1
|
Shin M, Seo M, Lee K, Yoon K. Super-resolution techniques for biomedical applications and challenges. Biomed Eng Lett 2024; 14:465-496. [PMID: 38645589 PMCID: PMC11026337 DOI: 10.1007/s13534-024-00365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 04/23/2024] Open
Abstract
Super-resolution (SR) techniques have revolutionized the field of biomedical applications by detailing the structures at resolutions beyond the limits of imaging or measuring tools. These techniques have been applied in various biomedical applications, including microscopy, magnetic resonance imaging (MRI), computed tomography (CT), X-ray, electroencephalogram (EEG), ultrasound, etc. SR methods are categorized into two main types: traditional non-learning-based methods and modern learning-based approaches. In both applications, SR methodologies have been effectively utilized on biomedical images, enhancing the visualization of complex biological structures. Additionally, these methods have been employed on biomedical data, leading to improvements in computational precision and efficiency for biomedical simulations. The use of SR techniques has resulted in more detailed and accurate analyses in diagnostics and research, essential for early disease detection and treatment planning. However, challenges such as computational demands, data interpretation complexities, and the lack of unified high-quality data persist. The article emphasizes these issues, underscoring the need for ongoing development in SR technologies to further improve biomedical research and patient care outcomes.
Collapse
Affiliation(s)
- Minwoo Shin
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Minjee Seo
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Kyunghyun Lee
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Kyungho Yoon
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
2
|
Çelik ME, Mikaeili M, Çelik B. Improving resolution of panoramic radiographs: super-resolution concept. Dentomaxillofac Radiol 2024; 53:240-247. [PMID: 38483289 PMCID: PMC11056796 DOI: 10.1093/dmfr/twae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 02/20/2024] [Indexed: 04/30/2024] Open
Abstract
OBJECTIVES Dental imaging plays a key role in the diagnosis and treatment of dental conditions, yet limitations regarding the quality and resolution of dental radiographs sometimes hinder precise analysis. Super-resolution with deep learning refers to a set of techniques used to enhance the resolution of images beyond their original size or quality using deep neural networks instead of traditional image interpolation methods which often result in blurred or pixelated images when attempting to increase resolution. Leveraging advancements in technology, this study aims to enhance the resolution of dental panoramic radiographs, thereby enabling more accurate diagnoses and treatment planning. METHODS About 1714 panoramic radiographs from 3 different open datasets are used for training (n = 1364) and testing (n = 350). The state of the art 4 different models is explored, namely Super-Resolution Convolutional Neural Network (SRCNN), Efficient Sub-Pixel Convolutional Neural Network, Super-Resolution Generative Adversarial Network, and Autoencoder. Performances in reconstructing high-resolution dental images from low-resolution inputs with different scales (s = 2, 4, 8) are evaluated by 2 well-accepted metrics Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR). RESULTS SSIM spans between 0.82 and 0.98 while PSNR are between 28.7 and 40.2 among all scales and models. SRCNN provides the best performance. Additionally, it is observed that performance decreased when images are scaled with higher values. CONCLUSION The findings highlight the potential of super-resolution concepts to significantly improve the quality and detail of dental panoramic radiographs, thereby contributing to enhanced interpretability.
Collapse
Affiliation(s)
- Mahmut Emin Çelik
- Electrical Electronics Engineering Department, Faculty of Engineering, Gazi University, Ankara, Eti Mh. Yükselis sk. No:5, 06570, Turkey
- Biomedical Calibration and Research Center (BIYOKAM), Gazi University Hospital, Gazi University, Ankara, 06560, Turkey
| | - Mahsa Mikaeili
- Biomedical Calibration and Research Center (BIYOKAM), Gazi University Hospital, Gazi University, Ankara, 06560, Turkey
| | - Berrin Çelik
- Oral and Maxillofacial Radiology Department, Faculty of Dentistry, Ankara Yıldırım Beyazıt University, Ankara, Yayla Mahallesi Yozgat Bulvarı, 1487. Cadde No:55, 06010, Turkey
| |
Collapse
|
3
|
Kim DS, Lau LN, Kim JW, Yeo ISL. Measurement of proximal contact of single crowns to assess interproximal relief: A pilot study. Heliyon 2023; 9:e20403. [PMID: 37767497 PMCID: PMC10520794 DOI: 10.1016/j.heliyon.2023.e20403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/23/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
Background It is common for dental technicians to adjust the proximal surface of adjacent teeth on casts when fabricating single crowns. However, whether the accuracy of the proximal contact is affected if this step is eliminated is unclear. Objective To evaluate the accuracy of the proximal contact of single crowns for mandibular first molars fabricated from four different restorative materials, without adjustment of the proximal surface of the adjacent teeth by the laboratory/dental technician. Methods This study was in vitro; all the clinical procedures were conducted on a dentoform. The mandibular first molar tooth on the dentoform was prepared using diamond burs and a high speed handpiece. Twenty single crowns were fabricated, five for each group (monolithic zirconia, lithium disilicate, metal ceramic, and cast gold). No proximal surface adjacent to the definitive crowns was adjusted for tight contact in the dental laboratory. Both the qualitative analyses, using dental floss and shimstock, and the quantitative analyses, using a stereo microscope, were performed to evaluate the accuracy of the proximal contact of the restoration with the adjacent teeth. In the quantitative analysis, one-way analysis of variance was used to compare mean values at a significance level of 0.05. Results In quantitative analysis, the differences between the proximal contact tightness of the four groups was not statistically significant (P = 0.802 for mesial contacts, P = 0.354 for distal contacts). In qualitative analysis, in most crowns, dental floss passed through the contact with tight resistance and only one film of shimstock could be inserted between the adjacent teeth and the restoration. However, one specimen from the cast gold crown had open contact. Conclusions Even without proximal surface adjustment of the adjacent teeth during the crown fabrication process, adequate proximal contact tightness between the restoration and adjacent teeth could be achieved.
Collapse
Affiliation(s)
| | - Le Na Lau
- Department of Prosthodontics, Seoul National University School of Dentistry, Seoul, Korea
| | - Jong-Woong Kim
- Department of Prosthodontics, Seoul National University School of Dentistry, Seoul, Korea
| | - In-Sung Luke Yeo
- Department of Prosthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Arsiwala-Scheppach LT, Chaurasia A, Müller A, Krois J, Schwendicke F. Machine Learning in Dentistry: A Scoping Review. J Clin Med 2023; 12:937. [PMID: 36769585 PMCID: PMC9918184 DOI: 10.3390/jcm12030937] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/06/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Machine learning (ML) is being increasingly employed in dental research and application. We aimed to systematically compile studies using ML in dentistry and assess their methodological quality, including the risk of bias and reporting standards. We evaluated studies employing ML in dentistry published from 1 January 2015 to 31 May 2021 on MEDLINE, IEEE Xplore, and arXiv. We assessed publication trends and the distribution of ML tasks (classification, object detection, semantic segmentation, instance segmentation, and generation) in different clinical fields. We appraised the risk of bias and adherence to reporting standards, using the QUADAS-2 and TRIPOD checklists, respectively. Out of 183 identified studies, 168 were included, focusing on various ML tasks and employing a broad range of ML models, input data, data sources, strategies to generate reference tests, and performance metrics. Classification tasks were most common. Forty-two different metrics were used to evaluate model performances, with accuracy, sensitivity, precision, and intersection-over-union being the most common. We observed considerable risk of bias and moderate adherence to reporting standards which hampers replication of results. A minimum (core) set of outcome and outcome metrics is necessary to facilitate comparisons across studies.
Collapse
Affiliation(s)
- Lubaina T. Arsiwala-Scheppach
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 14197 Berlin, Germany
- ITU/WHO Focus Group AI on Health, Topic Group Dental Diagnostics and Digital Dentistry, CH-1211 Geneva 20, Switzerland
| | - Akhilanand Chaurasia
- ITU/WHO Focus Group AI on Health, Topic Group Dental Diagnostics and Digital Dentistry, CH-1211 Geneva 20, Switzerland
- Department of Oral Medicine and Radiology, King George’s Medical University, Lucknow 226003, India
| | - Anne Müller
- Pharmacovigilance Institute (Pharmakovigilanz- und Beratungszentrum, PVZ) for Embryotoxicology, Institute of Clinical Pharmacology and Toxicology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Joachim Krois
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 14197 Berlin, Germany
- ITU/WHO Focus Group AI on Health, Topic Group Dental Diagnostics and Digital Dentistry, CH-1211 Geneva 20, Switzerland
| | - Falk Schwendicke
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 14197 Berlin, Germany
- ITU/WHO Focus Group AI on Health, Topic Group Dental Diagnostics and Digital Dentistry, CH-1211 Geneva 20, Switzerland
| |
Collapse
|
5
|
Jia H, Chen X, Han Z, Liu B, Wen T, Tang Y. Nonconvex Nonlocal Tucker Decomposition for 3D Medical Image Super-Resolution. Front Neuroinform 2022; 16:880301. [PMID: 35547860 PMCID: PMC9083114 DOI: 10.3389/fninf.2022.880301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Limited by hardware conditions, imaging devices, transmission efficiency, and other factors, high-resolution (HR) images cannot be obtained directly in clinical settings. It is expected to obtain HR images from low-resolution (LR) images for more detailed information. In this article, we propose a novel super-resolution model for single 3D medical images. In our model, nonlocal low-rank tensor Tucker decomposition is applied to exploit the nonlocal self-similarity prior knowledge of data. Different from the existing methods that use a convex optimization for tensor Tucker decomposition, we use a tensor folded-concave penalty to approximate a nonlocal low-rank tensor. Weighted 3D total variation (TV) is used to maintain the local smoothness across different dimensions. Extensive experiments show that our method outperforms some state-of-the-art (SOTA) methods on different kinds of medical images, including MRI data of the brain and prostate and CT data of the abdominal and dental.
Collapse
Affiliation(s)
- Huidi Jia
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi'ai Chen
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Zhi Han
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| | - Baichen Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianhui Wen
- School of Professional Studies, Columbia University, New York, NY, United States
| | - Yandong Tang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
6
|
A Dual Discriminator Adversarial Learning Approach for Dental Occlusal Surface Reconstruction. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1933617. [PMID: 35449834 PMCID: PMC9018184 DOI: 10.1155/2022/1933617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/12/2022] [Indexed: 11/18/2022]
Abstract
Objective. Restoring the correct masticatory function of partially edentulous patient is a challenging task primarily due to the complex tooth morphology between individuals. Although some deep learning-based approaches have been proposed for dental restorations, most of them do not consider the influence of dental biological characteristics for the occlusal surface reconstruction. Description. In this article, we propose a novel dual discriminator adversarial learning network to address these challenges. In particular, this network architecture integrates two models: a dilated convolutional-based generative model and a dual global-local discriminative model. While the generative model adopts dilated convolution layers to generate a feature representation that preserves clear tissue structure, the dual discriminative model makes use of two discriminators to jointly distinguish whether the input is real or fake. While the global discriminator focuses on the missing teeth and adjacent teeth to assess whether it is coherent as a whole, the local discriminator aims only at the defective teeth to ensure the local consistency of the generated dental crown. Results. Experiments on 1000 real-world patient dental samples demonstrate the effectiveness of our method. For quantitative comparison, the image quality metrics are used to measure the similarity of the generated occlusal surface, and the root mean square between the generated result and the target crown calculated by our method is 0.114 mm. In qualitative analysis, the proposed approach can generate more reasonable dental biological morphology. Conclusion. The results demonstrate that our method significantly outperforms the state-of-the-art methods in occlusal surface reconstruction. Importantly, the designed occlusal surface has enough anatomical morphology of natural teeth and superior clinical application value.
Collapse
|
7
|
He J, Gao P, Zheng X, Zhou Y, He H. Denoising 3D magnetic resonance images based on weighted tensor nuclear norm minimization using balanced nonlocal patch tensors. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Tian S, Wang M, Yuan F, Dai N, Sun Y, Xie W, Qin J. Efficient Computer-Aided Design of Dental Inlay Restoration: A Deep Adversarial Framework. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:2415-2427. [PMID: 33945473 DOI: 10.1109/tmi.2021.3077334] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Restoring the normal masticatory function of broken teeth is a challenging task primarily due to the defect location and size of a patient's teeth. In recent years, although some representative image-to-image transformation methods (e.g. Pix2Pix) can be potentially applicable to restore the missing crown surface, most of them fail to generate dental inlay surface with realistic crown details (e.g. occlusal groove) that are critical to the restoration of defective teeth with varying shapes. In this article, we design a computer-aided Deep Adversarial-driven dental Inlay reStoration (DAIS) framework to automatically reconstruct a realistic surface for a defective tooth. Specifically, DAIS consists of a Wasserstein generative adversarial network (WGAN) with a specially designed loss measurement, and a new local-global discriminator mechanism. The local discriminator focuses on missing regions to ensure the local consistency of a generated occlusal surface, while the global discriminator aims at defective teeth and adjacent teeth to assess if it is coherent as a whole. Experimental results demonstrate that DAIS is highly efficient to deal with a large area of missing teeth in arbitrary shapes and generate realistic occlusal surface completion. Moreover, the designed watertight inlay prostheses have enough anatomical morphology, thus providing higher clinical applicability compared with more state-of-the-art methods.
Collapse
|
9
|
Shi C, Xian M, Zhou X, Wang H, Cheng HD. Multi-slice low-rank tensor decomposition based multi-atlas segmentation: Application to automatic pathological liver CT segmentation. Med Image Anal 2021; 73:102152. [PMID: 34280669 DOI: 10.1016/j.media.2021.102152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/02/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
Liver segmentation from abdominal CT images is an essential step for liver cancer computer-aided diagnosis and surgical planning. However, both the accuracy and robustness of existing liver segmentation methods cannot meet the requirements of clinical applications. In particular, for the common clinical cases where the liver tissue contains major pathology, current segmentation methods show poor performance. In this paper, we propose a novel low-rank tensor decomposition (LRTD) based multi-atlas segmentation (MAS) framework that achieves accurate and robust pathological liver segmentation of CT images. Firstly, we propose a multi-slice LRTD scheme to recover the underlying low-rank structure embedded in 3D medical images. It performs the LRTD on small image segments consisting of multiple consecutive image slices. Then, we present an LRTD-based atlas construction method to generate tumor-free liver atlases that mitigates the performance degradation of liver segmentation due to the presence of tumors. Finally, we introduce an LRTD-based MAS algorithm to derive patient-specific liver atlases for each test image, and to achieve accurate pairwise image registration and label propagation. Extensive experiments on three public databases of pathological liver cases validate the effectiveness of the proposed method. Both qualitative and quantitative results demonstrate that, in the presence of major pathology, the proposed method is more accurate and robust than state-of-the-art methods.
Collapse
Affiliation(s)
- Changfa Shi
- Mobile E-business Collaborative Innovation Center of Hunan Province, Hunan University of Technology and Business, Changsha 410205, China; Department of Computer Science, Utah State University, Logan, UT 84322, USA
| | - Min Xian
- Department of Computer Science, University of Idaho, Idaho Falls, ID 83402, USA.
| | - Xiancheng Zhou
- Mobile E-business Collaborative Innovation Center of Hunan Province, Hunan University of Technology and Business, Changsha 410205, China
| | - Haotian Wang
- Department of Computer Science, University of Idaho, Idaho Falls, ID 83402, USA
| | - Heng-Da Cheng
- Department of Computer Science, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
10
|
Li Y, Iwamoto Y, Lin L, Xu R, Tong R, Chen YW. VolumeNet: A Lightweight Parallel Network for Super-Resolution of MR and CT Volumetric Data. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2021; 30:4840-4854. [PMID: 33945478 DOI: 10.1109/tip.2021.3076285] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deep learning-based super-resolution (SR) techniques have generally achieved excellent performance in the computer vision field. Recently, it has been proven that three-dimensional (3D) SR for medical volumetric data delivers better visual results than conventional two-dimensional (2D) processing. However, deepening and widening 3D networks increases training difficulty significantly due to the large number of parameters and small number of training samples. Thus, we propose a 3D convolutional neural network (CNN) for SR of magnetic resonance (MR) and computer tomography (CT) volumetric data called ParallelNet using parallel connections. We construct a parallel connection structure based on the group convolution and feature aggregation to build a 3D CNN that is as wide as possible with a few parameters. As a result, the model thoroughly learns more feature maps with larger receptive fields. In addition, to further improve accuracy, we present an efficient version of ParallelNet (called VolumeNet), which reduces the number of parameters and deepens ParallelNet using a proposed lightweight building block module called the Queue module. Unlike most lightweight CNNs based on depthwise convolutions, the Queue module is primarily constructed using separable 2D cross-channel convolutions. As a result, the number of network parameters and computational complexity can be reduced significantly while maintaining accuracy due to full channel fusion. Experimental results demonstrate that the proposed VolumeNet significantly reduces the number of model parameters and achieves high precision results compared to state-of-the-art methods in tasks of brain MR image SR, abdomen CT image SR, and reconstruction of super-resolution 7T-like images from their 3T counterparts.
Collapse
|
11
|
Hu B. Deep Learning Image Feature Recognition Algorithm for Judgment on the Rationality of Landscape Planning and Design. COMPLEXITY 2021; 2021:1-15. [DOI: 10.1155/2021/9921095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This paper uses an improved deep learning algorithm to judge the rationality of the design of landscape image feature recognition. The preprocessing of the image is proposed to enhance the data. The deficiencies in landscape feature extraction are further addressed based on the new model. Then, the two-stage training method of the model is used to solve the problems of long training time and convergence difficulties in deep learning. Innovative methods for zoning and segmentation training of landscape pattern features are proposed, which makes model training faster and generates more creative landscape patterns. Because of the impact of too many types of landscape elements in landscape images, traditional convolutional neural networks can no longer effectively solve this problem. On this basis, a fully convolutional neural network model is designed to perform semantic segmentation of landscape elements in landscape images. Through the method of deconvolution, the pixel-level semantic segmentation is realized. Compared with the 65% accuracy rate of the convolutional neural network, the fully convolutional neural network has an accuracy rate of 90.3% for the recognition of landscape elements. The method is effective, accurate, and intelligent for the classification of landscape element design, which better improves the accuracy of classification, greatly reduces the cost of landscape element design classification, and ensures that the technical method is feasible. This paper classifies landscape behavior based on this model for full convolutional neural network landscape images and demonstrates the effectiveness of using the model. In terms of landscape image processing, the image evaluation provides a certain basis.
Collapse
Affiliation(s)
- Bin Hu
- Xinyang Vocational and Technical College, Xinyang 464000, Henan, China
| |
Collapse
|
12
|
Moran M, Faria M, Giraldi G, Bastos L, Conci A. Do Radiographic Assessments of Periodontal Bone Loss Improve with Deep Learning Methods for Enhanced Image Resolution? SENSORS 2021; 21:s21062013. [PMID: 33809165 PMCID: PMC8000288 DOI: 10.3390/s21062013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022]
Abstract
Resolution plays an essential role in oral imaging for periodontal disease assessment. Nevertheless, due to limitations in acquisition tools, a considerable number of oral examinations have low resolution, making the evaluation of this kind of lesion difficult. Recently, the use of deep-learning methods for image resolution improvement has seen an increase in the literature. In this work, we performed two studies to evaluate the effects of using different resolution improvement methods (nearest, bilinear, bicubic, Lanczos, SRCNN, and SRGAN). In the first one, specialized dentists visually analyzed the quality of images treated with these techniques. In the second study, we used those methods as different pre-processing steps for inputs of convolutional neural network (CNN) classifiers (Inception and ResNet) and evaluated whether this process leads to better results. The deep-learning methods lead to a substantial improvement in the visual quality of images but do not necessarily promote better classifier performance.
Collapse
Affiliation(s)
- Maira Moran
- Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil; (M.F.); (L.B.)
- Instituto de Computação, Universidade Federal Fluminense, Niterói 24210-310, Brazil
- Correspondence: (M.M.); (A.C.)
| | - Marcelo Faria
- Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil; (M.F.); (L.B.)
- Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Gilson Giraldi
- Laboratório Nacional de Computação Científica, Petrópolis 25651-076, Brazil;
| | - Luciana Bastos
- Policlínica Piquet Carneiro, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20950-003, Brazil; (M.F.); (L.B.)
| | - Aura Conci
- Instituto de Computação, Universidade Federal Fluminense, Niterói 24210-310, Brazil
- Correspondence: (M.M.); (A.C.)
| |
Collapse
|
13
|
Cephalogram synthesis and landmark detection in dental cone-beam CT systems. Med Image Anal 2021; 70:102028. [PMID: 33744833 DOI: 10.1016/j.media.2021.102028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/16/2021] [Accepted: 02/26/2021] [Indexed: 11/23/2022]
Abstract
Due to the lack of a standardized 3D cephalometric analysis methodology, 2D cephalograms synthesized from 3D cone-beam computed tomography (CBCT) volumes are widely used for cephalometric analysis in dental CBCT systems. However, compared with conventional X-ray film based cephalograms, such synthetic cephalograms lack image contrast and resolution, which impairs cephalometric landmark identification. In addition, the increased radiation dose applied to acquire the scan for 3D reconstruction causes potential health risks. In this work, we propose a sigmoid-based intensity transform that uses the nonlinear optical property of X-ray films to increase image contrast of synthetic cephalograms from 3D volumes. To improve image resolution, super resolution deep learning techniques are investigated. For low dose purpose, the pixel-to-pixel generative adversarial network (pix2pixGAN) is proposed for 2D cephalogram synthesis directly from two cone-beam projections. For landmark detection in the synthetic cephalograms, an efficient automatic landmark detection method using the combination of LeNet-5 and ResNet50 is proposed. Our experiments demonstrate the efficacy of pix2pixGAN in 2D cephalogram synthesis, achieving an average peak signal-to-noise ratio (PSNR) value of 33.8 with reference to the cephalograms synthesized from 3D CBCT volumes. Pix2pixGAN also achieves the best performance in super resolution, achieving an average PSNR value of 32.5 without the introduction of checkerboard or jagging artifacts. Our proposed automatic landmark detection method achieves 86.7% successful detection rate in the 2 mm clinical acceptable range on the ISBI Test1 data, which is comparable to the state-of-the-art methods. The method trained on conventional cephalograms can be directly applied to landmark detection in the synthetic cephalograms, achieving 93.0% and 80.7% successful detection rate in 4 mm precision range for synthetic cephalograms from 3D volumes and 2D projections, respectively.
Collapse
|
14
|
Moran MBH, Faria MDB, Giraldi GA, Bastos LF, Conci A. Using super-resolution generative adversarial network models and transfer learning to obtain high resolution digital periapical radiographs. Comput Biol Med 2020; 129:104139. [PMID: 33271400 DOI: 10.1016/j.compbiomed.2020.104139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 10/22/2022]
Abstract
Periapical Radiographs are commonly used to detect several anomalies, like caries, periodontal, and periapical diseases. Even considering that digital imaging systems used nowadays tend to provide high-quality images, external factors, or even system limitations can result in a vast amount of radiographic images with low quality and resolution. Commercial solutions offer tools based on interpolation methods to increase image resolution. However, previous literature shows that these methods may create undesirable effects in the images affecting the diagnosis accuracy. One alternative is using deep learning-based super-resolution methods to achieve better high-resolution images. Nevertheless, the amount of data for training such models is limited, demanding transfer learning approaches. In this work, we propose the use of super-resolution generative adversarial network (SRGAN) models and transfer learning to achieve periapical images with higher quality and resolution. Moreover, we evaluate the influence of using the transfer learning approach and the datasets selected for it in the final generated images. For that, we performed an experiment comparing the performance of the SRGAN models (with and without transfer learning) with other super-resolution methods. Considering Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Mean Opinion Score (MOS), the results of SRGAN models using transfer learning were better on average. This superiority was also verified statistically using the Wilcoxon paired test. In the visual analysis, the high quality achieved by the SRGAN models, in general, is visible, resulting in more defined edges details and fewer blur effects.
Collapse
Affiliation(s)
- Maira B H Moran
- Policlínica Piquet Carneiro, Universidade Do Estado Do Rio de Janeiro, 20950-003, Rio de Janeiro, Brazil; Instituto de Computação, Universidade Federal Fluminense, 24210-310, Niterói, Brazil.
| | - Marcelo D B Faria
- Policlínica Piquet Carneiro, Universidade Do Estado Do Rio de Janeiro, 20950-003, Rio de Janeiro, Brazil; Faculdade de Odontologia, Universidade Federal Do Rio de Janeiro, 21941-617, Rio de Janeiro, Brazil
| | - Gilson A Giraldi
- Laboratório Nacional de Computação Científica, 25651-076, Petrópolis, Brazil
| | - Luciana F Bastos
- Policlínica Piquet Carneiro, Universidade Do Estado Do Rio de Janeiro, 20950-003, Rio de Janeiro, Brazil
| | - Aura Conci
- Instituto de Computação, Universidade Federal Fluminense, 24210-310, Niterói, Brazil
| |
Collapse
|
15
|
Zhuo L, Li K, Li H, Peng J, Li K. An online and generalized non-negativity constrained model for large-scale sparse tensor estimation on multi-GPU. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Generative Adversarial Network for Image Super-Resolution Combining Texture Loss. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: Super-resolution reconstruction is an increasingly important area in computer vision. To alleviate the problems that super-resolution reconstruction models based on generative adversarial networks are difficult to train and contain artifacts in reconstruction results, we propose a novel and improved algorithm. Methods: This paper presented TSRGAN (Super-Resolution Generative Adversarial Networks Combining Texture Loss) model which was also based on generative adversarial networks. We redefined the generator network and discriminator network. Firstly, on the network structure, residual dense blocks without excess batch normalization layers were used to form generator network. Visual Geometry Group (VGG)19 network was adopted as the basic framework of discriminator network. Secondly, in the loss function, the weighting of the four loss functions of texture loss, perceptual loss, adversarial loss and content loss was used as the objective function of generator. Texture loss was proposed to encourage local information matching. Perceptual loss was enhanced by employing the features before activation layer to calculate. Adversarial loss was optimized based on WGAN-GP (Wasserstein GAN with Gradient Penalty) theory. Content loss was used to ensure the accuracy of low-frequency information. During the optimization process, the target image information was reconstructed from different angles of high and low frequencies. Results: The experimental results showed that our method made the average Peak Signal to Noise Ratio of reconstructed images reach 27.99 dB and the average Structural Similarity Index reach 0.778 without losing too much speed, which was superior to other comparison algorithms in objective evaluation index. What is more, TSRGAN significantly improved subjective visual evaluations such as brightness information and texture details. We found that it could generate images with more realistic textures and more accurate brightness, which were more in line with human visual evaluation. Conclusions: Our improvements to the network structure could reduce the model’s calculation amount and stabilize the training direction. In addition, the loss function we present for generator could provide stronger supervision for restoring realistic textures and achieving brightness consistency. Experimental results prove the effectiveness and superiority of TSRGAN algorithm.
Collapse
|
17
|
Halve the dose while maintaining image quality in paediatric Cone Beam CT. Sci Rep 2019; 9:5521. [PMID: 30940872 PMCID: PMC6445070 DOI: 10.1038/s41598-019-41949-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/20/2019] [Indexed: 11/08/2022] Open
Abstract
Cone beam CT (CBCT) for dentomaxillofacial paediatric assessment has been widely used despite the uncertainties of the risks of the low-dose radiation exposures. The aim of this work was to investigate the clinical performance of different CBCT acquisition protocols towards the optimization of paediatric exposures. Custom-made anthropomorphic phantoms were scanned using a CBCT unit in six protocols. CT slices were blinded, randomized and presented to three observers, who scored the image quality using a 4-point scale along with their level of confidence. Sharpness level was also measured using a test object containing an air/PMMA e,dge. The effective dose was calculated by means of a customized Monte Carlo (MC) framework using previously validated paediatric voxels models. The results have shown that the protocols set with smaller voxel size (180 µm), even when decreasing exposure parameters (kVp and mAs), showed high image quality scores and increased sharpness. The MC analysis showed a gradual decrease in effective dose when exposures parameters were reduced, with an emphasis on an average reduction of 45% for the protocol that combined 70 kVp, 16 mAs and 180 µm voxel size. In contrast, both "ultra-low dose" protocols that combined a larger voxel size (400 µm) with lower mAs (7.4 mAs) demonstrated the lowest scores with high levels of confidence unsuitable for an anatomical approach. In conclusion, a significant decrease in the effective dose can be achieved while maintaining the image quality required for paediatric CBCT.
Collapse
|