1
|
Karasan E, Chen J, Maravilla J, Zhang Z, Liu C, Lustig M. MR perfusion source mapping depicts venous territories and reveals perfusion modulation during neural activation. Nat Commun 2025; 16:3890. [PMID: 40274782 PMCID: PMC12022259 DOI: 10.1038/s41467-025-59108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
The cerebral venous system plays a crucial role in neurological and vascular conditions, yet its hemodynamics remain underexplored due to its complexity and variability across individuals. To address this, we develop a venous perfusion source mapping method using Displacement Spectrum MRI, a non-contrast technique that leverages blood water as an endogenous tracer. Our technique encodes spatial information into the magnetization of blood water spins during tagging and detects it once the tagged blood reaches the brain's surface, where the signal-to-noise ratio is 3-4 times higher. We resolve the sources of blood entering the imaging slice across short (10 ms) to long (3 s) evolution times, effectively capturing perfusion sources in reverse. This approach enables the measurement of slow venous blood flow, including potential contributions from capillary beds and surrounding tissue. We demonstrate perfusion source mapping in the superior cerebral veins, verify its sensitivity to global perfusion modulation induced by caffeine, and establish its specificity by showing repeatable local perfusion modulation during neural activation. From all blood within the imaging slice, our method localizes the portion originating from an activated region upstream.
Collapse
Affiliation(s)
- Ekin Karasan
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA.
| | - Jingjia Chen
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Julian Maravilla
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Zhiyong Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Michael Lustig
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
Mukherjee T, Usman M, Mehdi RR, Mendiola E, Ohayon J, Lindquist D, Shah D, Sadayappan S, Pettigrew R, Avazmohammadi R. In-silico heart model phantom to validate cardiac strain imaging. Comput Biol Med 2024; 181:109065. [PMID: 39217965 DOI: 10.1016/j.compbiomed.2024.109065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The quantification of cardiac strains as structural indices of cardiac function has a growing prevalence in clinical diagnosis. However, the highly heterogeneous four-dimensional (4D) cardiac motion challenges accurate "regional" strain quantification and leads to sizable differences in the estimated strains depending on the imaging modality and post-processing algorithm, limiting the translational potential of strains as incremental biomarkers of cardiac dysfunction. There remains a crucial need for a feasible benchmark that successfully replicates complex 4D cardiac kinematics to determine the reliability of strain calculation algorithms. In this study, we propose an in-silico heart phantom derived from finite element (FE) simulations to validate the quantification of 4D regional strains. First, as a proof-of-concept exercise, we created synthetic magnetic resonance (MR) images for a hollow thick-walled cylinder under pure torsion with an exact solution and demonstrated that "ground-truth" values can be recovered for the twist angle, which is also a key kinematic index in the heart. Next, we used mouse-specific FE simulations of cardiac kinematics to synthesize dynamic MR images by sampling various sectional planes of the left ventricle (LV). Strains were calculated using our recently developed non-rigid image registration (NRIR) framework in both problems. Moreover, we studied the effects of image quality on distorting regional strain calculations by conducting in-silico experiments for various LV configurations. Our studies offer a rigorous and feasible tool to standardize regional strain calculations to improve their clinical impact as incremental biomarkers.
Collapse
Affiliation(s)
- Tanmay Mukherjee
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Muhammad Usman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Rana Raza Mehdi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Emilio Mendiola
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jacques Ohayon
- Savoie Mont-Blanc University, Polytech Annecy-Chambéry, Le Bourget du Lac, France; Laboratory TIMC-CNRS, UMR 5525, Grenoble-Alpes University, Grenoble, France
| | - Diana Lindquist
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Dipan Shah
- Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, 77030, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Roderic Pettigrew
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA; Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX 77030, USA
| | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX 77030, USA; J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
3
|
Mukherjee T, Usman M, Mehdi RR, Mendiola E, Ohayon J, Lindquist D, Shah D, Sadayappan S, Pettigrew R, Avazmohammadi R. In-silico heart model phantom to validate cardiac strain imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606672. [PMID: 39149320 PMCID: PMC11326205 DOI: 10.1101/2024.08.05.606672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The quantification of cardiac strains as structural indices of cardiac function has a growing prevalence in clinical diagnosis. However, the highly heterogeneous four-dimensional (4D) cardiac motion challenges accurate "regional" strain quantification and leads to sizable differences in the estimated strains depending on the imaging modality and post-processing algorithm, limiting the translational potential of strains as incremental biomarkers of cardiac dysfunction. There remains a crucial need for a feasible benchmark that successfully replicates complex 4D cardiac kinematics to determine the reliability of strain calculation algorithms. In this study, we propose an in-silico heart phantom derived from finite element (FE) simulations to validate the quantification of 4D regional strains. First, as a proof-of-concept exercise, we created synthetic magnetic resonance (MR) images for a hollow thick-walled cylinder under pure torsion with an exact solution and demonstrated that "ground-truth" values can be recovered for the twist angle, which is also a key kinematic index in the heart. Next, we used mouse-specific FE simulations of cardiac kinematics to synthesize dynamic MR images by sampling various sectional planes of the left ventricle (LV). Strains were calculated using our recently developed non-rigid image registration (NRIR) framework in both problems. Moreover, we studied the effects of image quality on distorting regional strain calculations by conducting in-silico experiments for various LV configurations. Our studies offer a rigorous and feasible tool to standardize regional strain calculations to improve their clinical impact as incremental biomarkers.
Collapse
Affiliation(s)
- Tanmay Mukherjee
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Muhammad Usman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Rana Raza Mehdi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Emilio Mendiola
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jacques Ohayon
- Savoie Mont-Blanc University, Polytech Annecy-Chambéry, Le Bourget du Lac, France
- Laboratory TIMC-CNRS, UMR 5525, Grenoble-Alpes University, Grenoble, France
| | - Diana Lindquist
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Dipan Shah
- Houston Methodist DeBakey Heart and Vascular Center, Houston, TX, 77030, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Roderic Pettigrew
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX 77030, USA
| | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX 77030, USA
- J. Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Wilson AJ, Sands GB, LeGrice IJ, Young AA, Ennis DB. Myocardial mesostructure and mesofunction. Am J Physiol Heart Circ Physiol 2022; 323:H257-H275. [PMID: 35657613 PMCID: PMC9273275 DOI: 10.1152/ajpheart.00059.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022]
Abstract
The complex and highly organized structural arrangement of some five billion cardiomyocytes directs the coordinated electrical activity and mechanical contraction of the human heart. The characteristic transmural change in cardiomyocyte orientation underlies base-to-apex shortening, circumferential shortening, and left ventricular torsion during contraction. Individual cardiomyocytes shorten ∼15% and increase in diameter ∼8%. Remarkably, however, the left ventricular wall thickens by up to 30-40%. To accommodate this, the myocardium must undergo significant structural rearrangement during contraction. At the mesoscale, collections of cardiomyocytes are organized into sheetlets, and sheetlet shear is the fundamental mechanism of rearrangement that produces wall thickening. Herein, we review the histological and physiological studies of myocardial mesostructure that have established the sheetlet shear model of wall thickening. Recent developments in tissue clearing techniques allow for imaging of whole hearts at the cellular scale, whereas magnetic resonance imaging (MRI) and computed tomography (CT) can image the myocardium at the mesoscale (100 µm to 1 mm) to resolve cardiomyocyte orientation and organization. Through histology, cardiac diffusion tensor imaging (DTI), and other modalities, mesostructural sheetlets have been confirmed in both animal and human hearts. Recent in vivo cardiac DTI methods have measured reorientation of sheetlets during the cardiac cycle. We also examine the role of pathological cardiac remodeling on sheetlet organization and reorientation, and the impact this has on ventricular function and dysfunction. We also review the unresolved mesostructural questions and challenges that may direct future work in the field.
Collapse
Affiliation(s)
- Alexander J Wilson
- Department of Radiology, Stanford University, Stanford, California
- Stanford Cardiovascular Institute, Stanford University, Stanford, California
| | - Gregory B Sands
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Ian J LeGrice
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair A Young
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, California
- Veterans Administration Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
5
|
Stimm J, Guenthner C, Kozerke S, Stoeck CT. Comparison of interpolation methods of predominant cardiomyocyte orientation from in vivo and ex vivo cardiac diffusion tensor imaging data. NMR IN BIOMEDICINE 2022; 35:e4667. [PMID: 34964179 PMCID: PMC9285076 DOI: 10.1002/nbm.4667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Cardiac electrophysiology and cardiac mechanics both depend on the average cardiomyocyte long-axis orientation. In the realm of personalized medicine, knowledge of the patient-specific changes in cardiac microstructure plays a crucial role. Patient-specific computational modelling has emerged as a tool to better understand disease progression. In vivo cardiac diffusion tensor imaging (cDTI) is a vital tool to non-destructively measure the average cardiomyocyte long-axis orientation in the heart. However, cDTI suffers from long scan times, rendering volumetric, high-resolution acquisitions challenging. Consequently, interpolation techniques are needed to populate bio-mechanical models with patient-specific average cardiomyocyte long-axis orientations. In this work, we compare five interpolation techniques applied to in vivo and ex vivo porcine input data. We compare two tensor interpolation approaches, one rule-based approximation, and two data-driven, low-rank models. We demonstrate the advantage of tensor interpolation techniques, resulting in lower interpolation errors than do low-rank models and rule-based methods adapted to cDTI data. In an ex vivo comparison, we study the influence of three imaging parameters that can be traded off against acquisition time: in-plane resolution, signal to noise ratio, and number of acquired short-axis imaging slices.
Collapse
Affiliation(s)
- Johanna Stimm
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Christian Guenthner
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Sebastian Kozerke
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Christian T. Stoeck
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
- Division of Surgical ResearchUniversity Hospital ZurichUniversity ZurichSwitzerland
| |
Collapse
|
6
|
Auger DA, Ghadimi S, Cai X, Reagan CE, Sun C, Abdi M, Cao JJ, Cheng JY, Ngai N, Scott AD, Ferreira PF, Oshinski JN, Emamifar N, Ennis DB, Loecher M, Liu ZQ, Croisille P, Viallon M, Bilchick KC, Epstein FH. Reproducibility of global and segmental myocardial strain using cine DENSE at 3 T: a multicenter cardiovascular magnetic resonance study in healthy subjects and patients with heart disease. J Cardiovasc Magn Reson 2022. [PMID: 35369885 DOI: 10.1186/s12968-022-00851-7/figures/6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND While multiple cardiovascular magnetic resonance (CMR) methods provide excellent reproducibility of global circumferential and global longitudinal strain, achieving highly reproducible segmental strain is more challenging. Previous single-center studies have demonstrated excellent reproducibility of displacement encoding with stimulated echoes (DENSE) segmental circumferential strain. The present study evaluated the reproducibility of DENSE for measurement of whole-slice or global circumferential (Ecc), longitudinal (Ell) and radial (Err) strain, torsion, and segmental Ecc at multiple centers. METHODS Six centers participated and a total of 81 subjects were studied, including 60 healthy subjects and 21 patients with various types of heart disease. CMR utilized 3 T scanners, and cine DENSE images were acquired in three short-axis planes and in the four-chamber long-axis view. During one imaging session, each subject underwent two separate DENSE scans to assess inter-scan reproducibility. Each subject was taken out of the scanner and repositioned between the scans. Intra-user, inter-user-same-site, inter-user-different-site, and inter-user-Human-Deep-Learning (DL) comparisons assessed the reproducibility of different users analyzing the same data. Inter-scan comparisons assessed the reproducibility of DENSE from scan to scan. The reproducibility of whole-slice or global Ecc, Ell and Err, torsion, and segmental Ecc were quantified using Bland-Altman analysis, the coefficient of variation (CV), and the intraclass correlation coefficient (ICC). CV was considered excellent for CV ≤ 10%, good for 10% < CV ≤ 20%, fair for 20% < CV ≤ 40%, and poor for CV > 40. ICC values were considered excellent for ICC > 0.74, good for ICC 0.6 < ICC ≤ 0.74, fair for ICC 0.4 < ICC ≤ 0.59, poor for ICC < 0.4. RESULTS Based on CV and ICC, segmental Ecc provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL reproducibility and good-excellent inter-scan reproducibility. Whole-slice Ecc and global Ell provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL and inter-scan reproducibility. The reproducibility of torsion was good-excellent for all comparisons. For whole-slice Err, CV was in the fair-good range, and ICC was in the good-excellent range. CONCLUSIONS Multicenter data show that 3 T CMR DENSE provides highly reproducible whole-slice and segmental Ecc, global Ell, and torsion measurements in healthy subjects and heart disease patients.
Collapse
Affiliation(s)
- Daniel A Auger
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Sona Ghadimi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Xiaoying Cai
- Siemens Healthineers, Boston, Massachusetts, USA
| | - Claire E Reagan
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Changyu Sun
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Mohamad Abdi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA
| | - Jie Jane Cao
- St. Francis Hospital, The Heart Center, Long Island, NY, USA
| | - Joshua Y Cheng
- St. Francis Hospital, The Heart Center, Long Island, NY, USA
| | - Nora Ngai
- St. Francis Hospital, The Heart Center, Long Island, NY, USA
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - John N Oshinski
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Nick Emamifar
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Zhan-Qiu Liu
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Pierre Croisille
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
- Department of Radiology, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Magalie Viallon
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
| | - Kenneth C Bilchick
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA, 22908, USA.
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Auger DA, Ghadimi S, Cai X, Reagan CE, Sun C, Abdi M, Cao JJ, Cheng JY, Ngai N, Scott AD, Ferreira PF, Oshinski JN, Emamifar N, Ennis DB, Loecher M, Liu ZQ, Croisille P, Viallon M, Bilchick KC, Epstein FH. Reproducibility of global and segmental myocardial strain using cine DENSE at 3 T: a multicenter cardiovascular magnetic resonance study in healthy subjects and patients with heart disease. J Cardiovasc Magn Reson 2022; 24:23. [PMID: 35369885 PMCID: PMC8978361 DOI: 10.1186/s12968-022-00851-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND While multiple cardiovascular magnetic resonance (CMR) methods provide excellent reproducibility of global circumferential and global longitudinal strain, achieving highly reproducible segmental strain is more challenging. Previous single-center studies have demonstrated excellent reproducibility of displacement encoding with stimulated echoes (DENSE) segmental circumferential strain. The present study evaluated the reproducibility of DENSE for measurement of whole-slice or global circumferential (Ecc), longitudinal (Ell) and radial (Err) strain, torsion, and segmental Ecc at multiple centers. METHODS Six centers participated and a total of 81 subjects were studied, including 60 healthy subjects and 21 patients with various types of heart disease. CMR utilized 3 T scanners, and cine DENSE images were acquired in three short-axis planes and in the four-chamber long-axis view. During one imaging session, each subject underwent two separate DENSE scans to assess inter-scan reproducibility. Each subject was taken out of the scanner and repositioned between the scans. Intra-user, inter-user-same-site, inter-user-different-site, and inter-user-Human-Deep-Learning (DL) comparisons assessed the reproducibility of different users analyzing the same data. Inter-scan comparisons assessed the reproducibility of DENSE from scan to scan. The reproducibility of whole-slice or global Ecc, Ell and Err, torsion, and segmental Ecc were quantified using Bland-Altman analysis, the coefficient of variation (CV), and the intraclass correlation coefficient (ICC). CV was considered excellent for CV ≤ 10%, good for 10% < CV ≤ 20%, fair for 20% < CV ≤ 40%, and poor for CV > 40. ICC values were considered excellent for ICC > 0.74, good for ICC 0.6 < ICC ≤ 0.74, fair for ICC 0.4 < ICC ≤ 0.59, poor for ICC < 0.4. RESULTS Based on CV and ICC, segmental Ecc provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL reproducibility and good-excellent inter-scan reproducibility. Whole-slice Ecc and global Ell provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL and inter-scan reproducibility. The reproducibility of torsion was good-excellent for all comparisons. For whole-slice Err, CV was in the fair-good range, and ICC was in the good-excellent range. CONCLUSIONS Multicenter data show that 3 T CMR DENSE provides highly reproducible whole-slice and segmental Ecc, global Ell, and torsion measurements in healthy subjects and heart disease patients.
Collapse
Affiliation(s)
- Daniel A. Auger
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Sona. Ghadimi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | | | - Claire E. Reagan
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Changyu Sun
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Mohamad Abdi
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
| | - Jie Jane Cao
- St. Francis Hospital, The Heart Center, Long Island, NY USA
| | | | - Nora Ngai
- St. Francis Hospital, The Heart Center, Long Island, NY USA
| | - Andrew D. Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - John N. Oshinski
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Nick Emamifar
- Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, Georgia
| | - Daniel B. Ennis
- Department of Radiology, Stanford University, Stanford, CA USA
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA USA
| | - Zhan-Qiu Liu
- Department of Radiology, Stanford University, Stanford, CA USA
| | - Pierre Croisille
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
- Department of Radiology, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Magalie Viallon
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France
| | - Kenneth C. Bilchick
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA USA
| | - Frederick H. Epstein
- Department of Biomedical Engineering, University of Virginia, Box 800759, Charlottesville, VA 22908 USA
- Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA USA
| |
Collapse
|
8
|
Rahman T, Moulin K, Perotti LE. Cardiac Diffusion Tensor Biomarkers of Chronic Infarction Based on In Vivo Data. APPLIED SCIENCES-BASEL 2022; 12. [PMID: 36032414 PMCID: PMC9408809 DOI: 10.3390/app12073512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In vivo cardiac diffusion tensor imaging (cDTI) data were acquired in
swine subjects six to ten weeks post-myocardial infarction (MI) to identify
microstructural-based biomarkers of MI. Diffusion tensor invariants, diffusion
tensor eigenvalues, and radial diffusivity (RD) are evaluated in the infarct,
border, and remote myocardium, and compared with extracellular volume fraction
(ECV) and native T1 values. Additionally, to aid the interpretation of the
experimental results, the diffusion of water molecules was numerically simulated
as a function of ECV. Finally, findings based on in vivo measures were confirmed
using higher-resolution and higher signal-to-noise data acquired ex vivo in the
same subjects. Mean diffusivity, diffusion tensor eigenvalues, and RD increased
in the infarct and border regions compared to remote myocardium, while
fractional anisotropy decreased. Secondary (e2) and tertiary
(e3) eigenvalues increased more significantly than the primary
eigenvalue in the infarct and border regions. These findings were confirmed by
the diffusion simulations. Although ECV presented the largest increase in
infarct and border regions, e2, e3, and RD increased the
most among non-contrast-based biomarkers. RD is of special interest as it
summarizes the changes occurring in the radial direction and may be more robust
than e2 or e3 alone.
Collapse
Affiliation(s)
- Tanjib Rahman
- Department of Mechanical and Aerospace Engineering,
University of Central Florida, Orlando, FL 32816, USA
| | - Kévin Moulin
- CREATIS Laboratory, Univ. Lyon, UJM-Saint-Etienne, INSA,
CNRS UMR 5520, INSERM, 69100 Villeurbanne, France
- Department of Radiology, University Hospital Saint-Etienne,
42270 Saint-Priest-en-Jarez, France
| | - Luigi E. Perotti
- Department of Mechanical and Aerospace Engineering,
University of Central Florida, Orlando, FL 32816, USA
- Correspondence:
| |
Collapse
|
9
|
Stimm J, Nordsletten DA, Jilberto J, Miller R, Berberoğlu E, Kozerke S, Stoeck CT. Personalization of biomechanical simulations of the left ventricle by in-vivo cardiac DTI data: Impact of fiber interpolation methods. Front Physiol 2022; 13:1042537. [PMID: 36518106 PMCID: PMC9742433 DOI: 10.3389/fphys.2022.1042537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Simulations of cardiac electrophysiology and mechanics have been reported to be sensitive to the microstructural anisotropy of the myocardium. Consequently, a personalized representation of cardiac microstructure is a crucial component of accurate, personalized cardiac biomechanical models. In-vivo cardiac Diffusion Tensor Imaging (cDTI) is a non-invasive magnetic resonance imaging technique capable of probing the heart's microstructure. Being a rather novel technique, issues such as low resolution, signal-to noise ratio, and spatial coverage are currently limiting factors. We outline four interpolation techniques with varying degrees of data fidelity, different amounts of smoothing strength, and varying representation error to bridge the gap between the sparse in-vivo data and the model, requiring a 3D representation of microstructure across the myocardium. We provide a workflow to incorporate in-vivo myofiber orientation into a left ventricular model and demonstrate that personalized modelling based on fiber orientations from in-vivo cDTI data is feasible. The interpolation error is correlated with a trend in personalized parameters and simulated physiological parameters, strains, and ventricular twist. This trend in simulation results is consistent across material parameter settings and therefore corresponds to a bias introduced by the interpolation method. This study suggests that using a tensor interpolation approach to personalize microstructure with in-vivo cDTI data, reduces the fiber uncertainty and thereby the bias in the simulation results.
Collapse
Affiliation(s)
- Johanna Stimm
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - David A Nordsletten
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Javiera Jilberto
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Renee Miller
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ezgi Berberoğlu
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Division of Surgical Research, University Hospital Zurich, University Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Loecher M, Perotti LE, Ennis DB. Using synthetic data generation to train a cardiac motion tag tracking neural network. Med Image Anal 2021; 74:102223. [PMID: 34555661 DOI: 10.1016/j.media.2021.102223] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 07/15/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022]
Abstract
A CNN based method for cardiac MRI tag tracking was developed and validated. A synthetic data simulator was created to generate large amounts of training data using natural images, a Bloch equation simulation, a broad range of tissue properties, and programmed ground-truth motion. The method was validated using both an analytical deforming cardiac phantom and in vivo data with manually tracked reference motion paths. In the analytical phantom, error was investigated relative to SNR, and accurate results were seen for SNR>10 (displacement error <0.3 mm). Excellent agreement was seen in vivo for tag locations (mean displacement difference = -0.02 pixels, 95% CI [-0.73, 0.69]) and calculated cardiac circumferential strain (mean difference = 0.006, 95% CI [-0.012, 0.024]). Automated tag tracking with a CNN trained on synthetic data is both accurate and precise.
Collapse
Affiliation(s)
| | - Luigi E Perotti
- Department of Mechanical and Aerospace Engineering, University of Central Florida, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, USA; Cardiovascular Institute, Stanford University, USA; Center for Artificial Intelligence in Medicine & Imaging, Stanford University, USA
| |
Collapse
|
11
|
Zhang Z, Karasan E, Gopalan K, Liu C, Lustig M. DiSpect: Displacement spectrum imaging of flow and tissue perfusion using spin-labeling and stimulated echoes. Magn Reson Med 2021; 86:2468-2481. [PMID: 34096098 DOI: 10.1002/mrm.28882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE We propose a new method, displacement spectrum (DiSpect) imaging, for probing in vivo complex tissue dynamics such as motion, flow, diffusion, and perfusion. Based on stimulated echoes and image phase, our flexible approach enables observations of the spin dynamics over short (milliseconds) to long (seconds) evolution times. METHODS The DiSpect method is a Fourier-encoded variant of displacement encoding with stimulated echoes, which encodes bulk displacement of spins that occurs between tagging and imaging in the image phase. However, this method fails to capture partial volume effects as well as blood flow. The DiSpect variant mitigates this by performing multiple scans with increasing displacement-encoding steps. Fourier analysis can then resolve the multidimensional spectrum of displacements that spins exhibit over the mixing time. In addition, repeated imaging following tagging can capture dynamic displacement spectra with increasing mixing times. RESULTS We demonstrate properties of DiSpect MRI using flow phantom experiments as well as in vivo brain scans. Specifically, the ability of DiSpect to perform retrospective vessel-selective perfusion imaging at multiple mixing times is highlighted. CONCLUSION The DiSpect variant is a new tool in the arsenal of MRI techniques for probing complex tissue dynamics. The flexibility and the rich information it provides open the possibility of alternative ways to quantitatively measure numerous complex spin dynamics, such as flow and perfusion within a single exam.
Collapse
Affiliation(s)
- Zhiyong Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Ekin Karasan
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Karthik Gopalan
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California, USA
| | - Michael Lustig
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
12
|
Wang VY, Tartibi M, Zhang Y, Selvaganesan K, Haraldsson H, Auger DA, Faraji F, Spaulding K, Takaba K, Collins A, Aguayo E, Saloner D, Wallace AW, Weinsaft JW, Epstein FH, Guccione J, Ge L, Ratcliffe MB. A kinematic model-based analysis framework for 3D Cine-DENSE-validation with an axially compressed gel phantom and application in sheep before and after antero-apical myocardial infarction. Magn Reson Med 2021; 86:2105-2121. [PMID: 34096083 DOI: 10.1002/mrm.28775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/06/2022]
Abstract
PURPOSE Myocardial strain is increasingly used to assess left ventricular (LV) function. Incorporation of LV deformation into finite element (FE) modeling environment with subsequent strain calculation will allow analysis to reach its full potential. We describe a new kinematic model-based analysis framework (KMAF) to calculate strain from 3D cine-DENSE (displacement encoding with stimulated echoes) MRI. METHODS Cine-DENSE allows measurement of 3D myocardial displacement with high spatial accuracy. The KMAF framework uses cine cardiovascular magnetic resonance (CMR) to facilitate cine-DENSE segmentation, interpolates cine-DENSE displacement, and kinematically deforms an FE model to calculate strain. This framework was validated in an axially compressed gel phantom and applied in 10 healthy sheep and 5 sheep after myocardial infarction (MI). RESULTS Excellent Bland-Altman agreement of peak circumferential (Ecc ) and longitudinal (Ell ) strain (mean difference = 0.021 ± 0.04 and -0.006 ± 0.03, respectively), was found between KMAF estimates and idealized FE simulation. Err had a mean difference of -0.014 but larger variation (±0.12). Cine-DENSE estimated end-systolic (ES) Ecc , Ell and Err exhibited significant spatial variation for healthy sheep. Displacement magnitude was reduced on average by 27%, 42%, and 56% after MI in the remote, adjacent and MI regions, respectively. CONCLUSIONS The KMAF framework allows accurate calculation of 3D LV Ecc and Ell from cine-DENSE.
Collapse
Affiliation(s)
- Vicky Y Wang
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - Mehrzad Tartibi
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - Yue Zhang
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - Kartiga Selvaganesan
- Department of Biomedical Engineering, University of Berkeley, Berkeley, California, USA
| | - Henrik Haraldsson
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Radiology, University of California, San Francisco, California, USA
| | - Daniel A Auger
- Department of Radiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Medical Metrics, Inc., Houston, Texas, USA
| | - Farshid Faraji
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Radiology, University of California, San Francisco, California, USA
| | | | - Kiyoaki Takaba
- Veterans Affairs Medical Center, San Francisco, California, USA
| | | | - Esteban Aguayo
- Veterans Affairs Medical Center, San Francisco, California, USA
| | - David Saloner
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Radiology, University of California, San Francisco, California, USA
| | - Arthur W Wallace
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Bioengineering, University of California, San Francisco, California, USA.,Department of Anesthesia, University of California, San Francisco, California, USA
| | | | - Frederick H Epstein
- Department of Radiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Julius Guccione
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Bioengineering, University of California, San Francisco, California, USA.,Department of Surgery, University of California, San Francisco, California, USA
| | - Liang Ge
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Bioengineering, University of California, San Francisco, California, USA.,Department of Surgery, University of California, San Francisco, California, USA
| | - Mark B Ratcliffe
- Veterans Affairs Medical Center, San Francisco, California, USA.,Department of Bioengineering, University of California, San Francisco, California, USA.,Department of Surgery, University of California, San Francisco, California, USA.,Department of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
13
|
Loecher M, Hannum AJ, Perotti LE, Ennis DB. Arbitrary Point Tracking with Machine Learning to Measure Cardiac Strains in Tagged MRI. FUNCTIONAL IMAGING AND MODELING OF THE HEART : ... INTERNATIONAL WORKSHOP, FIMH ..., PROCEEDINGS. FIMH 2021; 12738:213-222. [PMID: 34590079 PMCID: PMC8478357 DOI: 10.1007/978-3-030-78710-3_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cardiac tagged MR images allow for deformation fields to be measured in the heart by tracking the motion of tag lines throughout the cardiac cycle. Machine learning (ML) algorithms enable accurate and robust tracking of tag lines. Herein, the use of a massive synthetic physics-driven training dataset with known ground truth was used to train an ML network to enable tracking any number of points at arbitrary positions rather than anchored to the tag lines themselves. The tag tracking and strain calculation methods were investigated in a computational deforming cardiac phantom with known (ground truth) strain values. This enabled both tag tracking and strain accuracy to be characterized for a range of image acquisition and tag tracking parameters. The methods were also tested on in vivo volunteer data. Median tracking error was <0.26mm in the computational phantom, and strain measurements were improved in vivo when using the arbitrary point tracking for a standard clinical protocol.
Collapse
Affiliation(s)
| | | | - Luigi E Perotti
- Dept. of Mechanical and Aerospace Engineering, University of Central Florida
| | | |
Collapse
|
14
|
Ghadimi S, Auger DA, Feng X, Sun C, Meyer CH, Bilchick KC, Cao JJ, Scott AD, Oshinski JN, Ennis DB, Epstein FH. Fully-automated global and segmental strain analysis of DENSE cardiovascular magnetic resonance using deep learning for segmentation and phase unwrapping. J Cardiovasc Magn Reson 2021; 23:20. [PMID: 33691739 PMCID: PMC7949250 DOI: 10.1186/s12968-021-00712-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/26/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) cine displacement encoding with stimulated echoes (DENSE) measures heart motion by encoding myocardial displacement into the signal phase, facilitating high accuracy and reproducibility of global and segmental myocardial strain and providing benefits in clinical performance. While conventional methods for strain analysis of DENSE images are faster than those for myocardial tagging, they still require manual user assistance. The present study developed and evaluated deep learning methods for fully-automatic DENSE strain analysis. METHODS Convolutional neural networks (CNNs) were developed and trained to (a) identify the left-ventricular (LV) epicardial and endocardial borders, (b) identify the anterior right-ventricular (RV)-LV insertion point, and (c) perform phase unwrapping. Subsequent conventional automatic steps were employed to compute strain. The networks were trained using 12,415 short-axis DENSE images from 45 healthy subjects and 19 heart disease patients and were tested using 10,510 images from 25 healthy subjects and 19 patients. Each individual CNN was evaluated, and the end-to-end fully-automatic deep learning pipeline was compared to conventional user-assisted DENSE analysis using linear correlation and Bland Altman analysis of circumferential strain. RESULTS LV myocardial segmentation U-Nets achieved a DICE similarity coefficient of 0.87 ± 0.04, a Hausdorff distance of 2.7 ± 1.0 pixels, and a mean surface distance of 0.41 ± 0.29 pixels in comparison with manual LV myocardial segmentation by an expert. The anterior RV-LV insertion point was detected within 1.38 ± 0.9 pixels compared to manually annotated data. The phase-unwrapping U-Net had similar or lower mean squared error vs. ground-truth data compared to the conventional path-following method for images with typical signal-to-noise ratio (SNR) or low SNR (p < 0.05), respectively. Bland-Altman analyses showed biases of 0.00 ± 0.03 and limits of agreement of - 0.04 to 0.05 or better for deep learning-based fully-automatic global and segmental end-systolic circumferential strain vs. conventional user-assisted methods. CONCLUSIONS Deep learning enables fully-automatic global and segmental circumferential strain analysis of DENSE CMR providing excellent agreement with conventional user-assisted methods. Deep learning-based automatic strain analysis may facilitate greater clinical use of DENSE for the quantification of global and segmental strain in patients with cardiac disease.
Collapse
Affiliation(s)
- Sona Ghadimi
- Department of Biomedical Engineering, University of Virginia, Health System, Box 800759, Charlottesville, VA 22908 USA
| | - Daniel A. Auger
- Department of Biomedical Engineering, University of Virginia, Health System, Box 800759, Charlottesville, VA 22908 USA
| | - Xue Feng
- Department of Biomedical Engineering, University of Virginia, Health System, Box 800759, Charlottesville, VA 22908 USA
| | - Changyu Sun
- Department of Biomedical Engineering, University of Virginia, Health System, Box 800759, Charlottesville, VA 22908 USA
| | - Craig H. Meyer
- Department of Biomedical Engineering, University of Virginia, Health System, Box 800759, Charlottesville, VA 22908 USA
| | - Kenneth C. Bilchick
- Department of Medicine, University of Virginia Health System, Charlottesville, VA USA
| | - Jie Jane Cao
- Department of Cardiology, St. Francis Hospital, New York, NY USA
| | - Andrew D. Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom
| | - John N. Oshinski
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Daniel B. Ennis
- Department of Radiology, Stanford University, Stanford, CA USA
| | - Frederick H. Epstein
- Department of Biomedical Engineering, University of Virginia, Health System, Box 800759, Charlottesville, VA 22908 USA
| |
Collapse
|
15
|
Moulin K, Croisille P, Viallon M, Verzhbinsky IA, Perotti LE, Ennis DB. Myofiber strain in healthy humans using DENSE and cDTI. Magn Reson Med 2021; 86:277-292. [PMID: 33619807 DOI: 10.1002/mrm.28724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Myofiber strain, Eff , is a mechanistically relevant metric of cardiac cell shortening and is expected to be spatially uniform in healthy populations, making it a prime candidate for the evaluation of local cardiomyocyte contractility. In this study, a new, efficient pipeline was proposed to combine microstructural cDTI and functional DENSE data in order to estimate Eff in vivo. METHODS Thirty healthy volunteers were scanned with three long-axis (LA) and three short-axis (SA) DENSE slices using 2D displacement encoding and one SA slice of cDTI. The total acquisition time was 11 minutes ± 3 minutes across volunteers. The pipeline first generates 3D SA displacements from all DENSE slices which are then combined with cDTI data to generate a cine of myofiber orientations and compute Eff . The precision of the post-processing pipeline was assessed using a computational phantom study. Transmural myofiber strain was compared to circumferential strain, Ecc , in healthy volunteers using a Wilcoxon sign rank test. RESULTS In vivo, computed Eff was found uniform transmurally compared to Ecc (-0.14[-0.15, -0.12] vs -0.18 [-0.20, -0.16], P < .001, -0.14 [-0.16, -0.12] vs -0.16 [-0.17, -0.13], P < .001 and -0.14 [-0.16, -0.12] vs Ecc_C = -0.14 [-0.15, -0.11], P = .002, Eff_C vs Ecc_C in the endo, mid, and epi layers, respectively). CONCLUSION We demonstrate that it is possible to measure in vivo myofiber strain in a healthy human population in 10 minutes per subject. Myofiber strain was observed to be spatially uniform in healthy volunteers making it a potential biomarker for the evaluation of local cardiomyocyte contractility in assessing cardiovascular dysfunction.
Collapse
Affiliation(s)
- Kévin Moulin
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Pierre Croisille
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France.,Department of Radiology, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Magalie Viallon
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France.,Department of Radiology, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Ilya A Verzhbinsky
- Medical Scientist Training Program, University of California - San Diego, La Jolla, CA, USA
| | - Luigi E Perotti
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
16
|
Perotti LE, Verzhbinsky IA, Moulin K, Cork TE, Loecher M, Balzani D, Ennis DB. Estimating cardiomyofiber strain in vivo by solving a computational model. Med Image Anal 2021; 68:101932. [PMID: 33383331 PMCID: PMC7956226 DOI: 10.1016/j.media.2020.101932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 11/19/2022]
Abstract
Since heart contraction results from the electrically activated contraction of millions of cardiomyocytes, a measure of cardiomyocyte shortening mechanistically underlies cardiac contraction. In this work we aim to measure preferential aggregate cardiomyocyte ("myofiber") strains based on Magnetic Resonance Imaging (MRI) data acquired to measure both voxel-wise displacements through systole and myofiber orientation. In order to reduce the effect of experimental noise on the computed myofiber strains, we recast the strains calculation as the solution of a boundary value problem (BVP). This approach does not require a calibrated material model, and consequently is independent of specific myocardial material properties. The solution to this auxiliary BVP is the displacement field corresponding to assigned values of myofiber strains. The actual myofiber strains are then determined by minimizing the difference between computed and measured displacements. The approach is validated using an analytical phantom, for which the ground-truth solution is known. The method is applied to compute myofiber strains using in vivo displacement and myofiber MRI data acquired in a mid-ventricular left ventricle section in N=8 swine subjects. The proposed method shows a more physiological distribution of myofiber strains compared to standard approaches that directly differentiate the displacement field.
Collapse
Affiliation(s)
- Luigi E Perotti
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA.
| | - Ilya A Verzhbinsky
- Department of Radiology, Stanford University, Stanford, CA, USA; Medical Scientist Training Program, University of California, San Diego, La Jolla, USA
| | - Kévin Moulin
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Tyler E Cork
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Michael Loecher
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Daniel Balzani
- Chair of Continuum Mechanics, Ruhr University Bochum, Bochum, Germany
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|