de l'Institut Universitaire de Gériatrie (CRIUGM), Montreal, Canada
| | - Jose Bernal
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Matthew Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Rose Bruffaerts
- Computational Neurology, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | - Ilse Dewachter
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Helena M Gellersen
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Audrey Low
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Luiza Machado
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jhony Mejia
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Sofia Michopoulou
- Imaging Physics, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Carlos Muñoz-Neira
- Research into Memory, Brain sciences and dementia Group (ReMemBr Group), Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Artificial Intelligence & Computational Neuroscience Group (AICN Group), Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jack Pepys
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Marion Peres
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Lokendra Thakur
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, UK
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandro Tomassini
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Eugene Tang
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Danielle Newby
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- Alan Turing Institute, London, UK
| | - Michele Veldsman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Zuo Q, Shen Y, Zhong N, Chen CLP, Lei B, Wang S. Alzheimer's Disease Prediction via Brain Structural-Functional Deep Fusing Network. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4601-4612. [PMID: 37971911 DOI: 10.1109/tnsre.2023.3333952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Fusing structural-functional images of the brain has shown great potential to analyze the deterioration of Alzheimer's disease (AD). However, it is a big challenge to effectively fuse the correlated and complementary information from multimodal neuroimages. In this work, a novel model termed cross-modal transformer generative adversarial network (CT-GAN) is proposed to effectively fuse the functional and structural information contained in functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). The CT-GAN can learn topological features and generate multimodal connectivity from multimodal imaging data in an efficient end-to-end manner. Moreover, the swapping bi-attention mechanism is designed to gradually align common features and effectively enhance the complementary features between modalities. By analyzing the generated connectivity features, the proposed model can identify AD-related brain connections. Evaluations on the public ADNI dataset show that the proposed CT-GAN can dramatically improve prediction performance and detect AD-related brain regions effectively. The proposed model also provides new insights into detecting AD-related abnormal neural circuits.
Collapse
|
9
|
Lei D, Zhang T, Wu Y, Li W, Li X. Autism spectrum disorder diagnosis based on deep unrolling-based spatial constraint representation. Med Biol Eng Comput 2023; 61:2829-2842. [PMID: 37486440 DOI: 10.1007/s11517-023-02859-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/25/2023] [Indexed: 07/25/2023]
Abstract
Accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective treatment and prognosis. Functional brain networks (FBNs) constructed from functional magnetic resonance imaging (fMRI) have become a popular tool for ASD diagnosis. However, existing model-driven approaches used to construct FBNs lack the ability to capture potential non-linear relationships between data and labels. Moreover, most existing studies treat the FBNs construction and disease classification as separate steps, leading to large inter-subject variability in the estimated FBNs and reducing the statistical power of subsequent group comparison. To address these limitations, we propose a new approach to FBNs construction called the deep unrolling-based spatial constraint representation (DUSCR) model and integrate it with a convolutional classifier to create an end-to-end framework for ASD recognition. Specifically, the model spatial constraint representation (SCR) is solved using a proximal gradient descent algorithm, and we unroll it into deep networks using the deep unrolling algorithm. Classification is then performed using a convolutional prototype learning model. We evaluated the effectiveness of the proposed method on the ABIDE I dataset and observed a significant improvement in model performance and classification accuracy. The resting state fMRI images are preprocessed into time series data and 3D coordinates of each region of interest. The data are fed into the DUSCR model, a model for building functional brain networks using deep learning instead of traditional models, that we propose, and then the outputs are fed into the convolutional classifier with prototype learning to determine whether the patient has ASD disease.
Collapse
Affiliation(s)
- Dajiang Lei
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Tao Zhang
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Yue Wu
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Weisheng Li
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Xinwei Li
- School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, China.
| |
Collapse
|
10
|
Li Y, Zhang Y, Liu JY, Wang K, Zhang K, Zhang GS, Liao XF, Yang G. Global Transformer and Dual Local Attention Network via Deep-Shallow Hierarchical Feature Fusion for Retinal Vessel Segmentation. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:5826-5839. [PMID: 35984806 DOI: 10.1109/tcyb.2022.3194099] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Clinically, retinal vessel segmentation is a significant step in the diagnosis of fundus diseases. However, recent methods generally neglect the difference of semantic information between deep and shallow features, which fail to capture the global and local characterizations in fundus images simultaneously, resulting in the limited segmentation performance for fine vessels. In this article, a global transformer (GT) and dual local attention (DLA) network via deep-shallow hierarchical feature fusion (GT-DLA-dsHFF) are investigated to solve the above limitations. First, the GT is developed to integrate the global information in the retinal image, which effectively captures the long-distance dependence between pixels, alleviating the discontinuity of blood vessels in the segmentation results. Second, DLA, which is constructed using dilated convolutions with varied dilation rates, unsupervised edge detection, and squeeze-excitation block, is proposed to extract local vessel information, consolidating the edge details in the segmentation result. Finally, a novel deep-shallow hierarchical feature fusion (dsHFF) algorithm is studied to fuse the features in different scales in the deep learning framework, respectively, which can mitigate the attenuation of valid information in the process of feature fusion. We verified the GT-DLA-dsHFF on four typical fundus image datasets. The experimental results demonstrate our GT-DLA-dsHFF achieves superior performance against the current methods and detailed discussions verify the efficacy of the proposed three modules. Segmentation results of diseased images show the robustness of our proposed GT-DLA-dsHFF. Implementation codes will be available on https://github.com/YangLibuaa/GT-DLA-dsHFF.
Collapse
|
11
|
Yoon JA, Kong IJ, Choi I, Cha J, Baek JY, Choi J, Shin YB, Shin MJ, Lee YM. Correlation between cerebral hemodynamic functional near-infrared spectroscopy and positron emission tomography for assessing mild cognitive impairment and Alzheimer's disease: An exploratory study. PLoS One 2023; 18:e0285013. [PMID: 37561711 PMCID: PMC10414577 DOI: 10.1371/journal.pone.0285013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/13/2023] [Indexed: 08/12/2023] Open
Abstract
This study was performed to investigate the usefulness of functional near-infrared spectroscopy (fNIRS) by conducting a comparative analysis of hemodynamic activation detected by fNIRS and positron emission tomography (PET) and magnetic resonance imaging (MRI) in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). Participants were divided into four groups: the subjective memory impairment (SMI), amnestic MCI (aMCI), non-amnestic MCI (naMCI), and AD groups. We recorded the hemodynamic response during the semantic verbal fluency task (SVFT) using a commercial wireless continuous-wave NIRS system. The correlation between the parameters of the neuroimaging assessments among the groups was analyzed. Region of interest-based comparisons showed that the four groups had significantly different hemodynamic responses during SVFT in the bilateral dorsolateral prefrontal cortex (DLPFC). The linear mixed effect model result indicates that the mean ΔHbO2 from the bilateral DLPFC regions showed a significant positive correlation to the overall FDG-PET after controlling for age and group differences in the fNIRS signals. Amyloid PET signals tended to better differentiate the AD group from other groups, and fNIRS signals tended to better differentiate the SMI group from other groups. In addition, a comparison between the group pairs revealed a mirrored pattern between the hippocampal volume and hemodynamic response in the DLPFC. The hemodynamic response detected by fNIRS showed a significant correlation with metabolic and anatomical changes associated with disease progression. Therefore, fNIRS may be considered as a screening tool to predict the hemodynamic and metabolic statuses of the brain in patients with MCI and AD.
Collapse
Affiliation(s)
- Jin A. Yoon
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - In Joo Kong
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | | | | | | | | | - Yong Beom Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Myung Jun Shin
- Department of Rehabilitation Medicine, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Young-Min Lee
- Department of Psychiatry, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
12
|
Cui W, Ma Y, Ren J, Liu J, Ma G, Liu H, Li Y. Personalized Functional Connectivity Based Spatio-Temporal Aggregated Attention Network for MCI Identification. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2257-2267. [PMID: 37104108 DOI: 10.1109/tnsre.2023.3271062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Functional connectivity (FC) networks deri- ved from resting-state magnetic resonance image (rs-fMRI) are effective biomarkers for identifying mild cognitive impairment (MCI) patients. However, most FC identification methods simply extract features from group-averaged brain templates, and neglect inter-subject functional variations. Furthermore, the existing methods generally concentrate on spatial correlation among brain regions, resulting in the inefficient capture of the fMRI temporal features. To address these limitations, we propose a novel personalized functional connectivity based dual-branch graph neural network with spatio-temporal aggregated attention (PFC-DBGNN-STAA) for MCI identification. Specifically, a personalized functional connectivity (PFC) template is firstly constructed to align 213 functional regions across samples and generate discriminative individualized FC features. Secondly, a dual-branch graph neural network (DBGNN) is conducted by aggregating features from the individual- and group-level templates with the cross-template FC, which is beneficial to improve the feature discrimination by considering dependency between templates. Finally, a spatio-temporal aggregated attention (STAA) module is investigated to capture the spatial and dynamic relationships between functional regions, which solves the limitation of insufficient temporal information utilization. We evaluate our proposed method on 442 samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, and achieve the accuracies of 90.1%, 90.3%, 83.3% for normal control (NC) vs. early MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs. EMCI vs. LMCI classification tasks, respectively, indicating that our method boosts MCI identification performance and outperforms state-of-the-art methods.
Collapse
|
13
|
Kazemi-Harikandei SZ, Shobeiri P, Salmani Jelodar MR, Tavangar SM. Effective connectivity in individuals with Alzheimer's disease and mild cognitive impairment: A systematic review. NEUROSCIENCE INFORMATICS 2022; 2:100104. [DOI: 10.1016/j.neuri.2022.100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
|
14
|
Hao X, An Q, Li J, Min H, Guo Y, Yu M, Qin J. Exploring high-order correlations with deep-broad learning for autism spectrum disorder diagnosis. Front Neurosci 2022; 16:1046268. [PMID: 36483179 PMCID: PMC9723136 DOI: 10.3389/fnins.2022.1046268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 01/25/2023] Open
Abstract
Recently, a lot of research has been conducted on diagnosing neurological disorders, such as autism spectrum disorder (ASD). Functional magnetic resonance imaging (fMRI) is the commonly used technique to assist in the diagnosis of ASD. In the past years, some conventional methods have been proposed to extract the low-order functional connectivity network features for ASD diagnosis, which ignore the complexity and global features of the brain network. Most deep learning-based methods generally have a large number of parameters that need to be adjusted during the learning process. To overcome the limitations mentioned above, we propose a novel deep-broad learning method for learning the higher-order brain functional connectivity network features to assist in ASD diagnosis. Specifically, we first construct the high-order functional connectivity network that describes global correlations of the brain regions based on hypergraph, and then we use the deep-broad learning method to extract the high-dimensional feature representations for brain networks sequentially. The evaluation of the proposed method is conducted on Autism Brain Imaging Data Exchange (ABIDE) dataset. The results show that our proposed method can achieve 71.8% accuracy on the multi-center dataset and 70.6% average accuracy on 17 single-center datasets, which are the best results compared with the state-of-the-art methods. Experimental results demonstrate that our method can describe the global features of the brain regions and get rich discriminative information for the classification task.
Collapse
Affiliation(s)
- Xiaoke Hao
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Qijin An
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Jiayang Li
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Hongjie Min
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Yingchun Guo
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Ming Yu
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Jing Qin
- School of Nursing, Centre for Smart Health, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Liu J, Ji J, Xun G, Zhang A. Inferring Effective Connectivity Networks From fMRI Time Series With a Temporal Entropy-Score. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:5993-6006. [PMID: 33886478 DOI: 10.1109/tnnls.2021.3072149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inferring brain-effective connectivity networks from neuroimaging data has become a very hot topic in neuroinformatics and bioinformatics. In recent years, the search methods based on Bayesian network score have been greatly developed and become an emerging method for inferring effective connectivity. However, the previous score functions ignore the temporal information from functional magnetic resonance imaging (fMRI) series data and may not be able to determine all orientations in some cases. In this article, we propose a novel score function for inferring effective connectivity from fMRI data based on the conditional entropy and transfer entropy (TE) between brain regions. The new score employs the TE to capture the temporal information and can effectively infer connection directions between brain regions. Experimental results on both simulated and real-world data demonstrate the efficacy of our proposed score function.
Collapse
|
16
|
Li Y, Liu J, Jiang Y, Liu Y, Lei B. Virtual Adversarial Training-Based Deep Feature Aggregation Network From Dynamic Effective Connectivity for MCI Identification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:237-251. [PMID: 34491896 DOI: 10.1109/tmi.2021.3110829] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dynamic functional connectivity (dFC) network inferred from resting-state fMRI reveals macroscopic dynamic neural activity patterns for brain disease identification. However, dFC methods ignore the causal influence between the brain regions. Furthermore, due to the complex non-Euclidean structure of brain networks, advanced deep neural networks are difficult to be applied for learning high-dimensional representations from brain networks. In this paper, a group constrained Kalman filter (gKF) algorithm is proposed to construct dynamic effective connectivity (dEC), where the gKF provides a more comprehensive understanding of the directional interaction within the dynamic brain networks than the dFC methods. Then, a novel virtual adversarial training convolutional neural network (VAT-CNN) is employed to extract the local features of dEC. The VAT strategy improves the robustness of the model to adversarial perturbations, and therefore avoids the overfitting problem effectively. Finally, we propose the high-order connectivity weight-guided graph attention networks (cwGAT) to aggregate features of dEC. By injecting the weight information of high-order connectivity into the attention mechanism, the cwGAT provides more effective high-level feature representations than the conventional GAT. The high-level features generated from the cwGAT are applied for binary classification and multiclass classification tasks of mild cognitive impairment (MCI). Experimental results indicate that the proposed framework achieves the classification accuracy of 90.9%, 89.8%, and 82.7% for normal control (NC) vs. early MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs. EMCI vs. LMCI classification respectively, outperforming the state-of-the-art methods significantly.
Collapse
|
17
|
Guan H, Wang C, Tao D. MRI-based Alzheimer's disease prediction via distilling the knowledge in multi-modal data. Neuroimage 2021; 244:118586. [PMID: 34563678 DOI: 10.1016/j.neuroimage.2021.118586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mild cognitive impairment (MCI) conversion prediction, i.e., identifying MCI patients of high risks converting to Alzheimer's disease (AD), is essential for preventing or slowing the progression of AD. Although previous studies have shown that the fusion of multi-modal data can effectively improve the prediction accuracy, their applications are largely restricted by the limited availability or high cost of multi-modal data. Building an effective prediction model using only magnetic resonance imaging (MRI) remains a challenging research topic. In this work, we propose a multi-modal multi-instance distillation scheme, which aims to distill the knowledge learned from multi-modal data to an MRI-based network for MCI conversion prediction. In contrast to existing distillation algorithms, the proposed multi-instance probabilities demonstrate a superior capability of representing the complicated atrophy distributions, and can guide the MRI-based network to better explore the input MRI. To our best knowledge, this is the first study that attempts to improve an MRI-based prediction model by leveraging extra supervision distilled from multi-modal information. Experiments demonstrate the advantage of our framework, suggesting its potentials in the data-limited clinical settings.
Collapse
Affiliation(s)
- Hao Guan
- School of Computer Science, The University of Sydney, Australia
| | - Chaoyue Wang
- School of Computer Science, The University of Sydney, Australia.
| | - Dacheng Tao
- School of Computer Science, The University of Sydney, Australia; JD Explore Academy, China.
| |
Collapse
|
18
|
Ji J, Liu J, Han L, Wang F. Estimating Effective Connectivity by Recurrent Generative Adversarial Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3326-3336. [PMID: 34038358 DOI: 10.1109/tmi.2021.3083984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Estimating effective connectivity from functional magnetic resonance imaging (fMRI) time series data has become a very hot topic in neuroinformatics and brain informatics. However, it is hard for the current methods to accurately estimate the effective connectivity due to the high noise and small sample size of fMRI data. In this paper, we propose a novel framework for estimating effective connectivity based on recurrent generative adversarial networks, called EC-RGAN. The proposed framework employs the generator that consists of a set of effective connectivity generators based on recurrent neural networks to generate the fMRI time series of each brain region, and uses the discriminator to distinguish between the joint distributions of the real and generated fMRI time series. When the model is well-trained and generated fMRI data is similar to real fMRI data, EC-RGAN outputs the effective connectivity by means of the causal parameters of the effective connectivity generators. Experimental results on both simulated and real-world fMRI time series data demonstrate the efficacy of our proposed framework.
Collapse
|
19
|
Guan H, Wang C, Cheng J, Jing J, Liu T. A parallel attention-augmented bilinear network for early magnetic resonance imaging-based diagnosis of Alzheimer's disease. Hum Brain Mapp 2021; 43:760-772. [PMID: 34676625 PMCID: PMC8720194 DOI: 10.1002/hbm.25685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Structural magnetic resonance imaging (sMRI) can capture the spatial patterns of brain atrophy in Alzheimer's disease (AD) and incipient dementia. Recently, many sMRI‐based deep learning methods have been developed for AD diagnosis. Some of these methods utilize neural networks to extract high‐level representations on the basis of handcrafted features, while others attempt to learn useful features from brain regions proposed by a separate module. However, these methods require considerable manual engineering. Their stepwise training procedures would introduce cascading errors. Here, we propose the parallel attention‐augmented bilinear network, a novel deep learning framework for AD diagnosis. Based on a 3D convolutional neural network, the framework directly learns both global and local features from sMRI scans without any prior knowledge. The framework is lightweight and suitable for end‐to‐end training. We evaluate the framework on two public datasets (ADNI‐1 and ADNI‐2) containing 1,340 subjects. On both the AD classification and mild cognitive impairment conversion prediction tasks, our framework achieves competitive results. Furthermore, we generate heat maps that highlight discriminative areas for visual interpretation. Experiments demonstrate the effectiveness of the proposed framework when medical priors are unavailable or the computing resources are limited. The proposed framework is general for 3D medical image analysis with both efficiency and interpretability.
Collapse
Affiliation(s)
- Hao Guan
- School of Computer Science, Faculty of Engineering, The University of Sydney, Darlington, New South Wales, Australia
| | - Chaoyue Wang
- School of Computer Science, Faculty of Engineering, The University of Sydney, Darlington, New South Wales, Australia
| | - Jian Cheng
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Jing Jing
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Liu
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
20
|
Zhang L, Shen B, Barnawi A, Xi S, Kumar N, Wu Y. FedDPGAN: Federated Differentially Private Generative Adversarial Networks Framework for the Detection of COVID-19 Pneumonia. INFORMATION SYSTEMS FRONTIERS : A JOURNAL OF RESEARCH AND INNOVATION 2021; 23:1403-1415. [PMID: 34149305 PMCID: PMC8204125 DOI: 10.1007/s10796-021-10144-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
Existing deep learning technologies generally learn the features of chest X-ray data generated by Generative Adversarial Networks (GAN) to diagnose COVID-19 pneumonia. However, the above methods have a critical challenge: data privacy. GAN will leak the semantic information of the training data which can be used to reconstruct the training samples by attackers, thereby this method will leak the privacy of the patient. Furthermore, for this reason, that is the limitation of the training data sample, different hospitals jointly train the model through data sharing, which will also cause privacy leakage. To solve this problem, we adopt the Federated Learning (FL) framework, a new technique being used to protect data privacy. Under the FL framework and Differentially Private thinking, we propose a Federated Differentially Private Generative Adversarial Network (FedDPGAN) to detect COVID-19 pneumonia for sustainable smart cities. Specifically, we use DP-GAN to privately generate diverse patient data in which differential privacy technology is introduced to make sure the privacy protection of the semantic information of the training dataset. Furthermore, we leverage FL to allow hospitals to collaboratively train COVID-19 models without sharing the original data. Under Independent and Identically Distributed (IID) and non-IID settings, the evaluation of the proposed model is on three types of chest X-ray (CXR)images dataset (COVID-19, normal, and normal pneumonia). A large number of truthful reports make the verification of our model can effectively diagnose COVID-19 without compromising privacy.
Collapse
Affiliation(s)
- Longling Zhang
- School of Data Science and Technology, Heilongjiang University, Harbin, 150080 China
| | - Bochen Shen
- School of Data Science and Technology, Heilongjiang University, Harbin, 150080 China
| | - Ahmed Barnawi
- King Abdul Aziz University, Riyadh, 11543 Saudi Arabia
| | - Shan Xi
- School of Data Science and Technology, Heilongjiang University, Harbin, 150080 China
| | - Neeraj Kumar
- Thapar Institute of Engineering and Technology, Pariala, India
- School of Computer Science, University of Petroleum and Energy Studies, Dehradun Uttarakhand, India
- Department of Computer Science and Information Engineering, Asia University, Taiwan, China
| | - Yi Wu
- School of Data Science and Technology, Heilongjiang University, Harbin, 150080 China
| |
Collapse
|
21
|
Dai R, Zhang W, Tang W, Wynendaele E, Zhu Q, Bin Y, De Spiegeleer B, Xia J. BBPpred: Sequence-Based Prediction of Blood-Brain Barrier Peptides with Feature Representation Learning and Logistic Regression. J Chem Inf Model 2021; 61:525-534. [PMID: 33426873 DOI: 10.1021/acs.jcim.0c01115] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood-brain barrier peptides (BBPs) have a large range of biomedical applications since they can cross the blood-brain barrier based on different mechanisms. As experimental methods for the identification of BBPs are laborious and expensive, computational approaches are necessary to be developed for predicting BBPs. In this work, we describe a computational method, BBPpred (blood-brain barrier peptides prediction), that can efficiently identify BBPs using logistic regression. We investigate a wide variety of features from amino acid sequence information, and then a feature learning method is adopted to represent the informative features. To improve the prediction performance, seven informative features are selected for classification by eliminating redundant and irrelevant features. In addition, we specifically create two benchmark data sets (training and independent test), which contain a total of 119 BBPs from public databases and the literature. On the training data set, BBPpred shows promising performances with an AUC score of 0.8764 and an AUPR score of 0.8757 using the 10-fold cross-validation. We also test our new method on the independent test data set and obtain a favorable performance. We envision that BBPpred will be a useful tool for identifying, annotating, and characterizing BBPs. BBPpred is freely available at http://BBPpred.xialab.info.
Collapse
Affiliation(s)
- Ruyu Dai
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wei Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Wending Tang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Qizhi Zhu
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Yannan Bin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Junfeng Xia
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
22
|
Song X, Zhou F, Frangi AF, Cao J, Xiao X, Lei Y, Wang T, Lei B. Graph convolution network with similarity awareness and adaptive calibration for disease-induced deterioration prediction. Med Image Anal 2020; 69:101947. [PMID: 33388456 DOI: 10.1016/j.media.2020.101947] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/23/2020] [Accepted: 12/12/2020] [Indexed: 01/04/2023]
Abstract
Graph convolution networks (GCN) have been successfully applied in disease prediction tasks as they capture interactions (i.e., edges and edge weights on the graph) between individual elements. The interactions in existing works are constructed by fusing similarity between imaging information and distance between non-imaging information, whereas disregarding the disease status of those individuals in the training set. Besides, the similarity is being evaluated by computing the correlation distance between feature vectors, which limits prediction performance, especially for predicting significant memory concern (SMC) and mild cognitive impairment (MCI). In this paper, we propose three mechanisms to improve GCN, namely similarity-aware adaptive calibrated GCN (SAC-GCN), for predicting SMC and MCI. First, we design a similarity-aware graph using different receptive fields to consider disease status. The labelled subjects on the graph are only connected with those labelled subjects with the same status. Second, we propose an adaptive mechanism to evaluate similarity. Specifically, we construct initial GCN with evaluating similarity by using traditional correlation distance, then pre-train the initial GCN by using training samples and use it to score all subjects. Then, the difference between these scores replaces correlation distance to update similarity. Last, we devise a calibration mechanism to fuse functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) information into edges. The proposed method is tested on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results demonstrate that our proposed method is useful to predict disease-induced deterioration and superior to other related algorithms, with a mean classification accuracy of 86.83% in our prediction tasks.
Collapse
Affiliation(s)
- Xuegang Song
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518060, China
| | - Feng Zhou
- Department of Industrial and Manufacturing, Systems Engineering, The University of Michigan, Dearborn, MI 42185, USA
| | - Alejandro F Frangi
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518060, China; CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, School of Computing, University of Leeds, Leeds LS2 9LU, United Kingdom; LICAMM Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, Leeds LS2 9LU, United Kingdom; Medical Imaging Research Center (MIRC) - University Hospital Gasthuisberg, KU Leuven, Herestraat 49, 3000 Leuven. Belgium
| | - Jiuwen Cao
- Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, 310010, China
| | - Xiaohua Xiao
- First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen, 518050, China
| | - Yi Lei
- First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, Shenzhen, 518050, China
| | - Tianfu Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518060, China
| | - Baiying Lei
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
23
|
Li J, Bian C, Chen D, Meng X, Luo H, Liang H, Shen L. Effect of APOE ε4 on multimodal brain connectomic traits: a persistent homology study. BMC Bioinformatics 2020; 21:535. [PMID: 33371873 PMCID: PMC7768655 DOI: 10.1186/s12859-020-03877-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Although genetic risk factors and network-level neuroimaging abnormalities have shown effects on cognitive performance and brain atrophy in Alzheimer's disease (AD), little is understood about how apolipoprotein E (APOE) ε4 allele, the best-known genetic risk for AD, affect brain connectivity before the onset of symptomatic AD. This study aims to investigate APOE ε4 effects on brain connectivity from the perspective of multimodal connectome. RESULTS Here, we propose a novel multimodal brain network modeling framework and a network quantification method based on persistent homology for identifying APOE ε4-related network differences. Specifically, we employ sparse representation to integrate multimodal brain network information derived from both the resting state functional magnetic resonance imaging (rs-fMRI) data and the diffusion-weighted magnetic resonance imaging (dw-MRI) data. Moreover, persistent homology is proposed to avoid the ad hoc selection of a specific regularization parameter and to capture valuable brain connectivity patterns from the topological perspective. The experimental results demonstrate that our method outperforms the competing methods, and reasonably yields connectomic patterns specific to APOE ε4 carriers and non-carriers. CONCLUSIONS We have proposed a multimodal framework that integrates structural and functional connectivity information for constructing a fused brain network with greater discriminative power. Using persistent homology to extract topological features from the fused brain network, our method can effectively identify APOE ε4-related brain connectomic biomarkers.
Collapse
Affiliation(s)
- Jin Li
- College of Automation, Harbin Engineering University, 145 Nantong Street, Harbin, 150001, Heilongjiang, China
| | - Chenyuan Bian
- College of Automation, Harbin Engineering University, 145 Nantong Street, Harbin, 150001, Heilongjiang, China
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, B306 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA
| | - Dandan Chen
- College of Automation, Harbin Engineering University, 145 Nantong Street, Harbin, 150001, Heilongjiang, China
| | - Xianglian Meng
- School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou, 213032, China
| | - Haoran Luo
- College of Automation, Harbin Engineering University, 145 Nantong Street, Harbin, 150001, Heilongjiang, China
| | - Hong Liang
- College of Automation, Harbin Engineering University, 145 Nantong Street, Harbin, 150001, Heilongjiang, China.
| | - Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, B306 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Fusion of ULS Group Constrained High- and Low-Order Sparse Functional Connectivity Networks for MCI Classification. Neuroinformatics 2020; 18:1-24. [PMID: 30982183 DOI: 10.1007/s12021-019-09418-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional connectivity networks, derived from resting-state fMRI data, have been found as effective biomarkers for identifying mild cognitive impairment (MCI) from healthy elderly. However, the traditional functional connectivity network is essentially a low-order network with the assumption that the brain activity is static over the entire scanning period, ignoring temporal variations among the correlations derived from brain region pairs. To overcome this limitation, we proposed a new type of sparse functional connectivity network to precisely describe the relationship of temporal correlations among brain regions. Specifically, instead of using the simple pairwise Pearson's correlation coefficient as connectivity, we first estimate the temporal low-order functional connectivity for each region pair based on an ULS Group constrained-UOLS regression algorithm, where a combination of ultra-least squares (ULS) criterion with a Group constrained topology structure detection algorithm is applied to detect the topology of functional connectivity networks, aided by an Ultra-Orthogonal Least Squares (UOLS) algorithm to estimate connectivity strength. Compared to the classical least squares criterion which only measures the discrepancy between the observed signals and the model prediction function, the ULS criterion takes into consideration the discrepancy between the weak derivatives of the observed signals and the model prediction function and thus avoids the overfitting problem. By using a similar approach, we then estimate the high-order functional connectivity from the low-order connectivity to characterize signal flows among the brain regions. We finally fuse the low-order and the high-order networks using two decision trees for MCI classification. Experimental results demonstrate the effectiveness of the proposed method on MCI classification.
Collapse
|
25
|
Segato A, Marzullo A, Calimeri F, De Momi E. Artificial intelligence for brain diseases: A systematic review. APL Bioeng 2020; 4:041503. [PMID: 33094213 PMCID: PMC7556883 DOI: 10.1063/5.0011697] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Artificial intelligence (AI) is a major branch of computer science that is fruitfully used for analyzing complex medical data and extracting meaningful relationships in datasets, for several clinical aims. Specifically, in the brain care domain, several innovative approaches have achieved remarkable results and open new perspectives in terms of diagnosis, planning, and outcome prediction. In this work, we present an overview of different artificial intelligent techniques used in the brain care domain, along with a review of important clinical applications. A systematic and careful literature search in major databases such as Pubmed, Scopus, and Web of Science was carried out using "artificial intelligence" and "brain" as main keywords. Further references were integrated by cross-referencing from key articles. 155 studies out of 2696 were identified, which actually made use of AI algorithms for different purposes (diagnosis, surgical treatment, intra-operative assistance, and postoperative assessment). Artificial neural networks have risen to prominent positions among the most widely used analytical tools. Classic machine learning approaches such as support vector machine and random forest are still widely used. Task-specific algorithms are designed for solving specific problems. Brain images are one of the most used data types. AI has the possibility to improve clinicians' decision-making ability in neuroscience applications. However, major issues still need to be addressed for a better practical use of AI in the brain. To this aim, it is important to both gather comprehensive data and build explainable AI algorithms.
Collapse
Affiliation(s)
- Alice Segato
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| | - Aldo Marzullo
- Department of Mathematics and Computer Science, University of Calabria, Rende 87036, Italy
| | - Francesco Calimeri
- Department of Mathematics and Computer Science, University of Calabria, Rende 87036, Italy
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| |
Collapse
|
26
|
Li Y, Liu J, Tang Z, Lei B. Deep Spatial-Temporal Feature Fusion From Adaptive Dynamic Functional Connectivity for MCI Identification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2818-2830. [PMID: 32112678 DOI: 10.1109/tmi.2020.2976825] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dynamic functional connectivity (dFC) analysis using resting-state functional Magnetic Resonance Imaging (rs-fMRI) is currently an advanced technique for capturing the dynamic changes of neural activities in brain disease identification. Most existing dFC modeling methods extract dynamic interaction information by using the sliding window-based correlation, whose performance is very sensitive to window parameters. Because few studies can convincingly identify the optimal combination of window parameters, sliding window-based correlation may not be the optimal way to capture the temporal variability of brain activity. In this paper, we propose a novel adaptive dFC model, aided by a deep spatial-temporal feature fusion method, for mild cognitive impairment (MCI) identification. Specifically, we adopt an adaptive Ultra-weighted-lasso recursive least squares algorithm to estimate the adaptive dFC, which effectively alleviates the problem of parameter optimization. Then, we extract temporal and spatial features from the adaptive dFC. In order to generate coarser multi-domain representations for subsequent classification, the temporal and spatial features are further mapped into comprehensive fused features with a deep feature fusion method. Experimental results show that the classification accuracy of our proposed method is reached to 87.7%, which is at least 5.5% improvement than the state-of-the-art methods. These results elucidate the superiority of the proposed method for MCI classification, indicating its effectiveness in the early identification of brain abnormalities.
Collapse
|
27
|
Chen Q, Wang Y, Qiu Y, Wu X, Zhou Y, Zhai G. A Deep Learning-Based Model for Classification of Different Subtypes of Subcortical Vascular Cognitive Impairment With FLAIR. Front Neurosci 2020; 14:557. [PMID: 32625048 PMCID: PMC7315844 DOI: 10.3389/fnins.2020.00557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/06/2020] [Indexed: 11/17/2022] Open
Abstract
Deep learning methods have shown their great capability of extracting high-level features from image and have been used for effective medical imaging classification recently. However, training samples of medical images are restricted by the amount of patients as well as medical ethics issues, making it hard to train the neural networks. In this paper, we propose a novel end-to-end three-dimensional (3D) attention-based residual neural network (ResNet) architecture to classify different subtypes of subcortical vascular cognitive impairment (SVCI) with single-shot T2-weighted fluid-attenuated inversion recovery (FLAIR) sequence. Our aim is to develop a convolutional neural network to provide a convenient and effective way to assist doctors in the diagnosis and early treatment of the different subtypes of SVCI. The experiment data in this paper are collected from 242 patients from the Neurology Department of Renji Hospital, including 78 amnestic mild cognitive impairment (a-MCI), 70 nonamnestic MCI (na-MCI), and 94 no cognitive impairment (NCI). The accuracy of our proposed model has reached 98.6% on a training set and 97.3% on a validation set. The test accuracy on an untrained testing set reaches 93.8% with robustness. Our proposed method can provide a convenient and effective way to assist doctors in the diagnosis and early treatment.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Wang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yage Qiu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangtao Zhai
- Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Persistent Feature Analysis of Multimodal Brain Networks Using Generalized Fused Lasso for EMCI Identification. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2020; 12267:44-52. [PMID: 34766172 DOI: 10.1007/978-3-030-59728-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Early Mild Cognitive Impairment (EMCI) involves very subtle changes in brain pathological process, and thus identification of EMCI can be challenging. By jointly analyzing cross-information among different neuroimaging data, an increased interest recently emerges in multimodal fusion to better understand clinical measurements with respect to both structural and functional connectivity. In this paper, we propose a novel multimodal brain network modeling method for EMCI identification. Specifically, we employ the structural connectivity based on diffusion tensor imaging (DTI), as a constraint, to guide the regression of BOLD time series from resting state functional magnetic resonance imaging (rs-fMRI). In addition, we introduce multiscale persistent homology features to avoid the uncertainty of regularization parameter selection. An empirical study on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrates that the proposed method effectively improves classification performance compared with several competing approaches, and reasonably yields connectivity patterns specific to different diagnostic groups.
Collapse
|
29
|
Using multi-layer perceptron with Laplacian edge detector for bladder cancer diagnosis. Artif Intell Med 2019; 102:101746. [PMID: 31980088 DOI: 10.1016/j.artmed.2019.101746] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 12/26/2022]
Abstract
In this paper, the urinary bladder cancer diagnostic method which is based on Multi-Layer Perceptron and Laplacian edge detector is presented. The aim of this paper is to investigate the implementation possibility of a simpler method (Multi-Layer Perceptron) alongside commonly used methods, such as Deep Learning Convolutional Neural Networks, for the urinary bladder cancer detection. The dataset used for this research consisted of 1997 images of bladder cancer and 986 images of non-cancer tissue. The results of the conducted research showed that using Multi-Layer Perceptron trained and tested with images pre-processed with Laplacian edge detector are achieving AUC value up to 0.99. When different image sizes are compared it can be seen that the best results are achieved if 50×50 and 100×100 images were used.
Collapse
|