1
|
Kim H, Kim S, Jun SC, Nam CS. Is what I think what you think? Multilayer network-based inter-brain synchrony approach. Soc Cogn Affect Neurosci 2025; 20:nsaf028. [PMID: 40085071 PMCID: PMC11980598 DOI: 10.1093/scan/nsaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 01/30/2025] [Accepted: 03/13/2025] [Indexed: 03/16/2025] Open
Abstract
Social interaction plays a crucial role in human societies, encompassing complex dynamics among individuals. To understand social interaction at the neural level, researchers have utilized hyperscanning in several social settings. These studies have mainly focused on inter-brain synchrony and the efficiency of paired functional brain networks, examining group interactions in dyads. However, this approach may not fully capture the complexity of multiple interactions, potentially leading to gaps in understanding inter-network differences. To overcome this limitation, the present study aims to bridge this gap by introducing methodological enhancements using the multilayer network approach, which is tailored to extract features from multiple networks. We applied this strategy to analyze the triad condition during social behavior processes to identify group interaction indices. Additionally, to validate our methodology, we compared the multilayer networks of triad conditions with group synchrony to paired conditions without group synchrony, focusing on statistical differences between alpha and beta waves. Correlation analysis between inter-brain and group networks revealed that this methodology accurately reflects the characteristics of actual behavioral synchrony. The findings of our study suggest that measures of paired brain synchrony and group interaction may exhibit distinct trends, offering valuable insights into interpreting group synchrony.
Collapse
Affiliation(s)
- Heegyu Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), #505 Dasan Building, 123, Choemdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Sangyeon Kim
- Division of Artificial Intelligence Engineering, Sookmyung Women’s University, #515 Suryeon Faculty Building, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Sung Chan Jun
- School of Electrical Engineering and Computer Science and AI Graduate School, Gwangju Institute of Science and Technology (GIST), 505 Dasan Building, 123, Choemdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Chang S Nam
- Department of Industrial and Systems Engineering Northern Illinois University, 590 Garden Rd, DeKalb, IL 60115, USA
| |
Collapse
|
2
|
Yan H, Han Y, Xu X, Zhang H, He Y, Xie G, Li H, Liu F, Li P, Zhao J, Guo W. Diminished functional segregation and resilience are associated with symptomatic severity and cognitive impairments in schizophrenia: a large-scale study. Gen Psychiatr 2024; 37:e101613. [PMID: 39314264 PMCID: PMC11418476 DOI: 10.1136/gpsych-2024-101613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/25/2024] [Indexed: 09/25/2024] Open
Abstract
Background The research findings on the topological properties of functional connectomes (TP-FCs) in patients with schizophrenia (SZPs) exhibit inconsistencies and contradictions, which can be attributed to limitations such as small sample sizes and heterogeneous data processing techniques. Aims To address these limitations, we conducted a large-scale study. Uniform data processing flows were employed to investigate the aberrant TP-FCs and the associations between TP-FCs and symptoms or cognitions (A-TP-SCs) in SZPs. Methods The large-scale study included six datasets from four sites, involving 497 SZPs and 374 healthy controls (HCs). A uniform process for imaging data preprocessing and functional connectivity matrix configuration was used. ComBat was employed for data harmonisation, and various TPs were calculated. We explored between-group differences in brain functional integration (FI) and functional segregation (FS) measured with TP-FCs, and conducted partial correlation analyses, with adjustments for age, gender and educational level, to identify A-TP-SCs. Results Compared with random networks and HCs, SZPs maintained small-worldness and global FI capacity despite their compromised global FS capacity and resilience. A decline in nodal FI and FS capacity was observed in sensory areas, whereas an increase in nodal FI capacity was found in regions associated with cognition and information integration. In addition, associations between TP-FCs and positive symptoms, negative symptoms or cognitive functions including speed of processing, visual learning and the ability to inhibit cognitive interference were identified in SZPs. Conclusions The identified A-TP-SCs verified that reductions in FS and resilience indicated pathological impairments in schizophrenia. The A-TP-SCs or TP-FCs, which measured the same attributes of the functional connectomes, exhibited high internal consistency, robustly reinforcing these findings.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yiding Han
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xijia Xu
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, Jiangsu, China
| | - Hongxing Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Department of Clinical Psychology, Psychology School of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yiqun He
- Department of Psychosomatic Medicine, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, Guangdong, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Ruttorf M, Tal Z, Amaral L, Fang F, Bi Y, Almeida J. Neuroplastic changes in functional wiring in sensory cortices of the congenitally deaf: A network analysis. Hum Brain Mapp 2023; 44:6523-6536. [PMID: 37956260 PMCID: PMC10681644 DOI: 10.1002/hbm.26530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Congenital sensory deprivation induces significant changes in the structural and functional organisation of the brain. These are well-characterised by cross-modal plasticity, in which deprived cortical areas are recruited to process information from non-affected sensory modalities, as well as by other neuroplastic alterations within regions dedicated to the remaining senses. Here, we analysed visual and auditory networks of congenitally deaf and hearing individuals during different visual tasks to assess changes in network community structure and connectivity patterns due to congenital deafness. In the hearing group, the nodes are clearly divided into three communities (visual, auditory and subcortical), whereas in the deaf group a fourth community consisting mainly of bilateral superior temporal sulcus and temporo-insular regions is present. Perhaps more importantly, the right lateral geniculate body, as well as bilateral thalamus and pulvinar joined the auditory community of the deaf. Moreover, there is stronger connectivity between bilateral thalamic and pulvinar and auditory areas in the deaf group, when compared to the hearing group. No differences were found in the number of connections of these nodes to visual areas. Our findings reveal substantial neuroplastic changes occurring within the auditory and visual networks caused by deafness, emphasising the dynamic nature of the sensory systems in response to congenital deafness. Specifically, these results indicate that in the deaf but not the hearing group, subcortical thalamic nuclei are highly connected to auditory areas during processing of visual information, suggesting that these relay areas may be responsible for rerouting visual information to the auditory cortex under congenital deafness.
Collapse
Affiliation(s)
- Michaela Ruttorf
- Computer Assisted Clinical MedicineHeidelberg UniversityMannheimGermany
- Mannheim Institute for Intelligent Systems in MedicineHeidelberg UniversityMannheimGermany
| | - Zohar Tal
- Proaction LaboratoryUniversity of CoimbraPortugal
- Faculty of Psychology and Educational SciencesUniversity of CoimbraPortugal
| | - Lénia Amaral
- Department of NeuroscienceGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Fang Fang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental HealthPeking UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern, Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| | - Jorge Almeida
- Proaction LaboratoryUniversity of CoimbraPortugal
- Faculty of Psychology and Educational SciencesUniversity of CoimbraPortugal
| |
Collapse
|
4
|
Lu J, Wu Z, Zeng F, Shi B, Liu M, Wu J, Liu Y. Modulation of smoker brain activity and functional connectivity by tDCS: A go/no-go task-state fMRI study. Heliyon 2023; 9:e21074. [PMID: 37920488 PMCID: PMC10618481 DOI: 10.1016/j.heliyon.2023.e21074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/08/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
Background Transcranial direct current stimulation (tDCS) applied to particular brain areas may reduce a smoker's smoking cravings. Most studies on tDCS mechanisms are performed on brains in the resting state. Therefore, brain activity changes induced by tDCS during tasks need to be further studied. Methods Forty-six male smokers were randomised to receive anodal tDCS of the left/right dorsolateral prefrontal cortex (DLPFC) or sham tDCS. A go/no-go task was performed before and after stimulation, respectively. Brain activity and functional connectivity (FC) changes during the task state before and after tDCS were used for comparison. Results This study revealed that the anodal stimulation over one DLPFC area caused decreased activity in the ipsilateral precuneus during the go task state. Right DLPFC stimulation increased the FC between the bilateral DLPFCs and the right anterior cingulate cortex (ACC), which is closely associated with cognition and inhibition of executive functions. Additionally, the study showed variations in brain activity depending on whether the anode was positioned over the right or left DLPFC (R-DLPFC or L-DLPFC). Conclusion During the go task, tDCS might exert a suppressive effect on some brain areas, such as the precuneus. Stimulation on the R-DLPFC might strengthen the FC between the right ACC and the bilateral DLPFCs, which could enhance the ability of behavioural decision-making and inhibition to solve conflicts effectively. Stimulating the L-DLPFC alone could increase the FC of bilateral DLPFCs with some brain regions associated with response inhibition.
Collapse
Affiliation(s)
| | | | - Feiyan Zeng
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| | - Bin Shi
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| | - Mengqiu Liu
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| | - Jiaoyan Wu
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| | - Ying Liu
- Department of Imaging, The First Affiliated Hospital of University of Science and Technology of China, NO. 17 Lujiang Rd, Luyang District, Hefei City, 230001, Anhui Province, China
| |
Collapse
|
5
|
Yuan K, Ti CHE, Wang X, Chen C, Lau CCY, Chu WCW, Tong RKY. Individual electric field predicts functional connectivity changes after anodal transcranial direct-current stimulation in chronic stroke. Neurosci Res 2023; 186:21-32. [PMID: 36220454 DOI: 10.1016/j.neures.2022.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
The neuromodulation effect of anodal tDCS is not thoroughly studied, and the heterogeneous profile of stroke individuals with brain lesions would further complicate the stimulation outcomes. This study aimed to investigate the functional changes in sensorimotor areas induced by anodal tDCS and whether individual electric field could predict the functional outcomes. Twenty-five chronic stroke survivors were recruited and divided into tDCS group (n = 12) and sham group (n = 13). Increased functional connectivity (FC) within the surrounding areas of ipsilesional primary motor cortex (M1) was only observed after anodal tDCS. Averaged FC among the ipsilesional sensorimotor regions was observed to be increased after anodal tDCS (t(11) = 2.57, p = 0.026), but not after sham tDCS (t(12) = 0.69, p = 0.50). Partial least square analysis identified positive correlations between electric field (EF) strength normal to the ipsilesional M1 surface and individual FC changes in tDCS group (r = 0.84, p < 0.001) but not in sham group (r = 0.21, p = 0.5). Our results indicated anodal tDCS facilitates the FC within the ipsilesional sensorimotor network in chronic stroke subjects, and individual electric field predicts the functional outcomes.
Collapse
Affiliation(s)
- Kai Yuan
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Chun-Hang Eden Ti
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Xin Wang
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Cheng Chen
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Cathy Choi-Yin Lau
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Winnie Chiu-Wing Chu
- Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, Faculty of Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
6
|
Amaral L, Donato R, Valério D, Caparelli-Dáquer E, Almeida J, Bergström F. Disentangling hand and tool processing: Distal effects of neuromodulation. Cortex 2022; 157:142-154. [PMID: 36283136 DOI: 10.1016/j.cortex.2022.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/29/2022] [Accepted: 08/24/2022] [Indexed: 12/15/2022]
Abstract
Neural processing within a local brain region that responds to more than one object category (e.g., hands and tools) nonetheless have different functional connectivity patterns with other distal brain areas, which suggests that local processing can affect and/or be affected by processing in distal areas, in a category-specific way. Here we wanted to test whether administering either a hand- or tool-related training task in tandem with transcranial direct current stimulation (tDCS) to a region that responds both to hands and tools (posterior middle temporal gyrus; pMTG), modulated local and distal neural processing more for the trained than the untrained category in a subsequent fMRI task. After each combined tDCS/training session, participants viewed images of tools, hands, and animals, in an fMRI scanner. Using multivoxel pattern analysis, we found that tDCS stimulation to pMTG indeed improved the classification accuracy between tools vs. animals, but only when combined with a tool and not a hand training task. Surprisingly, tDCS stimulation to pMTG also improved classification accuracy between hands vs. animals when combined with a tool but not a hand training task. Our findings suggest that overlapping but functionally-specific networks may be engaged separately by using a category-specific training task together with tDCS - a strategy that can be applied more broadly to other cognitive domains using tDCS. By hypothesis, these effects on local processing are a direct result of within-domain connectivity constraints from domain-specific networks that are at play in the processing and organization of object representations.
Collapse
Affiliation(s)
- Lénia Amaral
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra. Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra. Portugal
| | - Rita Donato
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra. Portugal; Department of General Psychology, University of Padova, Italy; Human Inspired Technology Centre, University of Padova, Italy
| | - Daniela Valério
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra. Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra. Portugal
| | - Egas Caparelli-Dáquer
- Laboratory of Electrical Stimulation of the Nervous System (LabEEL), Rio de Janeiro State University, Brazil
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra. Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra. Portugal.
| | - Fredrik Bergström
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra. Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra. Portugal; Department of Psychology, University of Gothenburg, Sweden.
| |
Collapse
|
7
|
Ekhtiari H, Ghobadi-Azbari P, Thielscher A, Antal A, Li LM, Shereen AD, Cabral-Calderin Y, Keeser D, Bergmann TO, Jamil A, Violante IR, Almeida J, Meinzer M, Siebner HR, Woods AJ, Stagg CJ, Abend R, Antonenko D, Auer T, Bächinger M, Baeken C, Barron HC, Chase HW, Crinion J, Datta A, Davis MH, Ebrahimi M, Esmaeilpour Z, Falcone B, Fiori V, Ghodratitoostani I, Gilam G, Grabner RH, Greenspan JD, Groen G, Hartwigsen G, Hauser TU, Herrmann CS, Juan CH, Krekelberg B, Lefebvre S, Liew SL, Madsen KH, Mahdavifar-Khayati R, Malmir N, Marangolo P, Martin AK, Meeker TJ, Ardabili HM, Moisa M, Momi D, Mulyana B, Opitz A, Orlov N, Ragert P, Ruff CC, Ruffini G, Ruttorf M, Sangchooli A, Schellhorn K, Schlaug G, Sehm B, Soleimani G, Tavakoli H, Thompson B, Timmann D, Tsuchiyagaito A, Ulrich M, Vosskuhl J, Weinrich CA, Zare-Bidoky M, Zhang X, Zoefel B, Nitsche MA, Bikson M. A checklist for assessing the methodological quality of concurrent tES-fMRI studies (ContES checklist): a consensus study and statement. Nat Protoc 2022; 17:596-617. [PMID: 35121855 PMCID: PMC7612687 DOI: 10.1038/s41596-021-00664-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 11/12/2021] [Indexed: 11/09/2022]
Abstract
Low-intensity transcranial electrical stimulation (tES), including alternating or direct current stimulation, applies weak electrical stimulation to modulate the activity of brain circuits. Integration of tES with concurrent functional MRI (fMRI) allows for the mapping of neural activity during neuromodulation, supporting causal studies of both brain function and tES effects. Methodological aspects of tES-fMRI studies underpin the results, and reporting them in appropriate detail is required for reproducibility and interpretability. Despite the growing number of published reports, there are no consensus-based checklists for disclosing methodological details of concurrent tES-fMRI studies. The objective of this work was to develop a consensus-based checklist of reporting standards for concurrent tES-fMRI studies to support methodological rigor, transparency and reproducibility (ContES checklist). A two-phase Delphi consensus process was conducted by a steering committee (SC) of 13 members and 49 expert panelists through the International Network of the tES-fMRI Consortium. The process began with a circulation of a preliminary checklist of essential items and additional recommendations, developed by the SC on the basis of a systematic review of 57 concurrent tES-fMRI studies. Contributors were then invited to suggest revisions or additions to the initial checklist. After the revision phase, contributors rated the importance of the 17 essential items and 42 additional recommendations in the final checklist. The state of methodological transparency within the 57 reviewed concurrent tES-fMRI studies was then assessed by using the checklist. Experts refined the checklist through the revision and rating phases, leading to a checklist with three categories of essential items and additional recommendations: (i) technological factors, (ii) safety and noise tests and (iii) methodological factors. The level of reporting of checklist items varied among the 57 concurrent tES-fMRI papers, ranging from 24% to 76%. On average, 53% of checklist items were reported in a given article. In conclusion, use of the ContES checklist is expected to enhance the methodological reporting quality of future concurrent tES-fMRI studies and increase methodological transparency and reproducibility.
Collapse
Affiliation(s)
| | - Peyman Ghobadi-Azbari
- Department of Biomedical Engineering, Shahed University, Tehran, Iran
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andrea Antal
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Lucia M Li
- Computational, Cognitive and Clinical Imaging Lab, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
- UK DRI Centre for Care Research and Technology, Imperial College London, London, UK
| | - A Duke Shereen
- Advanced Science Research Center, The Graduate Center, City University of New York, New York, NY, USA
| | - Yuranny Cabral-Calderin
- Research Group Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Munich, Germany
- Department of Radiology, University Hospital LMU Munich, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), University Hospital LMU Munich, Munich, Germany
| | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
- Department of Neurology and Stroke and Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Asif Jamil
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Jorge Almeida
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Marcus Meinzer
- Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Rany Abend
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Daria Antonenko
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Tibor Auer
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Marc Bächinger
- Neural Control of Movement Lab, Department of Health Sciences and Technology, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Chris Baeken
- Department of Psychiatry and Medical Psychology, University Hospital Ghent, Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel, University Hospital Brussels, Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Helen C Barron
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, UK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jenny Crinion
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Abhishek Datta
- Research and Development, Soterix Medical, New York, USA
- The City College of the City University of New York, New York, USA
| | - Matthew H Davis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Mohsen Ebrahimi
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Brian Falcone
- Northrop Grumman Company, Mission Systems, Falls Church, VA, USA
| | - Valentina Fiori
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Iman Ghodratitoostani
- Neurocognitive Engineering Laboratory (NEL), Center for Engineering Applied to Health, Institute of Mathematics and Computer Science (ICMC), University of Sao Paulo, Sao Paulo, Brazil
| | - Gadi Gilam
- Systems Neuroscience and Pain Laboratory, Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roland H Grabner
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Joel D Greenspan
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Georg Groen
- Department of Psychiatry, University of Ulm, Ulm, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tobias U Hauser
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Christoph S Herrmann
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
- Neuroimaging Unit, European Medical School, University of Oldenburg, Oldenburg, Germany
- Research Centre Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan, Taiwan
| | - Bart Krekelberg
- Center for Molecular and Behavioral Neuroscience, Rutgers University-Newark, Newark, NJ, USA
| | - Stephanie Lefebvre
- Translational Research Centre, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Sook-Lei Liew
- Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
- USC Stevens Neuroimaging and Informatics Institute, Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA
| | - Kristoffer H Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, K, Lyngby, Denmark
| | | | - Nastaran Malmir
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | - Paola Marangolo
- Department of Humanities Studies, University Federico II, Naples, Italy
- Aphasia Research Lab, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Andrew K Martin
- Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
- Department of Psychology, University of Kent, Canterbury, UK
| | - Timothy J Meeker
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Hossein Mohaddes Ardabili
- Psychiatry and Behavioral Sciences Research Center, Ibn-e-Sina Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marius Moisa
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Davide Momi
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Beni Mulyana
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Natasza Orlov
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Psychology, Jagiellonian University, Cracow, Poland
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christian C Ruff
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Zurich, Switzerland
| | - Giulio Ruffini
- Neuroelectrics Corporation, Cambridge, Cambridge, MA, USA
- Neuroelectrics Corporation, Barcelona, Barcelona, Spain
| | - Michaela Ruttorf
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arshiya Sangchooli
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Gottfried Schlaug
- Neuroimaging-Neuromodulation and Stroke Recovery Laboratories, Department of Neurology, Baystate-University of Massachusetts Medical School, and Department of Biomedical Engineering, Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ghazaleh Soleimani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Hosna Tavakoli
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
- Department of Cognitive Neuroscience, Institute for Cognitive Sciences Studies, Tehran, Iran
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
- School of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada
- Centre for Eye and Vision Research, Hong Kong, Hong Kong
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | | | - Martin Ulrich
- Department of Psychiatry, University of Ulm, Ulm, Germany
| | - Johannes Vosskuhl
- Experimental Psychology Lab, Cluster of Excellence "Hearing4all", European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Christiane A Weinrich
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
- Department of Cognitive Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Mehran Zare-Bidoky
- Iranian National Center for Addiction Studies (INCAS), Tehran University of Medical Sciences, Tehran, Iran
- Shahid-Sadoughi University of Medical Sciences, Yazd, Iran
| | - Xiaochu Zhang
- Department of Psychology, School of Humanities & Social Science, University of Science & Technology of China, Hefei, China
| | - Benedikt Zoefel
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| |
Collapse
|
8
|
The contributions of the ventral and the dorsal visual streams to the automatic processing of action relations of familiar and unfamiliar object pairs. Neuroimage 2021. [DOI: 10.1016/j.neuroimage.2021.118629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Pilacinski A, De Haan S, Donato R, Almeida J. Tool heads prime saccades. Sci Rep 2021; 11:11954. [PMID: 34099787 PMCID: PMC8184872 DOI: 10.1038/s41598-021-91254-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/21/2021] [Indexed: 11/09/2022] Open
Abstract
Tools are wielded by their handles, but a lot of information about their function comes from their heads (the action-ends). Here we investigated whether eye saccadic movements are primed by tool handles, or whether they are primed by tool heads. We measured human saccadic reaction times while subjects were performing an attentional task. We found that saccades were executed quicker when performed to the side congruent with the tool head, even though "toolness" was irrelevant for the task. Our results show that heads are automatically processed by the visual system to orient eye movements, indicating that eyes are attracted by functional parts of manipulable objects and by the characteristic information these parts convey.
Collapse
Affiliation(s)
- Artur Pilacinski
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115, Coimbra, Portugal. .,CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal.
| | - Stella De Haan
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115, Coimbra, Portugal.,CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal.,GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
| | - Rita Donato
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115, Coimbra, Portugal.,CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal.,Department of General Psychology, University of Padova, Padova, Italy.,Human Inspired Technology Research Centre, University of Padova, Padova, Italy
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115, Coimbra, Portugal.,CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Valério D, Santana I, Aguiar de Sousa D, Schu G, Leal G, Pavão Martins I, Almeida J. Knowing how to do it or doing it? A double dissociation between tool-gesture production and tool-gesture knowledge. Cortex 2021; 141:449-464. [PMID: 34147827 DOI: 10.1016/j.cortex.2021.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/05/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Deciding how to manipulate an object to fulfill a goal requires accessing different types of object-related information. How these different types of information are integrated and represented in the brain is still an open question. Here, we focus on examining two types of object-related information-tool-gesture knowledge (i.e., how to manipulate an object), and tool-gesture production (i.e., the actual manipulation of an object). We show a double dissociation between tool-gesture knowledge and tool-gesture production: Patient FP presents problems in pantomiming tool use in the context of a spared ability to perform judgments about an object's manipulation, whereas Patient LS can pantomime tool use, but is impaired at performing manipulation judgments. Moreover, we compared the location of the lesions in FP and LS with those sustained by two classic ideomotor apraxic patients (IMA), using a cortical thickness approach. Patient FP presented lesions in common with our classic IMA that included the left inferior parietal lobule (IPL), and specifically the supramarginal gyrus, the left parietal operculum, the left premotor cortex and the left inferior frontal gyrus, whereas Patient LS and our classic IMA patients presented common lesions in regions of the superior parietal lobule (SPL), motor areas (as primary somatosensory cortex, premotor cortex and primary motor cortex), and frontal areas. Our results show that tool-gesture production and tool-gesture knowledge can be behaviorally and neurally doubly dissociated and put strong constraints on extant theories of action and object recognition and use.
Collapse
Affiliation(s)
- Daniela Valério
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Isabel Santana
- Neurology Department and Dementia Clinic, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Guilherme Schu
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Gabriela Leal
- Language Research Laboratory, Faculty of Medicine, University of Lisbon, Portugal
| | - Isabel Pavão Martins
- Neurology Department, Hospital de Santa Maria, Lisbon, Portugal; Language Research Laboratory, Faculty of Medicine, University of Lisbon, Portugal
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal.
| |
Collapse
|
11
|
Walbrin J, Almeida J. High-Level Representations in Human Occipito-Temporal Cortex Are Indexed by Distal Connectivity. J Neurosci 2021; 41:4678-4685. [PMID: 33849949 PMCID: PMC8260247 DOI: 10.1523/jneurosci.2857-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Human object recognition is dependent on occipito-temporal cortex (OTC), but a complete understanding of the complex functional architecture of this area must account for how it is connected to the wider brain. Converging functional magnetic resonance imaging evidence shows that univariate responses to different categories of information (e.g., faces, bodies, and nonhuman objects) are strongly related to, and potentially shaped by, functional and structural connectivity to the wider brain. However, to date, there have been no systematic attempts to determine how distal connectivity and complex local high-level responses in occipito-temporal cortex (i.e., multivoxel response patterns) are related. Here, we show that distal functional connectivity is related to, and can reliably index, high-level representations for several visual categories (i.e., tools, faces, and places) within occipito-temporal cortex; that is, voxel sets that are strongly connected to distal brain areas show higher pattern discriminability than less well-connected sets do. We further show that in several cases, pattern discriminability is higher in sets of well-connected voxels than sets defined by local activation (e.g., strong amplitude responses to faces in fusiform face area). Together, these findings demonstrate the important relationship between the complex functional organization of occipito-temporal cortex and wider brain connectivity.SIGNIFICANCE STATEMENT Human object recognition relies strongly on OTC, yet responses in this broad area are often considered in relative isolation to the rest of the brain. We employ a novel connectivity-guided voxel selection approach with functional magnetic resonance imaging data to show higher sensitivity to information (i.e., higher multivoxel pattern discriminability) in voxel sets that share strong connectivity to distal brain areas, relative to (1) voxel sets that are less strongly connected, and in several cases, (2) voxel sets that are defined by strong local response amplitude. These findings underscore the importance of distal contributions to local processing in OTC.
Collapse
Affiliation(s)
- Jon Walbrin
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, 3004-531 Coimbra, Portugal
| |
Collapse
|
12
|
Overlapping but distinct: Distal connectivity dissociates hand and tool processing networks. Cortex 2021; 140:1-13. [PMID: 33901719 DOI: 10.1016/j.cortex.2021.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/18/2021] [Accepted: 03/04/2021] [Indexed: 12/31/2022]
Abstract
The processes and organizational principles of information involved in object recognition have been a subject of intense debate. These research efforts led to the understanding that local computations and feedforward/feedback connections are essential to our representations and their organization. Recent data, however, has demonstrated that distal computations also play a role in how information is locally processed. Here we focus on how long-range connectivity and local functional organization of information are related, by exploring regions that show overlapping category-preferences for two categories and testing whether their connections are related with distal representations in a category-specific way. We used an approach that relates functional connectivity with distal areas to local voxel-wise category-preferences. Specifically, we focused on two areas that show an overlap in category-preferences for tools and hands-the inferior parietal lobule/anterior intraparietal sulcus (IPL/aIPS) and the posterior middle temporal gyrus/lateral occipital temporal cortex (pMTG/LOTC) - and how connectivity from these two areas relate to voxel-wise category-preferences in two ventral temporal regions dedicated to the processing of tools and hands separately-the left medial fusiform gyrus and the fusiform body area respectively-as well as across the brain. We show that the functional connections of the two overlap areas correlate with categorical preferences for each category independently. These results show that regions that process both tools and hands maintain object topography in a category-specific way. This potentially allows for a category-specific flow of information that is pertinent to computing object representations.
Collapse
|
13
|
Bergström F, Wurm M, Valério D, Lingnau A, Almeida J. Decoding stimuli (tool-hand) and viewpoint invariant grasp-type information. Cortex 2021; 139:152-165. [PMID: 33873036 DOI: 10.1016/j.cortex.2021.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 01/30/2023]
Abstract
When we see a manipulable object (henceforth tool) or a hand performing a grasping movement, our brain is automatically tuned to how that tool can be grasped (i.e., its affordance) or what kind of grasp that hand is performing (e.g., a power or precision grasp). However, it remains unclear where visual information related to tools or hands are transformed into abstract grasp representations. We therefore investigated where different levels of abstractness in grasp information are processed: grasp information that is invariant to the kind of stimuli that elicits it (tool-hand invariance); and grasp information that is hand-specific but viewpoint-invariant (viewpoint invariance). We focused on brain areas activated when viewing both tools and hands, i.e., the posterior parietal cortices (PPC), ventral premotor cortices (PMv), and lateral occipitotemporal cortex/posterior middle temporal cortex (LOTC/pMTG). To test for invariant grasp representations, we presented participants with tool images and grasp videos (from first or third person perspective; 1pp or 3pp) inside an MRI scanner, and cross-decoded power versus precision grasps across (i) grasp perspectives (viewpoint invariance), (ii) tool images and grasp 1pp videos (tool-hand 1pp invariance), and (iii) tool images and grasp 3pp videos (tool-hand 3pp invariance). Tool-hand 1pp, but not tool-hand 3pp, invariant grasp information was found in left PPC, whereas viewpoint-invariant information was found bilaterally in PPC, left PMv, and left LOTC/pMTG. These findings suggest different levels of abstractness-where visual information is transformed into stimuli-invariant grasp representations/tool affordances in left PPC, and viewpoint invariant but hand-specific grasp representations in the hand network.
Collapse
Affiliation(s)
- Fredrik Bergström
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal.
| | - Moritz Wurm
- Center for Mind/ Brain Sciences (CIMeC), University of Trento, Rovereto, TN, Italy
| | - Daniela Valério
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Angelika Lingnau
- Center for Mind/ Brain Sciences (CIMeC), University of Trento, Rovereto, TN, Italy; Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| |
Collapse
|
14
|
Lee D, Almeida J. Within-category representational stability through the lens of manipulable objects. Cortex 2021; 137:282-291. [PMID: 33662692 DOI: 10.1016/j.cortex.2020.12.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/14/2020] [Accepted: 12/10/2020] [Indexed: 11/28/2022]
Abstract
Our ability to recognize an object amongst many exemplars is one of our most important features, and one that putatively distinguishes humans from non-human animals and potentially from (current) computational and artificial intelligence models. We can recognize objects consistently regardless of when we see them suggesting that we have stable representations across time and different contexts. Importantly, little is known about how humans can replicate within-category object representations across time. Here, we investigate neural stability of within-category object representations by computing the similarity between representational geometries of activity patterns for 80 images of tools obtained on different functional magnetic resonance imaging (fMRI) scanning days. We show that within-category representational stability is observable in regions that span lateral and ventral temporal cortex, inferior and superior parietal cortex, and premotor cortex - regions typically associated with tool processing and visuospatial processing. We then focus on what kinds of representations best explain the representational geometries within these regions. We test the similarity of these geometries with those coming from the different layers of a convolutional neural network, and those coming from perceived and veridical visual similarity models. We find that regions supporting within-category representational stability show stronger relationship with higher-level visual/semantic features, suggesting that neural replicability is derived from perceived and higher-level visual information. Within category representational stability may thus originate from long-range cross talk between category-specific regions (and in this case strongly within ventral and lateral temporal cortex) over more abstract, rather than veridical/lower-level, visual (sensorial) representations, and perhaps in the service of object-centered representations.
Collapse
Affiliation(s)
- Dongha Lee
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal.
| |
Collapse
|
15
|
Preliminary effects of prefrontal tDCS on dopamine-mediated behavior and psychophysiology. Behav Brain Res 2021; 402:113091. [PMID: 33359843 DOI: 10.1016/j.bbr.2020.113091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/23/2022]
Abstract
The ability to manipulate dopamine in vivo through non-invasive, reversible mechanisms has the potential to impact clinical, translational, and basic research. Recent PET studies have demonstrated increased dopamine release in the striatum after bifrontal transcranial direct current stimulation (tDCS). We sought to extend this work by examining whether bifrontal tDCS could demonstrate an effect on behavioral and physiological correlates of subcortical dopamine activity. We conducted a preliminary between-subjects study (n = 30) with active and sham tDCS and used spontaneous eye blink rate (EBR), facial attractiveness ratings, and greyscales orienting bias as indirect proxies for dopamine functioning. The initial design and analyses were pre-registered (https://osf.io/gmnpc). Stimulation did not significantly affect any of the three measures, though effect sizes were often moderately large and were all in the predicted directions. Additional exploratory analyses suggested that stimulation's effect on EBR might depend on pre-stimulation dopamine levels. Our results suggest that larger samples than those that are standard in tDCS literature should be used to assess the effect of tDCS on dopamine using indirect measures. Further, exploratory results add to a growing body of work demonstrating the importance of accounting for individual differences in tDCS response.
Collapse
|
16
|
Almeida J, Freixo A, Tábuas-Pereira M, Herald SB, Valério D, Schu G, Duro D, Cunha G, Bukhari Q, Duchaine B, Santana I. Face-Specific Perceptual Distortions Reveal A View- and Orientation-Independent Face Template. Curr Biol 2020; 30:4071-4077.e4. [PMID: 32795446 DOI: 10.1016/j.cub.2020.07.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/22/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
The spatial coordinate system in which a stimulus representation is embedded is known as its reference frame. Every visual representation has a reference frame [1], and the visual system uses a variety of reference frames to efficiently code visual information [e.g., 1-5]. The representation of faces in early stages of visual processing depends on retino-centered reference frames, but little is known about the reference frames that code the high-level representations used to make judgements about faces. Here, we focus on a rare and striking disorder of face perception-hemi-prosopometamorphopsia (hemi-PMO)-to investigate these reference frames. After a left splenium lesion, Patient A.D. perceives features on the right side of faces as if they had melted. The same features were distorted when faces were presented in either visual field, at different in-depth rotations, and at different picture-plane orientations including upside-down. A.D.'s results indicate faces are aligned to a view- and orientation-independent face template encoded in a face-centered reference frame, that these face-centered representations are present in both the left and right hemisphere, and that the representations of the left and right halves of a face are dissociable.
Collapse
Affiliation(s)
- Jorge Almeida
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra 3000-115, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra 3000-115, Portugal.
| | - Andreia Freixo
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra 3000-115, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra 3000-115, Portugal
| | - Miguel Tábuas-Pereira
- Neurology Department and Dementia Clinic, Centro Hospitalar e Universitário de Coimbra, Coimbra 3000-075, Portugal; Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Medicine, University of Coimbra, Coimbra 3004-504, Portugal
| | - Sarah B Herald
- Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Daniela Valério
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra 3000-115, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra 3000-115, Portugal
| | - Guilherme Schu
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra 3000-115, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra 3000-115, Portugal
| | - Diana Duro
- Neurology Department and Dementia Clinic, Centro Hospitalar e Universitário de Coimbra, Coimbra 3000-075, Portugal; Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Medicine, University of Coimbra, Coimbra 3004-504, Portugal
| | - Gil Cunha
- Neurology Department and Dementia Clinic, Centro Hospitalar e Universitário de Coimbra, Coimbra 3000-075, Portugal; Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Medicine, University of Coimbra, Coimbra 3004-504, Portugal
| | - Qasim Bukhari
- Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra 3000-115, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra 3000-115, Portugal; McGovern Institute for Brain Research, Massachusetts Institute of Technology, MA 02139, USA
| | - Brad Duchaine
- Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Isabel Santana
- Neurology Department and Dementia Clinic, Centro Hospitalar e Universitário de Coimbra, Coimbra 3000-075, Portugal; Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal; Faculty of Medicine, University of Coimbra, Coimbra 3004-504, Portugal
| |
Collapse
|