1
|
Pannu R, Zubair M, Owais M, Hassan S, Umair M, Usman SM, Albashrawi MA, Hussain I. Enhanced glaucoma classification through advanced segmentation by integrating cup-to-disc ratio and neuro-retinal rim features. Comput Med Imaging Graph 2025; 123:102559. [PMID: 40315660 DOI: 10.1016/j.compmedimag.2025.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/04/2025]
Abstract
Glaucoma is a progressive eye condition caused by high intraocular fluid pressure, damaging the optic nerve, leading to gradual, irreversible vision loss, often without noticeable symptoms. Subtle signs like mild eye redness, slightly blurred vision, and eye pain may go unnoticed, earning it the nickname "silent thief of sight." Its prevalence is rising with an aging population, driven by increased life expectancy. Most computer-aided diagnosis (CAD) systems rely on the cup-to-disc ratio (CDR) for glaucoma diagnosis. This study introduces a novel approach by integrating CDR with the neuro-retinal rim ratio (NRR), which quantifies rim thickness within the optic disc (OD). NRR enhances diagnostic accuracy by capturing additional optic nerve head changes, such as rim thinning and tissue loss, which were overlooked using CDR alone. A modified ResUNet architecture for OD and optic cup (OC) segmentation, combining residual learning and U-Net to capture spatial context for semantic segmentation. For OC segmentation, the model achieved Dice Coefficient (DC) scores of 0.942 and 0.872 and Intersection over Union (IoU) values of 0.891 and 0.773 for DRISHTI-GS and RIM-ONE, respectively. For OD segmentation, the model achieved DC of 0.972 and 0.950 and IoU values of 0.945 and 0.940 for DRISHTI-GS and RIM-ONE, respectively. External evaluation on ORIGA and REFUGE confirmed the model's robustness and generalizability. CDR and NRR were calculated from segmentation masks and used to train an SVM with a radial basis function, classifying the eyes as healthy or glaucomatous. The model achieved accuracies of 0.969 on DRISHTI-GS and 0.977 on RIM-ONE.
Collapse
Affiliation(s)
- Rabia Pannu
- Faculty of Information Technology & Computer Science, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zubair
- Interdisciplinary Research Center for Finance and Digital Economy, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Muhammad Owais
- Khalifa University Center for Autonomous Robotic Systems (KUCARS) and Department of Mechanical & Nuclear Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
| | - Shoaib Hassan
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Muhammad Umair
- Faculty of Information Technology & Computer Science, University of Central Punjab, Lahore, Pakistan
| | - Syed Muhammad Usman
- Department of Computer Science, Bahria School of Engineering and Applied Sciences, Bahria University Islamabad, Pakistan
| | - Mousa Ahmed Albashrawi
- Interdisciplinary Research Center for Finance and Digital Economy, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia; Department of Information Systems and Operations Management, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Irfan Hussain
- Khalifa University Center for Autonomous Robotic Systems (KUCARS) and Department of Mechanical & Nuclear Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Doorly R, Ong J, Waisberg E, Sarker P, Zaman N, Tavakkoli A, Lee AG. Applications of generative adversarial networks in the diagnosis, prognosis, and treatment of ophthalmic diseases. Graefes Arch Clin Exp Ophthalmol 2025:10.1007/s00417-025-06830-9. [PMID: 40263170 DOI: 10.1007/s00417-025-06830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/05/2025] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
PURPOSE Generative adversarial networks (GANs) are key components of many artificial intelligence (AI) systems that are applied to image-informed bioengineering and medicine. GANs combat key limitations facing deep learning models: small, unbalanced datasets containing few images of severe disease. The predictive capacity of conditional GANs may also be extremely useful in managing disease on an individual basis. This narrative review focusses on the application of GANs in ophthalmology, in order to provide a critical account of the current state and ongoing challenges for healthcare professionals and allied scientists who are interested in this rapidly evolving field. METHODS We performed a search of studies that apply generative adversarial networks (GANs) in diagnosis, therapy and prognosis of eight eye diseases. These disparate tasks were selected to highlight developments in GAN techniques, differences and common features to aid practitioners and future adopters in the field of ophthalmology. RESULTS The studies we identified show that GANs have demonstrated capacity to: generate realistic and useful synthetic images, convert image modality, improve image quality, enhance extraction of relevant features, and provide prognostic predictions based on input images and other relevant data. CONCLUSION The broad range of architectures considered describe how GAN technology is evolving to meet different challenges (including segmentation and multi-modal imaging) that are of particular relevance to ophthalmology. The wide availability of datasets now facilitates the entry of new researchers to the field. However mainstream adoption of GAN technology for clinical use remains contingent on larger public datasets for widespread validation and necessary regulatory oversight.
Collapse
Affiliation(s)
| | - Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, USA
| | | | - Prithul Sarker
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Nasif Zaman
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Alireza Tavakkoli
- Human-Machine Perception Laboratory, Department of Computer Science and Engineering, University of Nevada, Reno, Reno, NV, USA
| | - Andrew G Lee
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, USA
- Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, NY, USA
- Department of Ophthalmology, University of Texas Medical Branch, Galveston, TX, USA
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Texas A&M School of Medicine, Bryan, TX, USA
- Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Chew EY, Burns SA, Abraham AG, Bakhoum MF, Beckman JA, Chui TYP, Finger RP, Frangi AF, Gottesman RF, Grant MB, Hanssen H, Lee CS, Meyer ML, Rizzoni D, Rudnicka AR, Schuman JS, Seidelmann SB, Tang WHW, Adhikari BB, Danthi N, Hong Y, Reid D, Shen GL, Oh YS. Standardization and clinical applications of retinal imaging biomarkers for cardiovascular disease: a Roadmap from an NHLBI workshop. Nat Rev Cardiol 2025; 22:47-63. [PMID: 39039178 DOI: 10.1038/s41569-024-01060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/24/2024]
Abstract
The accessibility of the retina with the use of non-invasive and relatively low-cost ophthalmic imaging techniques and analytics provides a unique opportunity to improve the detection, diagnosis and monitoring of systemic diseases. The National Heart, Lung, and Blood Institute conducted a workshop in October 2022 to examine this concept. On the basis of the discussions at that workshop, this Roadmap describes current knowledge gaps and new research opportunities to evaluate the relationships between the eye (in particular, retinal biomarkers) and the risk of cardiovascular diseases, including coronary artery disease, heart failure, stroke, hypertension and vascular dementia. Identified gaps include the need to simplify and standardize the capture of high-quality images of the eye by non-ophthalmic health workers and to conduct longitudinal studies using multidisciplinary networks of diverse at-risk populations with improved implementation and methods to protect participant and dataset privacy. Other gaps include improving the measurement of structural and functional retinal biomarkers, determining the relationship between microvascular and macrovascular risk factors, improving multimodal imaging 'pipelines', and integrating advanced imaging with 'omics', lifestyle factors, primary care data and radiological reports, by using artificial intelligence technology to improve the identification of individual-level risk. Future research on retinal microvascular disease and retinal biomarkers might additionally provide insights into the temporal development of microvascular disease across other systemic vascular beds.
Collapse
Affiliation(s)
- Emily Y Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, NIH, Bethesda, MD, USA.
| | - Stephen A Burns
- School of Optometry, Indiana University, Bloomington, IN, USA
| | - Alison G Abraham
- Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Mathieu F Bakhoum
- Departments of Ophthalmology and Visual Science and Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Joshua A Beckman
- Division of Vascular Medicine, University of Southwestern Medical Center, Dallas, TX, USA
| | - Toco Y P Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, NY, USA
| | - Robert P Finger
- Department of Ophthalmology, Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
| | - Alejandro F Frangi
- Division of Informatics, Imaging and Data Science (School of Health Sciences), Department of Computer Science (School of Engineering), University of Manchester, Manchester, UK
- Alan Turing Institute, London, UK
| | - Rebecca F Gottesman
- Stroke Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Maria B Grant
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama Heersink School of Medicine, Birmingham, AL, USA
| | - Henner Hanssen
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Cecilia S Lee
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Michelle L Meyer
- Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alicja R Rudnicka
- Population Health Research Institute, St. George's University of London, London, UK
| | - Joel S Schuman
- Wills Eye Hospital, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Sara B Seidelmann
- Department of Clinical Medicine, Columbia College of Physicians and Surgeons, Greenwich, CT, USA
| | - W H Wilson Tang
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bishow B Adhikari
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Narasimhan Danthi
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Yuling Hong
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Diane Reid
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Grace L Shen
- Retinal Diseases Program, Division of Extramural Science Programs, National Eye Institute, NIH, Bethesda, MD, USA
| | - Young S Oh
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
4
|
Kaothanthong N, Wanichwecharungruang B, Chantangphol P, Pattanapongpaiboon W, Theeramunkong T. Loss values of style transfer from UBM to AS-OCT images for plateau iris classification. Sci Rep 2024; 14:31157. [PMID: 39732818 DOI: 10.1038/s41598-024-82327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 12/04/2024] [Indexed: 12/30/2024] Open
Abstract
Ultrasound biomicroscopy (UBM) is the standard for diagnosing plateau iris, but its limited accessibility in routine clinical settings presents challenges. While anterior segment optical coherence tomography (AS-OCT) is more convenient, its effectiveness in detecting plateau iris is limited. Previous research has demonstrated that combining UBM and AS-OCT image pairs through neural style transfer has improved classification accuracy. However, obtaining paired images is impractical in everyday practice. In this study, we propose a novel semi-supervised approach that eliminates the need for paired images. A generative model learns to distinguish plateau and non-plateau features from UBM images. AS-OCT images are input into the generator, which attempts to transform them into corresponding UBM images. The model's performance is measured by loss values, representing the difficulty of transforming AS-OCT images, which are then used to predict plateau iris. The classification baseline, which applies AS-OCT solely without the style-transfer of UBM information, obtained 52.72% sensitivity, 60.82% specificity, and 57.89% accuracy for external validation; in contrast, the classification with neural style transfer of the image pairs respectively obtained 94.54%, 100.00%, and 98.03%, whereas the semi-supervised approach using loss values classification obtained 93.10%, 93.13%, and 93.12%, respectively. This semi-supervised transfer learning model presents a novel technique for detecting plateau iris with AS-OCT.
Collapse
Affiliation(s)
- Natsuda Kaothanthong
- Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| | - Boonsong Wanichwecharungruang
- Department of Ophthalmology, Rajavithi Hospital and Rangsit Medical College, Bangkok, Thailand.
- Department of Ophthalmology, Priest Hospital, Rachathewi, Bangkok, Thailand.
| | - Pantid Chantangphol
- Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| | | | - Thanaruk Theeramunkong
- Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
5
|
Li F, Wang D, Yang Z, Zhang Y, Jiang J, Liu X, Kong K, Zhou F, Tham CC, Medeiros F, Han Y, Grzybowski A, Zangwill LM, Lam DSC, Zhang X. The AI revolution in glaucoma: Bridging challenges with opportunities. Prog Retin Eye Res 2024; 103:101291. [PMID: 39186968 DOI: 10.1016/j.preteyeres.2024.101291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Recent advancements in artificial intelligence (AI) herald transformative potentials for reshaping glaucoma clinical management, improving screening efficacy, sharpening diagnosis precision, and refining the detection of disease progression. However, incorporating AI into healthcare usages faces significant hurdles in terms of developing algorithms and putting them into practice. When creating algorithms, issues arise due to the intensive effort required to label data, inconsistent diagnostic standards, and a lack of thorough testing, which often limits the algorithms' widespread applicability. Additionally, the "black box" nature of AI algorithms may cause doctors to be wary or skeptical. When it comes to using these tools, challenges include dealing with lower-quality images in real situations and the systems' limited ability to work well with diverse ethnic groups and different diagnostic equipment. Looking ahead, new developments aim to protect data privacy through federated learning paradigms, improving algorithm generalizability by diversifying input data modalities, and augmenting datasets with synthetic imagery. The integration of smartphones appears promising for using AI algorithms in both clinical and non-clinical settings. Furthermore, bringing in large language models (LLMs) to act as interactive tool in medicine may signify a significant change in how healthcare will be delivered in the future. By navigating through these challenges and leveraging on these as opportunities, the field of glaucoma AI will not only have improved algorithmic accuracy and optimized data integration but also a paradigmatic shift towards enhanced clinical acceptance and a transformative improvement in glaucoma care.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Deming Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Zefeng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Yinhang Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Jiaxuan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Xiaoyi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Kangjie Kong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| | - Fengqi Zhou
- Ophthalmology, Mayo Clinic Health System, Eau Claire, WI, USA.
| | - Clement C Tham
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Felipe Medeiros
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Ying Han
- University of California, San Francisco, Department of Ophthalmology, San Francisco, CA, USA; The Francis I. Proctor Foundation for Research in Ophthalmology, University of California, San Francisco, CA, USA.
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland.
| | - Linda M Zangwill
- Hamilton Glaucoma Center, Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, CA, USA.
| | - Dennis S C Lam
- The International Eye Research Institute of the Chinese University of Hong Kong (Shenzhen), Shenzhen, China; The C-MER Dennis Lam & Partners Eye Center, C-MER International Eye Care Group, Hong Kong, China.
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| |
Collapse
|
6
|
Luo Y, Tian Y, Shi M, Pasquale LR, Shen LQ, Zebardast N, Elze T, Wang M. Harvard Glaucoma Fairness: A Retinal Nerve Disease Dataset for Fairness Learning and Fair Identity Normalization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2623-2633. [PMID: 38478455 PMCID: PMC11251413 DOI: 10.1109/tmi.2024.3377552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Fairness (also known as equity interchangeably) in machine learning is important for societal well-being, but limited public datasets hinder its progress. Currently, no dedicated public medical datasets with imaging data for fairness learning are available, though underrepresented groups suffer from more health issues. To address this gap, we introduce Harvard Glaucoma Fairness (Harvard-GF), a retinal nerve disease dataset including 3,300 subjects with both 2D and 3D imaging data and balanced racial groups for glaucoma detection. Glaucoma is the leading cause of irreversible blindness globally with Blacks having doubled glaucoma prevalence than other races. We also propose a fair identity normalization (FIN) approach to equalize the feature importance between different identity groups. Our FIN approach is compared with various state-of-the-art fairness learning methods with superior performance in the racial, gender, and ethnicity fairness tasks with 2D and 3D imaging data, demonstrating the utilities of our dataset Harvard-GF for fairness learning. To facilitate fairness comparisons between different models, we propose an equity-scaled performance measure, which can be flexibly used to compare all kinds of performance metrics in the context of fairness. The dataset and code are publicly accessible via https://ophai.hms.harvard.edu/datasets/harvard-gf3300/.
Collapse
|
7
|
Ong J, Jang KJ, Baek SJ, Hu D, Lin V, Jang S, Thaler A, Sabbagh N, Saeed A, Kwon M, Kim JH, Lee S, Han YS, Zhao M, Sokolsky O, Lee I, Al-Aswad LA. Development of oculomics artificial intelligence for cardiovascular risk factors: A case study in fundus oculomics for HbA1c assessment and clinically relevant considerations for clinicians. Asia Pac J Ophthalmol (Phila) 2024; 13:100095. [PMID: 39209216 DOI: 10.1016/j.apjo.2024.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Artificial Intelligence (AI) is transforming healthcare, notably in ophthalmology, where its ability to interpret images and data can significantly enhance disease diagnosis and patient care. Recent developments in oculomics, the integration of ophthalmic features to develop biomarkers for systemic diseases, have demonstrated the potential for providing rapid, non-invasive methods of screening leading to enhance in early detection and improve healthcare quality, particularly in underserved areas. However, the widespread adoption of such AI-based technologies faces challenges primarily related to the trustworthiness of the system. We demonstrate the potential and considerations needed to develop trustworthy AI in oculomics through a pilot study for HbA1c assessment using an AI-based approach. We then discuss various challenges, considerations, and solutions that have been developed for powerful AI technologies in the past in healthcare and subsequently apply these considerations to the oculomics pilot study. Building upon the observations in the study we highlight the challenges and opportunities for advancing trustworthy AI in oculomics. Ultimately, oculomics presents as a powerful and emerging technology in ophthalmology and understanding how to optimize transparency prior to clinical adoption is of utmost importance.
Collapse
Affiliation(s)
- Joshua Ong
- Department of Ophthalmology and Visual Sciences, University of Michigan Kellogg Eye Center, Ann Arbor, MI, United States
| | - Kuk Jin Jang
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Seung Ju Baek
- Department of AI Convergence Engineering, Gyeongsang National University, Republic of Korea
| | - Dongyin Hu
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Vivian Lin
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Sooyong Jang
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexandra Thaler
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Nouran Sabbagh
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Almiqdad Saeed
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States; St John Eye Hospital-Jerusalem, Department of Ophthalmology, Israel
| | - Minwook Kwon
- Department of AI Convergence Engineering, Gyeongsang National University, Republic of Korea
| | - Jin Hyun Kim
- Department of Intelligence and Communication Engineering, Gyeongsang National University, Republic of Korea
| | - Seongjin Lee
- Department of AI Convergence Engineering, Gyeongsang National University, Republic of Korea
| | - Yong Seop Han
- Department of Ophthalmology, Gyeongsang National University College of Medicine, Institute of Health Sciences, Republic of Korea
| | - Mingmin Zhao
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Oleg Sokolsky
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Insup Lee
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States.
| | - Lama A Al-Aswad
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Shakya KS, Alavi A, Porteous J, K P, Laddi A, Jaiswal M. A Critical Analysis of Deep Semi-Supervised Learning Approaches for Enhanced Medical Image Classification. INFORMATION 2024; 15:246. [DOI: 10.3390/info15050246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Deep semi-supervised learning (DSSL) is a machine learning paradigm that blends supervised and unsupervised learning techniques to improve the performance of various models in computer vision tasks. Medical image classification plays a crucial role in disease diagnosis, treatment planning, and patient care. However, obtaining labeled medical image data is often expensive and time-consuming for medical practitioners, leading to limited labeled datasets. DSSL techniques aim to address this challenge, particularly in various medical image tasks, to improve model generalization and performance. DSSL models leverage both the labeled information, which provides explicit supervision, and the unlabeled data, which can provide additional information about the underlying data distribution. That offers a practical solution to resource-intensive demands of data annotation, and enhances the model’s ability to generalize across diverse and previously unseen data landscapes. The present study provides a critical review of various DSSL approaches and their effectiveness and challenges in enhancing medical image classification tasks. The study categorized DSSL techniques into six classes: consistency regularization method, deep adversarial method, pseudo-learning method, graph-based method, multi-label method, and hybrid method. Further, a comparative analysis of performance for six considered methods is conducted using existing studies. The referenced studies have employed metrics such as accuracy, sensitivity, specificity, AUC-ROC, and F1 score to evaluate the performance of DSSL methods on different medical image datasets. Additionally, challenges of the datasets, such as heterogeneity, limited labeled data, and model interpretability, were discussed and highlighted in the context of DSSL for medical image classification. The current review provides future directions and considerations to researchers to further address the challenges and take full advantage of these methods in clinical practices.
Collapse
Affiliation(s)
- Kaushlesh Singh Shakya
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
- School of Computing Technologies, RMIT University, Melbourne, VIC 3000, Australia
| | - Azadeh Alavi
- School of Computing Technologies, RMIT University, Melbourne, VIC 3000, Australia
| | - Julie Porteous
- School of Computing Technologies, RMIT University, Melbourne, VIC 3000, Australia
| | - Priti K
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Amit Laddi
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Manojkumar Jaiswal
- Oral Health Sciences Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
9
|
Perumalraja R, Felcia Logan's Deshna B, Swetha N. Statistical performance review on diagnosis of leukemia, glaucoma and diabetes mellitus using AI. Stat Med 2024; 43:1227-1237. [PMID: 38247116 DOI: 10.1002/sim.10004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
The growth of artificial intelligence (AI) in the healthcare industry tremendously increases the patient outcomes by reshaping the way we diagnose, treat and monitor patients. AI-based innovation in healthcare include exploration of drugs, personalized medicine, clinical diagnosis investigations, robotic-assisted surgery, verified prescriptions, pregnancy care for women, radiology, and reviewed patient information analytics. However, prediction of AI-based solutions are depends mainly on the implementation of statistical algorithms and input data set. In this article, statistical performance review on various algorithms, Accuracy, Precision, Recall and F1-Score used to predict the diagnosis of leukemia, glaucoma, and diabetes mellitus is presented. Review on statistical algorithms' performance, used for individual disease diagnosis gives a complete picture of various research efforts during the last two decades. At the end of statistical review on each disease diagnosis, we have discussed our inferences that will give future directions for the new researchers on selection of AI statistical algorithm as well as the input data set.
Collapse
Affiliation(s)
- Rengaraju Perumalraja
- Department of Information Technology, Velammal College of Engineering and Technology, Madurai, India
| | - B Felcia Logan's Deshna
- Department of Information Technology, Velammal College of Engineering and Technology, Madurai, India
| | - N Swetha
- Department of Information Technology, Velammal College of Engineering and Technology, Madurai, India
| |
Collapse
|
10
|
Choi JY, Ryu IH, Kim JK, Lee IS, Yoo TK. Development of a generative deep learning model to improve epiretinal membrane detection in fundus photography. BMC Med Inform Decis Mak 2024; 24:25. [PMID: 38273286 PMCID: PMC10811871 DOI: 10.1186/s12911-024-02431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The epiretinal membrane (ERM) is a common retinal disorder characterized by abnormal fibrocellular tissue at the vitreomacular interface. Most patients with ERM are asymptomatic at early stages. Therefore, screening for ERM will become increasingly important. Despite the high prevalence of ERM, few deep learning studies have investigated ERM detection in the color fundus photography (CFP) domain. In this study, we built a generative model to enhance ERM detection performance in the CFP. METHODS This deep learning study retrospectively collected 302 ERM and 1,250 healthy CFP data points from a healthcare center. The generative model using StyleGAN2 was trained using single-center data. EfficientNetB0 with StyleGAN2-based augmentation was validated using independent internal single-center data and external datasets. We randomly assigned healthcare center data to the development (80%) and internal validation (20%) datasets. Data from two publicly accessible sources were used as external validation datasets. RESULTS StyleGAN2 facilitated realistic CFP synthesis with the characteristic cellophane reflex features of the ERM. The proposed method with StyleGAN2-based augmentation outperformed the typical transfer learning without a generative adversarial network. The proposed model achieved an area under the receiver operating characteristic (AUC) curve of 0.926 for internal validation. AUCs of 0.951 and 0.914 were obtained for the two external validation datasets. Compared with the deep learning model without augmentation, StyleGAN2-based augmentation improved the detection performance and contributed to the focus on the location of the ERM. CONCLUSIONS We proposed an ERM detection model by synthesizing realistic CFP images with the pathological features of ERM through generative deep learning. We believe that our deep learning framework will help achieve a more accurate detection of ERM in a limited data setting.
Collapse
Affiliation(s)
- Joon Yul Choi
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Ik Hee Ryu
- Department of Refractive Surgery, B&VIIT Eye Center, B2 GT Tower, 1317-23 Seocho-Dong, Seocho-Gu, Seoul, South Korea
- Research and development department, VISUWORKS, Seoul, South Korea
| | - Jin Kuk Kim
- Department of Refractive Surgery, B&VIIT Eye Center, B2 GT Tower, 1317-23 Seocho-Dong, Seocho-Gu, Seoul, South Korea
- Research and development department, VISUWORKS, Seoul, South Korea
| | - In Sik Lee
- Department of Refractive Surgery, B&VIIT Eye Center, B2 GT Tower, 1317-23 Seocho-Dong, Seocho-Gu, Seoul, South Korea
| | - Tae Keun Yoo
- Department of Refractive Surgery, B&VIIT Eye Center, B2 GT Tower, 1317-23 Seocho-Dong, Seocho-Gu, Seoul, South Korea.
- Research and development department, VISUWORKS, Seoul, South Korea.
| |
Collapse
|
11
|
Chen X, Liu X, Wu Y, Wang Z, Wang SH. Research related to the diagnosis of prostate cancer based on machine learning medical images: A review. Int J Med Inform 2024; 181:105279. [PMID: 37977054 DOI: 10.1016/j.ijmedinf.2023.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/06/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Prostate cancer is currently the second most prevalent cancer among men. Accurate diagnosis of prostate cancer can provide effective treatment for patients and greatly reduce mortality. The current medical imaging tools for screening prostate cancer are mainly MRI, CT and ultrasound. In the past 20 years, these medical imaging methods have made great progress with machine learning, especially the rise of deep learning has led to a wider application of artificial intelligence in the use of image-assisted diagnosis of prostate cancer. METHOD This review collected medical image processing methods, prostate and prostate cancer on MR images, CT images, and ultrasound images through search engines such as web of science, PubMed, and Google Scholar, including image pre-processing methods, segmentation of prostate gland on medical images, registration between prostate gland on different modal images, detection of prostate cancer lesions on the prostate. CONCLUSION Through these collated papers, it is found that the current research on the diagnosis and staging of prostate cancer using machine learning and deep learning is in its infancy, and most of the existing studies are on the diagnosis of prostate cancer and classification of lesions, and the accuracy is low, with the best results having an accuracy of less than 0.95. There are fewer studies on staging. The research is mainly focused on MR images and much less on CT images, ultrasound images. DISCUSSION Machine learning and deep learning combined with medical imaging have a broad application prospect for the diagnosis and staging of prostate cancer, but the research in this area still has more room for development.
Collapse
Affiliation(s)
- Xinyi Chen
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Xiang Liu
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Yuke Wu
- School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Zhenglei Wang
- Department of Medical Imaging, Shanghai Electric Power Hospital, Shanghai 201620, China.
| | - Shuo Hong Wang
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
12
|
Huang X, Islam MR, Akter S, Ahmed F, Kazami E, Serhan HA, Abd-Alrazaq A, Yousefi S. Artificial intelligence in glaucoma: opportunities, challenges, and future directions. Biomed Eng Online 2023; 22:126. [PMID: 38102597 PMCID: PMC10725017 DOI: 10.1186/s12938-023-01187-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
Artificial intelligence (AI) has shown excellent diagnostic performance in detecting various complex problems related to many areas of healthcare including ophthalmology. AI diagnostic systems developed from fundus images have become state-of-the-art tools in diagnosing retinal conditions and glaucoma as well as other ocular diseases. However, designing and implementing AI models using large imaging data is challenging. In this study, we review different machine learning (ML) and deep learning (DL) techniques applied to multiple modalities of retinal data, such as fundus images and visual fields for glaucoma detection, progression assessment, staging and so on. We summarize findings and provide several taxonomies to help the reader understand the evolution of conventional and emerging AI models in glaucoma. We discuss opportunities and challenges facing AI application in glaucoma and highlight some key themes from the existing literature that may help to explore future studies. Our goal in this systematic review is to help readers and researchers to understand critical aspects of AI related to glaucoma as well as determine the necessary steps and requirements for the successful development of AI models in glaucoma.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, USA
| | - Md Rafiqul Islam
- Business Information Systems, Australian Institute of Higher Education, Sydney, Australia
| | - Shanjita Akter
- School of Computer Science, Taylors University, Subang Jaya, Malaysia
| | - Fuad Ahmed
- Department of Computer Science & Engineering, Islamic University of Technology (IUT), Gazipur, Bangladesh
| | - Ehsan Kazami
- Ophthalmology, General Hospital of Mahabad, Urmia University of Medical Sciences, Urmia, Iran
| | - Hashem Abu Serhan
- Department of Ophthalmology, Hamad Medical Corporations, Doha, Qatar
| | - Alaa Abd-Alrazaq
- AI Center for Precision Health, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Siamak Yousefi
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, USA.
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, USA.
| |
Collapse
|
13
|
Fan R, Bowd C, Brye N, Christopher M, Weinreb RN, Kriegman DJ, Zangwill LM. One-Vote Veto: Semi-Supervised Learning for Low-Shot Glaucoma Diagnosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3764-3778. [PMID: 37610903 PMCID: PMC11214580 DOI: 10.1109/tmi.2023.3307689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Convolutional neural networks (CNNs) are a promising technique for automated glaucoma diagnosis from images of the fundus, and these images are routinely acquired as part of an ophthalmic exam. Nevertheless, CNNs typically require a large amount of well-labeled data for training, which may not be available in many biomedical image classification applications, especially when diseases are rare and where labeling by experts is costly. This article makes two contributions to address this issue: 1) It extends the conventional Siamese network and introduces a training method for low-shot learning when labeled data are limited and imbalanced, and 2) it introduces a novel semi-supervised learning strategy that uses additional unlabeled training data to achieve greater accuracy. Our proposed multi-task Siamese network (MTSN) can employ any backbone CNN, and we demonstrate with four backbone CNNs that its accuracy with limited training data approaches the accuracy of backbone CNNs trained with a dataset that is 50 times larger. We also introduce One-Vote Veto (OVV) self-training, a semi-supervised learning strategy that is designed specifically for MTSNs. By taking both self-predictions and contrastive predictions of the unlabeled training data into account, OVV self-training provides additional pseudo labels for fine-tuning a pre-trained MTSN. Using a large (imbalanced) dataset with 66,715 fundus photographs acquired over 15 years, extensive experimental results demonstrate the effectiveness of low-shot learning with MTSN and semi-supervised learning with OVV self-training. Three additional, smaller clinical datasets of fundus images acquired under different conditions (cameras, instruments, locations, populations) are used to demonstrate the generalizability of the proposed methods.
Collapse
|
14
|
Rezaei M, Näppi JJ, Bischl B, Yoshida H. Bayesian uncertainty estimation for detection of long-tailed and unseen conditions in medical images. J Med Imaging (Bellingham) 2023; 10:054501. [PMID: 37818179 PMCID: PMC10560997 DOI: 10.1117/1.jmi.10.5.054501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023] Open
Abstract
Purpose Deep supervised learning provides an effective approach for developing robust models for various computer-aided diagnosis tasks. However, there is often an underlying assumption that the frequencies of the samples between the different classes of the training dataset are either similar or balanced. In real-world medical data, the samples of positive classes often occur too infrequently to satisfy this assumption. Thus, there is an unmet need for deep-learning systems that can automatically identify and adapt to the real-world conditions of imbalanced data. Approach We propose a deep Bayesian ensemble learning framework to address the representation learning problem of long-tailed and out-of-distribution (OOD) samples when training from medical images. By estimating the relative uncertainties of the input data, our framework can adapt to imbalanced data for learning generalizable classifiers. We trained and tested our framework on four public medical imaging datasets with various imbalance ratios and imaging modalities across three different learning tasks: semantic medical image segmentation, OOD detection, and in-domain generalization. We compared the performance of our framework with those of state-of-the-art comparator methods. Results Our proposed framework outperformed the comparator models significantly across all performance metrics (pairwise t -test: p < 0.01 ) in the semantic segmentation of high-resolution CT and MR images as well as in the detection of OOD samples (p < 0.01 ), thereby showing significant improvement in handling the associated long-tailed data distribution. The results of the in-domain generalization also indicated that our framework can enhance the prediction of retinal glaucoma, contributing to clinical decision-making processes. Conclusions Training of the proposed deep Bayesian ensemble learning framework with dynamic Monte-Carlo dropout and a combination of losses yielded the best generalization to unseen samples from imbalanced medical imaging datasets across different learning tasks.
Collapse
Affiliation(s)
- Mina Rezaei
- LMU Munich, Department of Statistics, Munich, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Janne J. Näppi
- Massachusetts General Hospital, Harvard Medical School, 3D Imaging Research, Department of Radiology, Boston, Massachusetts, United States
| | - Bernd Bischl
- LMU Munich, Department of Statistics, Munich, Germany
- Munich Center for Machine Learning, Munich, Germany
| | - Hiroyuki Yoshida
- Massachusetts General Hospital, Harvard Medical School, 3D Imaging Research, Department of Radiology, Boston, Massachusetts, United States
| |
Collapse
|
15
|
Xie Y, Wan Q, Xie H, Xu Y, Wang T, Wang S, Lei B. Fundus Image-Label Pairs Synthesis and Retinopathy Screening via GANs With Class-Imbalanced Semi-Supervised Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:2714-2725. [PMID: 37030825 DOI: 10.1109/tmi.2023.3263216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Retinopathy is the primary cause of irreversible yet preventable blindness. Numerous deep-learning algorithms have been developed for automatic retinal fundus image analysis. However, existing methods are usually data-driven, which rarely consider the costs associated with fundus image collection and annotation, along with the class-imbalanced distribution that arises from the relative scarcity of disease-positive individuals in the population. Semi-supervised learning on class-imbalanced data, despite a realistic problem, has been relatively little studied. To fill the existing research gap, we explore generative adversarial networks (GANs) as a potential answer to that problem. Specifically, we present a novel framework, named CISSL-GANs, for class-imbalanced semi-supervised learning (CISSL) by leveraging a dynamic class-rebalancing (DCR) sampler, which exploits the property that the classifier trained on class-imbalanced data produces high-precision pseudo-labels on minority classes to leverage the bias inherent in pseudo-labels. Also, given the well-known difficulty of training GANs on complex data, we investigate three practical techniques to improve the training dynamics without altering the global equilibrium. Experimental results demonstrate that our CISSL-GANs are capable of simultaneously improving fundus image class-conditional generation and classification performance under a typical label insufficient and imbalanced scenario. Our code is available at: https://github.com/Xyporz/CISSL-GANs.
Collapse
|
16
|
FixMatch-LS: Semi-supervised skin lesion classification with label smoothing. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
17
|
Wang Z, Lim G, Ng WY, Tan TE, Lim J, Lim SH, Foo V, Lim J, Sinisterra LG, Zheng F, Liu N, Tan GSW, Cheng CY, Cheung GCM, Wong TY, Ting DSW. Synthetic artificial intelligence using generative adversarial network for retinal imaging in detection of age-related macular degeneration. Front Med (Lausanne) 2023; 10:1184892. [PMID: 37425325 PMCID: PMC10324667 DOI: 10.3389/fmed.2023.1184892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/30/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Age-related macular degeneration (AMD) is one of the leading causes of vision impairment globally and early detection is crucial to prevent vision loss. However, the screening of AMD is resource dependent and demands experienced healthcare providers. Recently, deep learning (DL) systems have shown the potential for effective detection of various eye diseases from retinal fundus images, but the development of such robust systems requires a large amount of datasets, which could be limited by prevalence of the disease and privacy of patient. As in the case of AMD, the advanced phenotype is often scarce for conducting DL analysis, which may be tackled via generating synthetic images using Generative Adversarial Networks (GANs). This study aims to develop GAN-synthesized fundus photos with AMD lesions, and to assess the realness of these images with an objective scale. Methods To build our GAN models, a total of 125,012 fundus photos were used from a real-world non-AMD phenotypical dataset. StyleGAN2 and human-in-the-loop (HITL) method were then applied to synthesize fundus images with AMD features. To objectively assess the quality of the synthesized images, we proposed a novel realness scale based on the frequency of the broken vessels observed in the fundus photos. Four residents conducted two rounds of gradings on 300 images to distinguish real from synthetic images, based on their subjective impression and the objective scale respectively. Results and discussion The introduction of HITL training increased the percentage of synthetic images with AMD lesions, despite the limited number of AMD images in the initial training dataset. Qualitatively, the synthesized images have been proven to be robust in that our residents had limited ability to distinguish real from synthetic ones, as evidenced by an overall accuracy of 0.66 (95% CI: 0.61-0.66) and Cohen's kappa of 0.320. For the non-referable AMD classes (no or early AMD), the accuracy was only 0.51. With the objective scale, the overall accuracy improved to 0.72. In conclusion, GAN models built with HITL training are capable of producing realistic-looking fundus images that could fool human experts, while our objective realness scale based on broken vessels can help identifying the synthetic fundus photos.
Collapse
Affiliation(s)
- Zhaoran Wang
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Gilbert Lim
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Wei Yan Ng
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | - Tien-En Tan
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | - Jane Lim
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | - Sing Hui Lim
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | - Valencia Foo
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | - Joshua Lim
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | | | - Feihui Zheng
- Singapore Eye Research Institute, Singapore, Singapore
| | - Nan Liu
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Gavin Siew Wei Tan
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | - Ching-Yu Cheng
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | - Gemmy Chui Ming Cheung
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| | - Tien Yin Wong
- Singapore National Eye Centre, Singapore, Singapore
- School of Medicine, Tsinghua University, Beijing, China
| | - Daniel Shu Wei Ting
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
- Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|
18
|
Velpula VK, Sharma LD. Multi-stage glaucoma classification using pre-trained convolutional neural networks and voting-based classifier fusion. Front Physiol 2023; 14:1175881. [PMID: 37383146 PMCID: PMC10293617 DOI: 10.3389/fphys.2023.1175881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Abstract
Aim: To design an automated glaucoma detection system for early detection of glaucoma using fundus images. Background: Glaucoma is a serious eye problem that can cause vision loss and even permanent blindness. Early detection and prevention are crucial for effective treatment. Traditional diagnostic approaches are time consuming, manual, and often inaccurate, thus making automated glaucoma diagnosis necessary. Objective: To propose an automated glaucoma stage classification model using pre-trained deep convolutional neural network (CNN) models and classifier fusion. Methods: The proposed model utilized five pre-trained CNN models: ResNet50, AlexNet, VGG19, DenseNet-201, and Inception-ResNet-v2. The model was tested using four public datasets: ACRIMA, RIM-ONE, Harvard Dataverse (HVD), and Drishti. Classifier fusion was created to merge the decisions of all CNN models using the maximum voting-based approach. Results: The proposed model achieved an area under the curve of 1 and an accuracy of 99.57% for the ACRIMA dataset. The HVD dataset had an area under the curve of 0.97 and an accuracy of 85.43%. The accuracy rates for Drishti and RIM-ONE were 90.55 and 94.95%, respectively. The experimental results showed that the proposed model performed better than the state-of-the-art methods in classifying glaucoma in its early stages. Understanding the model output includes both attribution-based methods such as activations and gradient class activation map and perturbation-based methods such as locally interpretable model-agnostic explanations and occlusion sensitivity, which generate heatmaps of various sections of an image for model prediction. Conclusion: The proposed automated glaucoma stage classification model using pre-trained CNN models and classifier fusion is an effective method for the early detection of glaucoma. The results indicate high accuracy rates and superior performance compared to the existing methods.
Collapse
|
19
|
Tadisetty S, Chodavarapu R, Jin R, Clements RJ, Yu M. Identifying the Edges of the Optic Cup and the Optic Disc in Glaucoma Patients by Segmentation. SENSORS (BASEL, SWITZERLAND) 2023; 23:4668. [PMID: 37430580 PMCID: PMC10221430 DOI: 10.3390/s23104668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 07/12/2023]
Abstract
With recent advancements in artificial intelligence, fundus diseases can be classified automatically for early diagnosis, and this is an interest of many researchers. The study aims to detect the edges of the optic cup and the optic disc of fundus images taken from glaucoma patients, which has further applications in the analysis of the cup-to-disc ratio (CDR). We apply a modified U-Net model architecture on various fundus datasets and use segmentation metrics to evaluate the model. We apply edge detection and dilation to post-process the segmentation and better visualize the optic cup and optic disc. Our model results are based on ORIGA, RIM-ONE v3, REFUGE, and Drishti-GS datasets. Our results show that our methodology obtains promising segmentation efficiency for CDR analysis.
Collapse
Affiliation(s)
- Srikanth Tadisetty
- Department of Computer Science, Kent State University, Kent, OH 44242, USA; (S.T.); (R.C.)
| | - Ranjith Chodavarapu
- Department of Computer Science, Kent State University, Kent, OH 44242, USA; (S.T.); (R.C.)
| | - Ruoming Jin
- Department of Computer Science, Kent State University, Kent, OH 44242, USA; (S.T.); (R.C.)
| | - Robert J. Clements
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA;
| | - Minzhong Yu
- Department of Ophthalmology, University Hospitals, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Gutierrez A, Chen TC. Artificial intelligence in glaucoma: posterior segment optical coherence tomography. Curr Opin Ophthalmol 2023; 34:245-254. [PMID: 36728784 PMCID: PMC10090343 DOI: 10.1097/icu.0000000000000934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW To summarize the recent literature on deep learning (DL) model applications in glaucoma detection and surveillance using posterior segment optical coherence tomography (OCT) imaging. RECENT FINDINGS DL models use OCT derived parameters including retinal nerve fiber layer (RNFL) scans, macular scans, and optic nerve head (ONH) scans, as well as a combination of these parameters, to achieve high diagnostic accuracy in detecting glaucomatous optic neuropathy (GON). Although RNFL segmentation is the most widely used OCT parameter for glaucoma detection by ophthalmologists, newer DL models most commonly use a combination of parameters, which provide a more comprehensive approach. Compared to DL models for diagnosing glaucoma, DL models predicting glaucoma progression are less commonly studied but have also been developed. SUMMARY DL models offer time-efficient, objective, and potential options in the management of glaucoma. Although artificial intelligence models have already been commercially accepted as diagnostic tools for other ophthalmic diseases, there is no commercially approved DL tool for the diagnosis of glaucoma, most likely in part due to the lack of a universal definition of glaucoma defined by OCT derived parameters alone (see Supplemental Digital Content 1 for video abstract, http://links.lww.com/COOP/A54 ).
Collapse
Affiliation(s)
- Alfredo Gutierrez
- Tufts School of Medicine
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Glaucoma Service
| | - Teresa C. Chen
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Glaucoma Service
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Li Y, Yip MYT, Ting DSW, Ang M. Artificial intelligence and digital solutions for myopia. Taiwan J Ophthalmol 2023; 13:142-150. [PMID: 37484621 PMCID: PMC10361438 DOI: 10.4103/tjo.tjo-d-23-00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 07/25/2023] Open
Abstract
Myopia as an uncorrected visual impairment is recognized as a global public health issue with an increasing burden on health-care systems. Moreover, high myopia increases one's risk of developing pathologic myopia, which can lead to irreversible visual impairment. Thus, increased resources are needed for the early identification of complications, timely intervention to prevent myopia progression, and treatment of complications. Emerging artificial intelligence (AI) and digital technologies may have the potential to tackle these unmet needs through automated detection for screening and risk stratification, individualized prediction, and prognostication of myopia progression. AI applications in myopia for children and adults have been developed for the detection, diagnosis, and prediction of progression. Novel AI technologies, including multimodal AI, explainable AI, federated learning, automated machine learning, and blockchain, may further improve prediction performance, safety, accessibility, and also circumvent concerns of explainability. Digital technology advancements include digital therapeutics, self-monitoring devices, virtual reality or augmented reality technology, and wearable devices - which provide possible avenues for monitoring myopia progression and control. However, there are challenges in the implementation of these technologies, which include requirements for specific infrastructure and resources, demonstrating clinically acceptable performance and safety of data management. Nonetheless, this remains an evolving field with the potential to address the growing global burden of myopia.
Collapse
Affiliation(s)
- Yong Li
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Department of Ophthalmology and Visual Sciences, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Michelle Y. T. Yip
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Daniel S. W. Ting
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Department of Ophthalmology and Visual Sciences, Duke-NUS Medical School, National University of Singapore, Singapore
| | - Marcus Ang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
- Department of Ophthalmology and Visual Sciences, Duke-NUS Medical School, National University of Singapore, Singapore
| |
Collapse
|
22
|
Ataş İ. Comparison of deep convolution and least squares GANs for diabetic retinopathy image synthesis. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
23
|
Deng C, Deng Z, Lu S, He M, Miao J, Peng Y. Fault Diagnosis Method for Imbalanced Data Based on Multi-Signal Fusion and Improved Deep Convolution Generative Adversarial Network. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052542. [PMID: 36904745 PMCID: PMC10007067 DOI: 10.3390/s23052542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 05/27/2023]
Abstract
The realization of accurate fault diagnosis is crucial to ensure the normal operation of machines. At present, an intelligent fault diagnosis method based on deep learning has been widely applied in mechanical areas due to its strong ability of feature extraction and accurate identification. However, it often depends on enough training samples. Generally, the model performance depends on sufficient training samples. However, the fault data are always insufficient in practical engineering as the mechanical equipment often works under normal conditions, resulting in imbalanced data. Deep learning-based models trained directly with the imbalanced data will greatly reduce the diagnosis accuracy. In this paper, a diagnosis method is proposed to address the imbalanced data problem and enhance the diagnosis accuracy. Firstly, signals from multiple sensors are processed by the wavelet transform to enhance data features, which are then squeezed and fused through pooling and splicing operations. Subsequently, improved adversarial networks are constructed to generate new samples for data augmentation. Finally, an improved residual network is constructed by introducing the convolutional block attention module for enhancing the diagnosis performance. The experiments containing two different types of bearing datasets are adopted to validate the effectiveness and superiority of the proposed method in single-class and multi-class data imbalance cases. The results show that the proposed method can generate high-quality synthetic samples and improve the diagnosis accuracy presenting great potential in imbalanced fault diagnosis.
Collapse
Affiliation(s)
- Congying Deng
- School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zihao Deng
- School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Sheng Lu
- School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Mingge He
- CNPC Chuanqing Drilling Engineering Co., Ltd., Chengdu 610051, China
| | - Jianguo Miao
- College of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Ying Peng
- School of Advanced Manufacturing Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| |
Collapse
|
24
|
Peng Z, Zhang D, Tian S, Wu W, Yu L, Zhou S, Huang S. FaxMatch: Multi-Curriculum Pseudo-Labeling for semi-supervised medical image classification. Med Phys 2023; 50:3210-3222. [PMID: 36779849 DOI: 10.1002/mp.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/28/2022] [Accepted: 02/05/2023] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Semi-supervised learning (SSL) can effectively use information from unlabeled data to improve model performance, which has great significance in medical imaging tasks. Pseudo-labeling is a classical SSL method that uses a model to predict unlabeled samples and selects the prediction with the highest confidence level as the pseudo-labels and then uses the generated pseudo-labels to train the model. Most of the current pseudo-label-based SSL algorithms use predefined fixed thresholds for all classes to select unlabeled data. PURPOSE However, data imbalance is a common problem in medical image tasks, where the use of fixed threshold to generate pseudo-labels ignores different classes of learning status and learning difficulties. The aim of this study is to develop an algorithm to solve this problem. METHODS In this work, we propose Multi-Curriculum Pseudo-Labeling (MCPL), which evaluates the learning status of the model for each class at each epoch and automatically adjusts the thresholds for each class. We apply MCPL to FixMatch and propose a new SSL framework for medical image classification, which we call the improved algorithm FaxMatch. To mitigate the impact of incorrect pseudo-labels on the model, we use label smoothing (LS) strategy to generate soft labels (SL) for pseudo-labels. RESULTS We have conducted extensive experiments to evaluate our method on two public benchmark medical image classification datasets: the ISIC 2018 skin lesion analysis and COVID-CT datasets. Experimental results show that our method outperforms fully supervised baseline, which uses only labeled data to train the model. Moreover, our method also outperforms other state-of-the-art methods. CONCLUSIONS We propose MCPL and construct a semi-supervised medical image classification framework to reduce the reliance of the model on a large number of labeled images and reduce the manual workload of labeling medical image data.
Collapse
Affiliation(s)
- Zhen Peng
- College of Software, Xinjiang University, Urumqi, China.,Key Laboratory of Software Engineering Technology, College of Software, Xin Jiang University, Urumqi, China
| | - Dezhi Zhang
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shengwei Tian
- College of Software, Xinjiang University, Urumqi, China.,Key Laboratory of Software Engineering Technology, College of Software, Xin Jiang University, Urumqi, China
| | - Weidong Wu
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Long Yu
- College of Information Science and Engineering, Xinjiang University, Urumqi, China.,College of Network Center, Xinjiang University, Urumqi, China
| | - Shaofeng Zhou
- College of Software, Xinjiang University, Urumqi, China.,Key Laboratory of Software Engineering Technology, College of Software, Xin Jiang University, Urumqi, China
| | - Shanhang Huang
- College of Software, Xinjiang University, Urumqi, China.,Key Laboratory of Software Engineering Technology, College of Software, Xin Jiang University, Urumqi, China
| |
Collapse
|
25
|
Sunija AP, Gopi VP, Krishna AK. D-DAGNet: AN IMPROVED HYBRID DEEP NETWORK FOR AUTOMATED CLASSIFICATION OF GLAUCOMA FROM OCT IMAGES. BIOMEDICAL ENGINEERING: APPLICATIONS, BASIS AND COMMUNICATIONS 2023; 35. [DOI: 10.4015/s1016237222500429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The introduction of Optical Coherence Tomography (OCT) in ophthalmology has resulted in significant progress in the early detection of glaucoma. Traditional approaches to identifying retinal diseases comprise an analysis of medical history and manual assessment of retinal images. Manual diagnosis is time-consuming and requires considerable human expertise, without which, errors could be costly to human sight. The use of artificial intelligence such as machine learning techniques in image analysis has been gaining ground in recent years for accurate, fast and cost-effective diagnosis from retinal images. This work proposes a Directed Acyclic Graph (DAG) network that combines Depthwise Convolution (DC) to decisively recognize early-stage retinal glaucoma from OCT images. The proposed method leverages the benefits of both depthwise convolution and DAG. The Convolutional Neural Network (CNN) information obtained in the proposed architecture is processed as per the partial order over the nodes. The Grad-CAM method is adopted to quantify and visualize normal and glaucomatous OCT heatmaps to improve diagnostic interpretability. The experiments were performed on LFH_Glaucoma dataset composed of 1105 glaucoma and 1049 healthy OCT scans. The proposed faster hybrid Depthwise-Directed Acyclic Graph Network (D-DAGNet) achieved an accuracy of 0.9995, precision of 0.9989, recall of 1.0, F1-score of 0.9994 and AUC of 0.9995 with only 0.0047 M learnable parameters. Hybrid D-DAGNet enhances network training efficacy and significantly reduces learnable parameters required for identification of the features of interest. The proposed network overcomes the problems of overfitting and performance degradation due to accretion of layers in the deep network, and is thus useful for real-time identification of glaucoma features from retinal OCT images.
Collapse
Affiliation(s)
- A. P. Sunija
- Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Varun P. Gopi
- Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Adithya K. Krishna
- Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| |
Collapse
|
26
|
LAC-GAN: Lesion attention conditional GAN for Ultra-widefield image synthesis. Neural Netw 2023; 158:89-98. [PMID: 36446158 DOI: 10.1016/j.neunet.2022.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/30/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
Abstract
Automatic detection of retinal diseases based on deep learning technology and Ultra-widefield (UWF) images plays an important role in clinical practices in recent years. However, due to small lesions and limited data samples, it is not easy to train a detection-accurate model with strong generalization ability. In this paper, we propose a lesion attention conditional generative adversarial network (LAC-GAN) to synthesize retinal images with realistic lesion details to improve the training of the disease detection model. Specifically, the generator takes the vessel mask and class label as the conditional inputs, and processes the random Gaussian noise by a series of residual block to generate the synthetic images. To focus on pathological information, we propose a lesion feature attention mechanism based on random forest (RF) method, which constructs its reverse activation network to activate the lesion features. For discriminator, a weight-sharing multi-discriminator is designed to improve the performance of model by affine transformations. Experimental results on multi-center UWF image datasets demonstrate that the proposed method can generate retinal images with reasonable details, which helps to enhance the performance of the disease detection model.
Collapse
|
27
|
Semi-supervised medical image classification with adaptive threshold pseudo-labeling and unreliable sample contrastive loss. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Yi Y, Guo C, Hu Y, Zhou W, Wang W. BCR-UNet: Bi-directional ConvLSTM residual U-Net for retinal blood vessel segmentation. Front Public Health 2022; 10:1056226. [PMID: 36483248 PMCID: PMC9722738 DOI: 10.3389/fpubh.2022.1056226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background High precision segmentation of retinal blood vessels from retinal images is a significant step for doctors to diagnose many diseases such as glaucoma and cardiovascular diseases. However, at the peripheral region of vessels, previous U-Net-based segmentation methods failed to significantly preserve the low-contrast tiny vessels. Methods For solving this challenge, we propose a novel network model called Bi-directional ConvLSTM Residual U-Net (BCR-UNet), which takes full advantage of U-Net, Dropblock, Residual convolution and Bi-directional ConvLSTM (BConvLSTM). In this proposed BCR-UNet model, we propose a novel Structured Dropout Residual Block (SDRB) instead of using the original U-Net convolutional block, to construct our network skeleton for improving the robustness of the network. Furthermore, to improve the discriminative ability of the network and preserve more original semantic information of tiny vessels, we adopt BConvLSTM to integrate the feature maps captured from the first residual block and the last up-convolutional layer in a nonlinear manner. Results and discussion We conduct experiments on four public retinal blood vessel datasets, and the results show that the proposed BCR-UNet can preserve more tiny blood vessels at the low-contrast peripheral regions, even outperforming previous state-of-the-art methods.
Collapse
Affiliation(s)
- Yugen Yi
- School of Software, Jiangxi Normal University, Nanchang, China
| | - Changlu Guo
- Yichun Economic and Technological Development Zone, Yichun, China,*Correspondence: Changlu Guo
| | - Yangtao Hu
- The 908th Hospital of Chinese People's Liberation Army Joint Logistic Support Force, Nanchang, China,Yangtao Hu
| | - Wei Zhou
- College of Computer Science, Shenyang Aerospace University, Shenyang, China
| | - Wenle Wang
- School of Software, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
29
|
Fu J, Cao L, Wei S, Xu M, Song Y, Li H, You Y. A GAN-based deep enhancer for quality enhancement of retinal images photographed by a handheld fundus camera. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2022; 2:100077. [PMID: 37846289 PMCID: PMC10577846 DOI: 10.1016/j.aopr.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 10/18/2023]
Abstract
Objective Due to limited imaging conditions, the quality of fundus images is often unsatisfactory, especially for images photographed by handheld fundus cameras. Here, we have developed an automated method based on combining two mirror-symmetric generative adversarial networks (GANs) for image enhancement. Methods A total of 1047 retinal images were included. The raw images were enhanced by a GAN-based deep enhancer and another methods based on luminosity and contrast adjustment. All raw images and enhanced images were anonymously assessed and classified into 6 levels of quality classification by three experienced ophthalmologists. The quality classification and quality change of images were compared. In addition, image-detailed reading results for the number of dubiously pathological fundi were also compared. Results After GAN enhancement, 42.9% of images increased their quality, 37.5% remained stable, and 19.6% decreased. After excluding the images at the highest level (level 0) before enhancement, a large number (75.6%) of images showed an increase in quality classification, and only a minority (9.3%) showed a decrease. The GAN-enhanced method was superior for quality improvement over a luminosity and contrast adjustment method (P<0.001). In terms of image reading results, the consistency rate fluctuated from 86.6% to 95.6%, and for the specific disease subtypes, both discrepancy number and discrepancy rate were less than 15 and 15%, for two ophthalmologists. Conclusions Learning the style of high-quality retinal images based on the proposed deep enhancer may be an effective way to improve the quality of retinal images photographed by handheld fundus cameras.
Collapse
Affiliation(s)
- Junxia Fu
- Beijing Aier Intech Eye Hospital, Beijing, China
- Aier Eye Hospital Group, Hunan, China
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lvchen Cao
- School of Artificial Intelligence, Henan University, Zhengzhou, China
| | - Shihui Wei
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ming Xu
- Aier Eye Hospital Group, Hunan, China
| | - Yali Song
- Aier Eye Hospital Group, Hunan, China
| | - Huiqi Li
- School of Information and Electronics, Beijing Institute of Technology, Beijing, China
| | - Yuxia You
- Beijing Aier Intech Eye Hospital, Beijing, China
- Aier Eye Hospital Group, Hunan, China
| |
Collapse
|
30
|
Jin K, Ye J. Artificial intelligence and deep learning in ophthalmology: Current status and future perspectives. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2022; 2:100078. [PMID: 37846285 PMCID: PMC10577833 DOI: 10.1016/j.aopr.2022.100078] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/18/2022] [Indexed: 10/18/2023]
Abstract
Background The ophthalmology field was among the first to adopt artificial intelligence (AI) in medicine. The availability of digitized ocular images and substantial data have made deep learning (DL) a popular topic. Main text At the moment, AI in ophthalmology is mostly used to improve disease diagnosis and assist decision-making aiming at ophthalmic diseases like diabetic retinopathy (DR), glaucoma, age-related macular degeneration (AMD), cataract and other anterior segment diseases. However, most of the AI systems developed to date are still in the experimental stages, with only a few having achieved clinical applications. There are a number of reasons for this phenomenon, including security, privacy, poor pervasiveness, trust and explainability concerns. Conclusions This review summarizes AI applications in ophthalmology, highlighting significant clinical considerations for adopting AI techniques and discussing the potential challenges and future directions.
Collapse
Affiliation(s)
- Kai Jin
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Ye
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Zhao M, Lu Z, Zhu S, Wang X, Feng J. Automatic generation of retinal optical coherence tomography images based on generative adversarial networks. Med Phys 2022; 49:7357-7367. [PMID: 36122302 DOI: 10.1002/mp.15988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/13/2022] [Accepted: 08/28/2022] [Indexed: 12/13/2022] Open
Abstract
SIGNIFICANCE The automatic generation algorithm of optical coherence tomography (OCT) images based on generative adversarial networks (GAN) can generate a large number of simulation images by a relatively small number of real images, which can effectively improve the classification performance. AIM We proposed an automatic generation algorithm for retinal OCT images based on GAN to alleviate the problem of insufficient images with high quality in deep learning, and put the diagnosis algorithm toward clinical application. APPROACH We designed a generation network based on GAN and trained the network with a data set constructed by 2014_BOE_Srinivasan and OCT2017 to acquire three models. Then, we generated a large number of images by the three models to augment age-related macular degeneration (AMD), diabetic macular edema (DME), and normal images. We evaluated the generated images by subjective visual observation, Fréchet inception distance (FID) scores, and a classification experiment. RESULTS Visual observation shows that the generated images have clear and similar features compared with the real images. Also, the lesion regions containing similar features in the real image and the generated image are randomly distributed in the image field of view. When the FID scores of the three types of generated images are lowest, three local optimal models are obtained for AMD, DME, and normal images, indicating the generated images have high quality and diversity. Moreover, the classification experiment results show that the model performance trained with the mixed images is better than that of the model trained with real images, in which the accuracy, sensitivity, and specificity are improved by 5.56%, 8.89%, and 2.22%. In addition, compared with the generation method based on variational auto-encoder (VAE), the method improved the accuracy, sensitivity, and specificity by 1.97%, 2.97%, and 0.99%, for the same test set. CONCLUSIONS The results show that our method can augment the three kinds of OCT images, not only effectively alleviating the problem of insufficient images with high quality but also improving the diagnosis performance.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Beijing University of Technology, Intelligent Physiological Measurement and Clinical Translation, International Base for Science and Technology Cooperation, Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Zhenzhen Lu
- Beijing University of Technology, Intelligent Physiological Measurement and Clinical Translation, International Base for Science and Technology Cooperation, Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Shuyuan Zhu
- Beijing University of Technology, Intelligent Physiological Measurement and Clinical Translation, International Base for Science and Technology Cooperation, Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| | - Xiaobing Wang
- Capital University of Physical Education and Sports, Sports and Medicine Integrative Innovation Center, Capital University of Physical Education and Sports, Beijing, China
| | - Jihong Feng
- Beijing University of Technology, Intelligent Physiological Measurement and Clinical Translation, International Base for Science and Technology Cooperation, Department of Biomedical Engineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
32
|
Kugelman J, Alonso-Caneiro D, Read SA, Collins MJ. A review of generative adversarial network applications in optical coherence tomography image analysis. JOURNAL OF OPTOMETRY 2022; 15 Suppl 1:S1-S11. [PMID: 36241526 PMCID: PMC9732473 DOI: 10.1016/j.optom.2022.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Optical coherence tomography (OCT) has revolutionized ophthalmic clinical practice and research, as a result of the high-resolution images that the method is able to capture in a fast, non-invasive manner. Although clinicians can interpret OCT images qualitatively, the ability to quantitatively and automatically analyse these images represents a key goal for eye care by providing clinicians with immediate and relevant metrics to inform best clinical practice. The range of applications and methods to analyse OCT images is rich and rapidly expanding. With the advent of deep learning methods, the field has experienced significant progress with state-of-the-art-performance for several OCT image analysis tasks. Generative adversarial networks (GANs) represent a subfield of deep learning that allows for a range of novel applications not possible in most other deep learning methods, with the potential to provide more accurate and robust analyses. In this review, the progress in this field and clinical impact are reviewed and the potential future development of applications of GANs to OCT image processing are discussed.
Collapse
Affiliation(s)
- Jason Kugelman
- Queensland University of Technology (QUT), Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia.
| | - David Alonso-Caneiro
- Queensland University of Technology (QUT), Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia
| | - Scott A Read
- Queensland University of Technology (QUT), Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia
| | - Michael J Collins
- Queensland University of Technology (QUT), Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, School of Optometry and Vision Science, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
33
|
Parashar D, Agrawal DK. Classification of Glaucoma Stages Using Image Empirical Mode Decomposition from Fundus Images. J Digit Imaging 2022; 35:1283-1292. [PMID: 35581407 PMCID: PMC9582090 DOI: 10.1007/s10278-022-00648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/29/2022] Open
Abstract
One of the most prevalent causes of visual loss and blindness is glaucoma. Conventionally, instrument-based tools are employed for glaucoma screening. However, they are inefficient, time-consuming, and manual. Hence, computerized methodologies are needed for fast and accurate diagnosis of glaucoma. Therefore, we proposed a Computer-Aided Diagnosis (CAD) method for the classification of glaucoma stages using Image Empirical Mode decomposition (IEMD). In this study, IEMD is applied to decompose the preprocessed fundus photographs into different Intrinsic Mode Functions (IMFs) to capture the pixel variations. Then, the significant texture-based descriptors have been computed from the IMFs. A dimensionality reduction approach called Principal Component Analysis (PCA) has been employed to pick the robust descriptors from the retrieved feature set. We used the Analysis of Variance (ANOVA) test for feature ranking. Finally, the LS-SVM classifier has been employed to classify glaucoma stages. The proposed CAD system achieved a classification accuracy of 94.45% for the binary classification on the RIM-ONE r12 database. Our approach demonstrated better glaucoma classification performance than the existing automated systems.
Collapse
Affiliation(s)
- Deepak Parashar
- Department of Electronics and Communication Engineering, IES College of Technology, Bhopal, 462044, MP, India.
- Department of Electronics and Communication Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, MP, India.
| | - Dheraj Kumar Agrawal
- Department of Electronics and Communication Engineering, Maulana Azad National Institute of Technology, Bhopal, 462003, MP, India
| |
Collapse
|
34
|
Guo X, Lu X, Lin Q, Zhang J, Hu X, Che S. A novel retinal image generation model with the preservation of structural similarity and high resolution. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.104004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
35
|
Huang W, Luo M, Li J, Zhang P, Zha Y. A novel locally-constrained GAN-based ensemble to synthesize arterial spin labeling images. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.07.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Xu J, Shen J, Yan Z, Zhou F, Wan C, Yang W. An intelligent location method of key boundary points for assisting the diameter measurement of central serous chorioretinopathy lesion area. Comput Biol Med 2022; 147:105730. [PMID: 35792473 DOI: 10.1016/j.compbiomed.2022.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 11/24/2022]
Abstract
The diameter of central serous chorioretinopathy (CSCR) lesion is one of the important indicators to evaluate the severity of CSCR and the efficacy of corresponding treatment schemes. Traditional manual measurement by ophthalmologists is usually based on a single or a small number of optical coherence tomography (OCT) B-scan images. This measurement scheme may not be convincing, vulnerable to subjective factors and lower efficiency. To alleviate the above situation, this paper proposes an intelligent key boundary point location method for all B-scan images of a single patient to assist in the rapid and accurate diameter measurement of the CSCR lesion area. Firstly, an initial location module (ILM) based on the multi-task learning paradigm is appropriately adjusted and introduced into the key boundary point location task, which preliminarily realizes the rapid location of key boundary points. Secondly, to further ameliorate the ILM, a gradient based correction module (GBCM) is designed, followed by the construction of the cascade model (ILM-GBCM) which improves the location accuracy of key boundary points as a whole. Extensive experiments based on five different convolutional neural network (CNN) backbones are carried out, revealing the feasibility of ILM in this task and the effectiveness of ILM-GBCM. On 912 testing images, the maximum correction ratio reaches 83.66%, and the minimum location time at the image level is as low as 0.1754 s, which not only confirms the necessity of correction operation, but also greatly reduce the time cost of ophthalmologists' manual measurement operation in clinic.
Collapse
Affiliation(s)
- Jianguo Xu
- College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics &Astronautics, 210016, Nanjing, PR China
| | - Jianxin Shen
- College of Mechanical & Electrical Engineering, Nanjing University of Aeronautics &Astronautics, 210016, Nanjing, PR China.
| | - Zhipeng Yan
- The Affiliated Eye Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Fen Zhou
- The Affiliated Eye Hospital of Nanjing Medical University, 210029, Nanjing, PR China
| | - Cheng Wan
- College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, 211106, Nanjing, PR China
| | - Weihua Yang
- Shenzhen Eye Hospital, Jinan University, 518040, Shenzhen, PR China; The Affiliated Eye Hospital of Nanjing Medical University, 210029, Nanjing, PR China.
| |
Collapse
|
37
|
Semi-Supervised Medical Image Classification Based on Attention and Intrinsic Features of Samples. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The training of deep neural networks usually requires a lot of high-quality data with good annotations to obtain good performance. However, in clinical medicine, obtaining high-quality marker data is laborious and expensive because it requires the professional skill of clinicians. In this paper, based on the consistency strategy, we propose a new semi-supervised model for medical image classification which introduces a self-attention mechanism into the backbone network to learn more meaningful features in image classification tasks and uses the improved version of focal loss at the supervision loss to reduce the misclassification of samples. Finally, we add a consistency loss similar to the unsupervised consistency loss to encourage the model to learn more about the internal features of unlabeled samples. Our method achieved 94.02% AUC and 72.03% Sensitivity on the ISIC 2018 dataset and 79.74% AUC on the ChestX-ray14 dataset. These results show the effectiveness of our method in single-label and multi-label classification.
Collapse
|
38
|
SemiSANet: A Semi-Supervised High-Resolution Remote Sensing Image Change Detection Model Using Siamese Networks with Graph Attention. REMOTE SENSING 2022. [DOI: 10.3390/rs14122801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Change detection (CD) is one of the important applications of remote sensing and plays an important role in disaster assessment, land use detection, and urban sprawl tracking. High-accuracy fully supervised methods are the main methods for CD tasks at present. However, these methods require a large amount of labeled data consisting of bi-temporal images and their change maps. Moreover, creating change maps takes a lot of labor and time. To address this limitation, a simple semi-supervised change detection method based on consistency regularization and strong augmentation is proposed in this paper. First, we construct a Siamese nested UNet with graph attention mechanism (SANet) and pre-train it with a small amount of labeled data. Then, we feed the unlabeled data into the pre-trained SANet and confidence threshold filter to obtain pseudo-labels with high confidence. At the same time, we produce distorted images by performing strong augmentation on unlabeled data. The model is trained to make the CD results of the distorted images consistent with the corresponding pseudo-label. Extensive experiments are conducted on two high-resolution remote sensing datasets. The results demonstrate that our method can effectively improve the performance of change detection under insufficient labels. Our methods can increase the IoU by more than 25% compared to the state-of-the-art methods.
Collapse
|
39
|
Sánchez-Morales A, Morales-Sánchez J, Kovalyk O, Verdú-Monedero R, Sancho-Gómez JL. Improving Glaucoma Diagnosis Assembling Deep Networks and Voting Schemes. Diagnostics (Basel) 2022; 12:diagnostics12061382. [PMID: 35741192 PMCID: PMC9222078 DOI: 10.3390/diagnostics12061382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
Glaucoma is a group of eye conditions that damage the optic nerve, the health of which is vital for good eyesight. This damage is often caused by higher-than-normal pressure in the eye. In the past few years, the applications of artificial intelligence and data science have increased rapidly in medicine especially in imaging applications. In particular, deep learning tools have been successfully applied obtaining, in some cases, results superior to those obtained by humans. In this article, we present a soft novel ensemble model based on the K-NN algorithm, that combines the probability of class membership obtained by several deep learning models. In this research, three models of different nature (CNN, CapsNets and Convolutional Autoencoders) have been selected searching for diversity. The latent space of these models are combined using the local information provided by the true sample labels and the K-NN algorithm is applied to determine the final decision. The results obtained on two different datasets of retinal images show that the proposed ensemble model improves the diagnosis capabilities for both the individual models and the state-of-the-art results.
Collapse
|
40
|
Lim JS, Hong M, Lam WST, Zhang Z, Teo ZL, Liu Y, Ng WY, Foo LL, Ting DSW. Novel technical and privacy-preserving technology for artificial intelligence in ophthalmology. Curr Opin Ophthalmol 2022; 33:174-187. [PMID: 35266894 DOI: 10.1097/icu.0000000000000846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The application of artificial intelligence (AI) in medicine and ophthalmology has experienced exponential breakthroughs in recent years in diagnosis, prognosis, and aiding clinical decision-making. The use of digital data has also heralded the need for privacy-preserving technology to protect patient confidentiality and to guard against threats such as adversarial attacks. Hence, this review aims to outline novel AI-based systems for ophthalmology use, privacy-preserving measures, potential challenges, and future directions of each. RECENT FINDINGS Several key AI algorithms used to improve disease detection and outcomes include: Data-driven, imagedriven, natural language processing (NLP)-driven, genomics-driven, and multimodality algorithms. However, deep learning systems are susceptible to adversarial attacks, and use of data for training models is associated with privacy concerns. Several data protection methods address these concerns in the form of blockchain technology, federated learning, and generative adversarial networks. SUMMARY AI-applications have vast potential to meet many eyecare needs, consequently reducing burden on scarce healthcare resources. A pertinent challenge would be to maintain data privacy and confidentiality while supporting AI endeavors, where data protection methods would need to rapidly evolve with AI technology needs. Ultimately, for AI to succeed in medicine and ophthalmology, a balance would need to be found between innovation and privacy.
Collapse
Affiliation(s)
- Jane S Lim
- Singapore National Eye Centre, Singapore Eye Research Institute
| | | | - Walter S T Lam
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Zheting Zhang
- Lee Kong Chian School of Medicine, Nanyang Technological University
| | - Zhen Ling Teo
- Singapore National Eye Centre, Singapore Eye Research Institute
| | - Yong Liu
- National University of Singapore, DukeNUS Medical School, Singapore
| | - Wei Yan Ng
- Singapore National Eye Centre, Singapore Eye Research Institute
| | - Li Lian Foo
- Singapore National Eye Centre, Singapore Eye Research Institute
| | - Daniel S W Ting
- Singapore National Eye Centre, Singapore Eye Research Institute
| |
Collapse
|
41
|
Liu P, Zheng G. Handling Imbalanced Data: Uncertainty-guided Virtual Adversarial Training with Batch Nuclear-norm Optimization for Semi-supervised Medical Image Classification. IEEE J Biomed Health Inform 2022; 26:2983-2994. [PMID: 35344500 DOI: 10.1109/jbhi.2022.3162748] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In many clinical settings, a lot of medical image datasets suffer from imbalance problems, which makes predictions of trained models to be biased toward majority classes. Semi-supervised Learning (SSL) algorithms trained with such imbalanced datasets become more problematic since pseudo-supervision of unlabeled data are generated from the model's biased predictions. To address these issues, in this work, we propose a novel semi-supervised deep learning method, i.e., uncertainty-guided virtual adversarial training (VAT) with batch nuclear-norm (BNN) optimization, for large-scale medical image classification. To effectively exploit useful information from both labeled and unlabeled data, we leverage VAT and BNN optimization to harness the underlying knowledge, which helps to improve discriminability, diversity and generalization of the trained models. More concretely, our network is trained by minimizing a combination of four types of losses, including a supervised cross-entropy loss, a BNN loss defined on the output matrix of labeled data batch (lBNN loss), a negative BNN loss defined on the output matrix of unlabeled data batch (uBNN loss), and a VAT loss on both labeled and unlabeled data. We additionally propose to use uncertainty estimation to filter out unlabeled samples near the decision boundary when computing the VAT loss. We conduct comprehensive experiments to evaluate the performance of our method on two publicly available datasets and one in-house collected dataset. The experimental results demonstrated that our method achieved better results than state-of-the-art SSL methods.
Collapse
|
42
|
DSLN: Dual-tutor student learning network for multiracial glaucoma detection. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07078-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Chen Y, Yang XH, Wei Z, Heidari AA, Zheng N, Li Z, Chen H, Hu H, Zhou Q, Guan Q. Generative Adversarial Networks in Medical Image augmentation: A review. Comput Biol Med 2022; 144:105382. [PMID: 35276550 DOI: 10.1016/j.compbiomed.2022.105382] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/31/2022]
Abstract
OBJECT With the development of deep learning, the number of training samples for medical image-based diagnosis and treatment models is increasing. Generative Adversarial Networks (GANs) have attracted attention in medical image processing due to their excellent image generation capabilities and have been widely used in data augmentation. In this paper, a comprehensive and systematic review and analysis of medical image augmentation work are carried out, and its research status and development prospects are reviewed. METHOD This paper reviews 105 medical image augmentation related papers, which mainly collected by ELSEVIER, IEEE Xplore, and Springer from 2018 to 2021. We counted these papers according to the parts of the organs corresponding to the images, and sorted out the medical image datasets that appeared in them, the loss function in model training, and the quantitative evaluation metrics of image augmentation. At the same time, we briefly introduce the literature collected in three journals and three conferences that have received attention in medical image processing. RESULT First, we summarize the advantages of various augmentation models, loss functions, and evaluation metrics. Researchers can use this information as a reference when designing augmentation tasks. Second, we explore the relationship between augmented models and the amount of the training set, and tease out the role that augmented models may play when the quality of the training set is limited. Third, the statistical number of papers shows that the development momentum of this research field remains strong. Furthermore, we discuss the existing limitations of this type of model and suggest possible research directions. CONCLUSION We discuss GAN-based medical image augmentation work in detail. This method effectively alleviates the challenge of limited training samples for medical image diagnosis and treatment models. It is hoped that this review will benefit researchers interested in this field.
Collapse
Affiliation(s)
- Yizhou Chen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Xu-Hua Yang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Zihan Wei
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore.
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Zhicheng Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Haigen Hu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Qianwei Zhou
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Qiu Guan
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
44
|
You A, Kim JK, Ryu IH, Yoo TK. Application of generative adversarial networks (GAN) for ophthalmology image domains: a survey. EYE AND VISION (LONDON, ENGLAND) 2022; 9:6. [PMID: 35109930 PMCID: PMC8808986 DOI: 10.1186/s40662-022-00277-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent advances in deep learning techniques have led to improved diagnostic abilities in ophthalmology. A generative adversarial network (GAN), which consists of two competing types of deep neural networks, including a generator and a discriminator, has demonstrated remarkable performance in image synthesis and image-to-image translation. The adoption of GAN for medical imaging is increasing for image generation and translation, but it is not familiar to researchers in the field of ophthalmology. In this work, we present a literature review on the application of GAN in ophthalmology image domains to discuss important contributions and to identify potential future research directions. METHODS We performed a survey on studies using GAN published before June 2021 only, and we introduced various applications of GAN in ophthalmology image domains. The search identified 48 peer-reviewed papers in the final review. The type of GAN used in the analysis, task, imaging domain, and the outcome were collected to verify the usefulness of the GAN. RESULTS In ophthalmology image domains, GAN can perform segmentation, data augmentation, denoising, domain transfer, super-resolution, post-intervention prediction, and feature extraction. GAN techniques have established an extension of datasets and modalities in ophthalmology. GAN has several limitations, such as mode collapse, spatial deformities, unintended changes, and the generation of high-frequency noises and artifacts of checkerboard patterns. CONCLUSIONS The use of GAN has benefited the various tasks in ophthalmology image domains. Based on our observations, the adoption of GAN in ophthalmology is still in a very early stage of clinical validation compared with deep learning classification techniques because several problems need to be overcome for practical use. However, the proper selection of the GAN technique and statistical modeling of ocular imaging will greatly improve the performance of each image analysis. Finally, this survey would enable researchers to access the appropriate GAN technique to maximize the potential of ophthalmology datasets for deep learning research.
Collapse
Affiliation(s)
- Aram You
- School of Architecture, Kumoh National Institute of Technology, Gumi, Gyeongbuk, South Korea
| | - Jin Kuk Kim
- B&VIIT Eye Center, Seoul, South Korea
- VISUWORKS, Seoul, South Korea
| | - Ik Hee Ryu
- B&VIIT Eye Center, Seoul, South Korea
- VISUWORKS, Seoul, South Korea
| | - Tae Keun Yoo
- B&VIIT Eye Center, Seoul, South Korea.
- Department of Ophthalmology, Aerospace Medical Center, Republic of Korea Air Force, 635 Danjae-ro, Namil-myeon, Cheongwon-gun, Cheongju, Chungcheongbuk-do, 363-849, South Korea.
| |
Collapse
|
45
|
Patwary MJ, Cao W, Wang XZ, Haque MA. Fuzziness based semi-supervised multimodal learning for patient’s activity recognition using RGBDT videos. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.108655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
46
|
Camara J, Neto A, Pires IM, Villasana MV, Zdravevski E, Cunha A. Literature Review on Artificial Intelligence Methods for Glaucoma Screening, Segmentation, and Classification. J Imaging 2022; 8:19. [PMID: 35200722 PMCID: PMC8878383 DOI: 10.3390/jimaging8020019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/20/2022] Open
Abstract
Artificial intelligence techniques are now being applied in different medical solutions ranging from disease screening to activity recognition and computer-aided diagnosis. The combination of computer science methods and medical knowledge facilitates and improves the accuracy of the different processes and tools. Inspired by these advances, this paper performs a literature review focused on state-of-the-art glaucoma screening, segmentation, and classification based on images of the papilla and excavation using deep learning techniques. These techniques have been shown to have high sensitivity and specificity in glaucoma screening based on papilla and excavation images. The automatic segmentation of the contours of the optic disc and the excavation then allows the identification and assessment of the glaucomatous disease's progression. As a result, we verified whether deep learning techniques may be helpful in performing accurate and low-cost measurements related to glaucoma, which may promote patient empowerment and help medical doctors better monitor patients.
Collapse
Affiliation(s)
- José Camara
- R. Escola Politécnica, Universidade Aberta, 1250-100 Lisboa, Portugal;
- Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal;
| | - Alexandre Neto
- Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal;
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal;
| | - Ivan Miguel Pires
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal;
- Instituto de Telecomunicações, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
| | - María Vanessa Villasana
- Centro Hospitalar Universitário Cova da Beira, 6200-251 Covilhã, Portugal;
- UICISA:E Research Centre, School of Health, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| | - Eftim Zdravevski
- Faculty of Computer Science and Engineering, University Ss Cyril and Methodius, 1000 Skopje, North Macedonia;
| | - António Cunha
- Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, 3200-465 Porto, Portugal;
- Escola de Ciências e Tecnologia, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal;
| |
Collapse
|
47
|
Wan C, Zhou X, You Q, Sun J, Shen J, Zhu S, Jiang Q, Yang W. Retinal Image Enhancement Using Cycle-Constraint Adversarial Network. Front Med (Lausanne) 2022; 8:793726. [PMID: 35096883 PMCID: PMC8789669 DOI: 10.3389/fmed.2021.793726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Retinal images are the most intuitive medical images for the diagnosis of fundus diseases. Low-quality retinal images cause difficulties in computer-aided diagnosis systems and the clinical diagnosis of ophthalmologists. The high quality of retinal images is an important basis of precision medicine in ophthalmology. In this study, we propose a retinal image enhancement method based on deep learning to enhance multiple low-quality retinal images. A generative adversarial network is employed to build a symmetrical network, and a convolutional block attention module is introduced to improve the feature extraction capability. The retinal images in our dataset are sorted into two sets according to their quality: low and high quality. Generators and discriminators alternately learn the features of low/high-quality retinal images without the need for paired images. We analyze the proposed method both qualitatively and quantitatively on public datasets and a private dataset. The study results demonstrate that the proposed method is superior to other advanced algorithms, especially in enhancing color-distorted retinal images. It also performs well in the task of retinal vessel segmentation. The proposed network effectively enhances low-quality retinal images, aiding ophthalmologists and enabling computer-aided diagnosis in pathological analysis. Our method enhances multiple types of low-quality retinal images using a deep learning network.
Collapse
Affiliation(s)
- Cheng Wan
- College of Electronic Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Xueting Zhou
- College of Electronic Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qijing You
- College of Electronic Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jing Sun
- College of Electronic Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jianxin Shen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Shaojun Zhu
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Qin Jiang
- The Laboratory of Artificial Intelligence and Bigdata in Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Weihua Yang
- The Laboratory of Artificial Intelligence and Bigdata in Ophthalmology, The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Sunija A, Gopi VP, Palanisamy P. Redundancy reduced depthwise separable convolution for glaucoma classification using OCT images. Biomed Signal Process Control 2022; 71:103192. [DOI: 10.1016/j.bspc.2021.103192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
49
|
Li X, Jiang Y, Rodriguez-Andina JJ, Luo H, Yin S, Kaynak O. When medical images meet generative adversarial network: recent development and research opportunities. DISCOVER ARTIFICIAL INTELLIGENCE 2021; 1:5. [DOI: 10.1007/s44163-021-00006-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
AbstractDeep learning techniques have promoted the rise of artificial intelligence (AI) and performed well in computer vision. Medical image analysis is an important application of deep learning, which is expected to greatly reduce the workload of doctors, contributing to more sustainable health systems. However, most current AI methods for medical image analysis are based on supervised learning, which requires a lot of annotated data. The number of medical images available is usually small and the acquisition of medical image annotations is an expensive process. Generative adversarial network (GAN), an unsupervised method that has become very popular in recent years, can simulate the distribution of real data and reconstruct approximate real data. GAN opens some exciting new ways for medical image generation, expanding the number of medical images available for deep learning methods. Generated data can solve the problem of insufficient data or imbalanced data categories. Adversarial training is another contribution of GAN to medical imaging that has been applied to many tasks, such as classification, segmentation, or detection. This paper investigates the research status of GAN in medical images and analyzes several GAN methods commonly applied in this area. The study addresses GAN application for both medical image synthesis and adversarial learning for other medical image tasks. The open challenges and future research directions are also discussed.
Collapse
|
50
|
Chen Y, Long J, Guo J. RF-GANs: A Method to Synthesize Retinal Fundus Images Based on Generative Adversarial Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:3812865. [PMID: 34804140 PMCID: PMC8598326 DOI: 10.1155/2021/3812865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/03/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022]
Abstract
Diabetic retinopathy (DR) is a diabetic complication affecting the eyes, which is the main cause of blindness in young and middle-aged people. In order to speed up the diagnosis of DR, a mass of deep learning methods have been used for the detection of this disease, but they failed to attain excellent results due to unbalanced training data, i.e., the lack of DR fundus images. To address the problem of data imbalance, this paper proposes a method dubbed retinal fundus images generative adversarial networks (RF-GANs), which is based on generative adversarial network, to synthesize retinal fundus images. RF-GANs is composed of two generation models, RF-GAN1 and RF-GAN2. Firstly, RF-GAN1 is employed to translate retinal fundus images from source domain (the domain of semantic segmentation datasets) to target domain (the domain of EyePACS dataset connected to Kaggle (EyePACS)). Then, we train the semantic segmentation models with the translated images, and employ the trained models to extract the structural and lesion masks (hereafter, we refer to it as Masks) of EyePACS. Finally, we employ RF-GAN2 to synthesize retinal fundus images using the Masks and DR grading labels. This paper verifies the effectiveness of the method: RF-GAN1 can narrow down the domain gap between different datasets to improve the performance of the segmentation models. RF-GAN2 can synthesize realistic retinal fundus images. Adopting the synthesized images for data augmentation, the accuracy and quadratic weighted kappa of the state-of-the-art DR grading model on the testing set of EyePACS increase by 1.53% and 1.70%, respectively.
Collapse
Affiliation(s)
- Yu Chen
- Information and Computer Engineering College, Northeast Forestry University, Harbin, China
| | - Jun Long
- Information and Computer Engineering College, Northeast Forestry University, Harbin, China
| | - Jifeng Guo
- Information and Computer Engineering College, Northeast Forestry University, Harbin, China
| |
Collapse
|