1
|
Odéen H, Payne AH, Parker DL. Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI). J Magn Reson Imaging 2025. [PMID: 39842847 DOI: 10.1002/jmri.29712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025] Open
Abstract
This review covers the theoretical background, pulse sequence considerations, practical implementations, and multitudes of applications of magnetic resonance acoustic radiation force imaging (MR-ARFI) described to date. MR-ARFI is an approach to encode tissue displacement caused by the acoustic radiation force of a focused ultrasound field into the phase of a MR image. The displacement encoding is done with motion encoding gradients (MEG) which have traditionally been added to spin echo-type and gradient recalled echo-type pulse sequences. Many different types of MEG (monopolar, bipolar, tripolar etc.) have been described and pros and cons are discussed. We further review studies investigating the safety of MR-ARFI, as well as approaches to simulate the MR-ARFI displacement. Lastly, MR-ARFI applications such as for focal spot localization, tissue stiffness interrogation following thermal ablation, trans-skull aberration correction, and simultaneous MR-ARFI and MR thermometry are discussed. EVIDENCE LEVEL: N/A TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Henrik Odéen
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Allison H Payne
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
2
|
Riis TS, Feldman DA, Losser AJ, Okifuji A, Kubanek J. Noninvasive targeted modulation of pain circuits with focused ultrasonic waves. Pain 2024; 165:2829-2839. [PMID: 39073370 PMCID: PMC11562753 DOI: 10.1097/j.pain.0000000000003322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 07/30/2024]
Abstract
ABSTRACT Direct interventions into deep brain circuits constitute promising treatment modalities for chronic pain. Cingulotomy and deep brain stimulation targeting the anterior cingulate cortex have shown notable improvements in the unpleasantness of pain, but these interventions require brain surgeries. In this study, we have developed an approach that can modulate this deep brain affective hub entirely noninvasively, using low-intensity transcranial-focused ultrasound. Twenty patients with chronic pain received two 40-minute active or sham stimulation protocols and were monitored for one week in a randomized crossover trial. Sixty percent of subjects experienced a clinically meaningful reduction of pain on day 1 and on day 7 following the active stimulation, while sham stimulation provided such benefits only to 15% and 20% of subjects, respectively. On average, active stimulation reduced pain by 60.0% immediately following the intervention and by 43.0% and 33.0% on days 1 and 7 following the intervention. The corresponding sham levels were 14.4%, 12.3%, and 6.6%. The stimulation was well tolerated, and no adverse events were detected. Side effects were generally mild and resolved within 24 hours. Together, the direct, ultrasonic stimulation of the anterior cingulate cortex offers rapid, clinically meaningful, and durable improvements in pain severity.
Collapse
Affiliation(s)
- Thomas S. Riis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Daniel A. Feldman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Radiology, University of Utah, Salt Lake City, UT, United States
| | - Adam J. Losser
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Akiko Okifuji
- Division of Pain Medicine, Department of Anesthesiology, University of Utah, Salt Lake City, UT, United States
| | - Jan Kubanek
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Bhosale AA, Zhao Y, Zhang X. Electric field and SAR reduction in high-impedance RF arrays by using high permittivity materials for 7T MR imaging. PLoS One 2024; 19:e0305464. [PMID: 38959266 PMCID: PMC11221758 DOI: 10.1371/journal.pone.0305464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
In the field of ultra-high field MR imaging, the challenges associated with higher frequencies and shorter wavelengths necessitate rigorous attention to multichannel array design. While the need for such arrays remains, and efforts to increase channel counts continue, a persistent impediment-inter-element coupling-constantly hinders development. This coupling degrades current and field distribution, introduces noise correlation between channels, and alters the frequency of array elements, affecting image quality and overall performance. The goal of optimizing ultra-high field MRI goes beyond resolving inter-element coupling and includes significant safety considerations related to the design changes required to achieve high-impedance coils. Although these coils provide excellent isolation, the higher impedance needs special design changes. However, such changes pose a significant safety risk in the form of strong electric fields across low-capacitance lumped components. This process may raise Specific Absorption Rate (SAR) values in the imaging subject, increasing power deposition and, as a result, the risk of tissue heating-related injury. To balance the requirement of inter-element decoupling with the critical need for safety, we suggest a new solution. Our method uses high-dielectric materials to efficiently reduce electric fields and SAR values in the imaging sample. This intervention tries to maintain B1 efficiency and inter-element decoupling within the existing array design, which includes high-impedance coils. Our method aims to promote the full potential of ultra-high field MRI by alleviating this critical safety concern with minimal changes to the existing array setup.
Collapse
Affiliation(s)
- Aditya A. Bhosale
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Yunkun Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
- Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
| |
Collapse
|
4
|
Pellow C, Pichardo S, Pike GB. A systematic review of preclinical and clinical transcranial ultrasound neuromodulation and opportunities for functional connectomics. Brain Stimul 2024; 17:734-751. [PMID: 38880207 DOI: 10.1016/j.brs.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Low-intensity transcranial ultrasound has surged forward as a non-invasive and disruptive tool for neuromodulation with applications in basic neuroscience research and the treatment of neurological and psychiatric conditions. OBJECTIVE To provide a comprehensive overview and update of preclinical and clinical transcranial low intensity ultrasound for neuromodulation and emphasize the emerging role of functional brain mapping to guide, better understand, and predict responses. METHODS A systematic review was conducted by searching the Web of Science and Scopus databases for studies on transcranial ultrasound neuromodulation, both in humans and animals. RESULTS 187 relevant studies were identified and reviewed, including 116 preclinical and 71 clinical reports with subjects belonging to diverse cohorts. Milestones of ultrasound neuromodulation are described within an overview of the broader landscape. General neural readouts and outcome measures are discussed, potential confounds are noted, and the emerging use of functional magnetic resonance imaging is highlighted. CONCLUSION Ultrasound neuromodulation has emerged as a powerful tool to study and treat a range of conditions and its combination with various neural readouts has significantly advanced this platform. In particular, the use of functional magnetic resonance imaging has yielded exciting inferences into ultrasound neuromodulation and has the potential to advance our understanding of brain function, neuromodulatory mechanisms, and ultimately clinical outcomes. It is anticipated that these preclinical and clinical trials are the first of many; that transcranial low intensity focused ultrasound, particularly in combination with functional magnetic resonance imaging, has the potential to enhance treatment for a spectrum of neurological conditions.
Collapse
Affiliation(s)
- Carly Pellow
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada.
| | - Samuel Pichardo
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - G Bruce Pike
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
5
|
Lu M, Yan X. Investigating Local Receive Arrays in tcMRgFUS System and Their Influence by Passive Antennas: A Simulation Study. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2023; 11:143998-144005. [PMID: 38984038 PMCID: PMC11233118 DOI: 10.1109/access.2023.3343637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) revolutionizes non-invasive therapy by combining MRI and high-intensity focused ultrasound for precise thermal treatment. MRI scans play an essential role during tcMRgFUS treatment in that they are used to localize the target and monitor temperature. Using the body coil for MRI introduces imaging challenges, notably extremely low signal-to-noise ratio (SNR) and a distinct dark band in 3 Tesla brain images. This study explores the impact of diverse local receive coils on SNR and parallel imaging capabilities in tcMRgFUS. Simulation results underscore the significant SNR enhancement, especially with helmet-shaped coils, crucial for capturing signals from the head's top and sides. Additionally, the study delves into integrating passive antennas to address the dark band issue, revealing a combined improvement in SNR and transmit field recovery. The study demonstrates that even a coil array outside the water bath can enhance SNR. This work offers critical insights into optimizing the imaging quality, improving temperature mapping accuracy, and recovering the transmit field in tcMRgFUS technology, holding potential for refined treatment visualization, targeting precision, and real-time monitoring.
Collapse
Affiliation(s)
- Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Qu S, Shi S, Quan Z, Gao Y, Wang M, Wang Y, Pan G, Lai HY, Roe AW, Zhang X. Design and application of a multimodality-compatible 1Tx/6Rx RF coil for monkey brain MRI at 7T. Neuroimage 2023; 276:120185. [PMID: 37244320 DOI: 10.1016/j.neuroimage.2023.120185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
OBJECTIVE Blood-oxygen-level-dependent functional MRI allows to investigte neural activities and connectivity. While the non-human primate plays an essential role in neuroscience research, multimodal methods combining functional MRI with other neuroimaging and neuromodulation enable us to understand the brain network at multiple scales. APPROACH In this study, a tight-fitting helmet-shape receive array with a single transmit loop for anesthetized macaque brain MRI at 7T was fabricated with four openings constructed in the coil housing to accommodate multimodal devices, and the coil performance was quantitatively evaluated and compared to a commercial knee coil. In addition, experiments over three macaques with infrared neural stimulation (INS), focused ultrasound stimulation (FUS), and transcranial direct current stimulation (tDCS) were conducted. MAIN RESULTS The RF coil showed higher transmit efficiency, comparable homogeneity, improved SNR and enlarged signal coverage over the macaque brain. Infrared neural stimulation was applied to the amygdala in deep brain region, and activations in stimulation sites and connected sites were detected, with the connectivity consistent with anatomical information. Focused ultrasound stimulation was applied to the left visual cortex, and activations were acquired along the ultrasound traveling path, with all time course curves consistent with pre-designed paradigms. The existence of transcranial direct current stimulation electrodes brought no interference to the RF system, as evidenced through high-resolution MPRAGE structure images. SIGNIFICANCE This pilot study reveals the feasibility for brain investigation at multiple spatiotemporal scales, which may advance our understanding in dynamic brain networks.
Collapse
Affiliation(s)
- Shuxian Qu
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Sunhang Shi
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Zhiyan Quan
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Yang Gao
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; College of Electrical Engineering, Zhejiang University, Hangzhou, China
| | - Minmin Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Yueming Wang
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China
| | - Gang Pan
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; State Key Lab of CAD&CG, Zhejiang University, Hangzhou, China.
| | - Hsin-Yi Lai
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Anna Wang Roe
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaotong Zhang
- The Interdisciplinary Institute of Neuroscience and Technology, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China; Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; College of Electrical Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Mukhatov A, Le T, Pham TT, Do TD. A comprehensive review on magnetic imaging techniques for biomedical applications. NANO SELECT 2023. [DOI: 10.1002/nano.202200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Azamat Mukhatov
- Department of Robotics School of Engineering and Digital Sciences Nazarbayev University Astana Kazakhstan
| | - Tuan‐Anh Le
- Department of Physiology and Biomedical Engineering Mayo Clinic Scottsdale Arizona USA
| | - Tri T. Pham
- Department of Biology School of Sciences and Humanities Nazarbayev University Astana Kazakhstan
| | - Ton Duc Do
- Department of Robotics School of Engineering and Digital Sciences Nazarbayev University Astana Kazakhstan
| |
Collapse
|
8
|
Luo H, Sigona MK, Manuel TJ, Phipps MA, Chen LM, Caskey CF, Grissom WA. Reduced-field of view three-dimensional MR acoustic radiation force imaging with a low-rank reconstruction for targeting transcranial focused ultrasound. Magn Reson Med 2022; 88:2419-2431. [PMID: 35916311 PMCID: PMC9529839 DOI: 10.1002/mrm.29403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE To rapidly image and localize the focus in MR-guided focused ultrasound (FUS) while maintaining a low ultrasound duty cycle to minimize tissue effects. METHODS MR-acoustic radiation force imaging (ARFI) is key to targeting FUS procedures such as neuromodulation, and works by encoding ultrasound-induced displacements into the phase of MR images. However, it can require long scan times to cover a volume of tissue, especially when minimizing the FUS dose during targeting is paramount. To simultaneously minimize scan time and the FUS duty cycle, a 2-min three-dimensional (3D) reduced-FOV spin echo ARFI scan with two-dimensional undersampling was implemented at 3T with a FUS duty cycle of 0.85%. The 3D k-space sampling scheme incorporated uniform undersampling in one phase-encoded axis and partial Fourier (PF) sampling in the other. The scan interleaved FUS-on and FUS-off data collection to improve displacement map quality via a joint low-rank image reconstruction. Experiments in agarose and graphite phantoms and living macaque brains for neuromodulation and blood-brain barrier opening studied the effects of the sampling and reconstruction strategy on the acquisition, and evaluated its repeatability and accuracy. RESULTS In the phantom, the distances between displacement centroids of 10 prospective reconstructions and a fully sampled reference were below 1 mm. In in vivo brain, the distances between centroids ranged from 1.3 to 2.1 mm. Results in phantom and in vivo brain both showed that the proposed method can recover the FUS focus compared to slower fully sampled scans. CONCLUSION The proposed 3D MR-ARFI reduced-FOV method enables rapid imaging of the FUS focus while maintaining a low FUS duty cycle.
Collapse
Affiliation(s)
- Huiwen Luo
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Michelle K Sigona
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Thomas J Manuel
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Marshal A Phipps
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Li M Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Charles F Caskey
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William A Grissom
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Li N, Gaur P, Quah K, Pauly KB. Improving in situ acoustic intensity estimates using MR acoustic radiation force imaging in combination with multifrequency MR elastography. Magn Reson Med 2022; 88:1673-1689. [PMID: 35762849 PMCID: PMC9439407 DOI: 10.1002/mrm.29309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/08/2022]
Abstract
PURPOSE Magnetic resonance acoustic radiation force imaging (MR-ARFI) enables focal spot localization during nonablative transcranial ultrasound therapies. As the acoustic radiation force is proportional to the applied acoustic intensity, measured MR-ARFI displacements could potentially be used to estimate the acoustic intensity at the target. However, variable brain stiffness is an obstacle. The goal of this study was to develop and assess a method to accurately estimate the acoustic intensity at the focus using MR-ARFI displacements in combination with viscoelastic properties obtained with multifrequency MR elastography (MRE). METHODS Phantoms with a range of viscoelastic properties were fabricated, and MR-ARFI displacements were acquired within each phantom using multiple acoustic intensities. Voigt model parameters were estimated for each phantom based on storage and loss moduli measured using multifrequency MRE, and these were used to predict the relationship between acoustic intensity and measured displacement. RESULTS Using assumed viscoelastic properties, MR-ARFI displacements alone could not accurately estimate acoustic intensity across phantoms. For example, acoustic intensities were underestimated in phantoms stiffer than the assumed stiffness and overestimated in phantoms softer than the assumed stiffness. This error was greatly reduced using individualized viscoelasticity measurements obtained from MRE. CONCLUSION We demonstrated that viscoelasticity information from MRE could be used in combination with MR-ARFI displacements to obtain more accurate estimates of acoustic intensity. Additionally, Voigt model viscosity parameters were found to be predictive of the relaxation rate of each phantom's time-varying displacement response, which could be used to optimize patient-specific MR-ARFI pulse sequences.
Collapse
Affiliation(s)
- Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Pooja Gaur
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Kristin Quah
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
10
|
Rotundo S, Brizi D, Flori A, Giovannetti G, Menichetti L, Monorchio A. Shaping and Focusing Magnetic Field in the Human Body: State-of-the Art and Promising Technologies. SENSORS (BASEL, SWITZERLAND) 2022; 22:5132. [PMID: 35890812 PMCID: PMC9318684 DOI: 10.3390/s22145132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In recent years, the usage of radio frequency magnetic fields for biomedical applications has increased exponentially. Several diagnostic and therapeutic methodologies exploit this physical entity such as, for instance, magnetic resonance imaging, hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation. Within this framework, the magnetic field focusing and shaping, at different depths inside the tissue, emerges as one of the most important challenges from a technological point of view, since it is highly desirable for improving the effectiveness of clinical methodologies. In this review paper, we will first report some of the biomedical practices employing radio frequency magnetic fields, that appear most promising in clinical settings, explaining the underneath physical principles and operative procedures. Specifically, we direct the interest toward hyperthermia with magnetic nanoparticles and transcranial magnetic stimulation, together with a brief mention of magnetic resonance imaging. Additionally, we deeply review the technological solutions that have appeared so far in the literature to shape and control the radio frequency magnetic field distribution within biological tissues, highlighting human applications. In particular, volume and surface coils, together with the recent raise of metamaterials and metasurfaces will be reported. The present review manuscript can be useful to fill the actual gap in the literature and to serve as a guide for the physicians and engineers working in these fields.
Collapse
Affiliation(s)
- Sabrina Rotundo
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy; (D.B.); (A.M.)
| | - Danilo Brizi
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy; (D.B.); (A.M.)
| | - Alessandra Flori
- Fondazione CNR-Regione Toscana G. Monasterio, 56124 Pisa, Italy;
| | | | - Luca Menichetti
- CNR Institute of Clinical Physiology, 56124 Pisa, Italy; (G.G.); (L.M.)
| | - Agostino Monorchio
- Department of Information Engineering, University of Pisa, 56122 Pisa, Italy; (D.B.); (A.M.)
| |
Collapse
|
11
|
Jones RM, Caskey CF, Dayton PA, Oralkan O, Pinton GF. Transcranial Neuromodulation Array With Imaging Aperture for Simultaneous Multifocus Stimulation in Nonhuman Primates. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:261-272. [PMID: 34460372 DOI: 10.1109/tuffc.2021.3108448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Even simple behaviors arise from the simultaneous activation of multiple regions in the brain. Thus, the ability to simultaneously stimulate multiple regions within a brain circuit should allow for better modulation of function. However, performing simultaneous multifocus ultrasound neuromodulation introduces challenges to transducer design. Using 3-D Fullwave simulations, we have designed an ultrasound neuromodulation array for nonhuman primates that: 1) can simultaneously focus on multiple targets and 2) include an imaging aperture for additional functional imaging. This design is based on a spherical array, with 128 15-mm elements distributed in a spherical helix pattern. It is shown that clustering the elements tightly around the 65-mm imaging aperture located at the top of the array improves targeting at shallow depths, near the skull surface. Spherical arrays have good focusing capabilities through the skull at the center of the array, but focusing on off-center locations is more challenging due to the natural geometric configuration and the angle of incidence with the skull. In order to mitigate this, the 64 elements closest to the aperture were rotated toward and focusing on a shallow target, and the 64 elements farthest from the aperture were rotated toward and focusing on a deeper target. Data illustrated that this array produced focusing on the somatosensory cortex with a gain of 4.38 and to the thalamus with a gain of 3.82. To improve upon this, the array placement was optimized based on phase aberration simulations, allowing for the elements with the largest impact on the gain at each focal point to be found. This optimization resulted in an array design that can focus on the somatosensory cortex with a gain of 5.19 and the thalamus with a gain of 4.45. Simulations were also performed to evaluate the ability of the array to focus on 28 additional brain regions, showing that off-center target regions can be stimulated, but those closer to the skull will require corrective steps to deliver the same amount of energy to those locations. This simulation and design process can be adapted to an individual monkey or human skull morphologies and specific target locations within individuals by using orientable 3-D printing of the transducer case and by electronic phase aberration correction.
Collapse
|
12
|
Qiao Y, Li Y, Leng Q, Zhou H, Long X, Lee J, Chen Y, Liu X, Zheng H, Zou C. Highly accelerated magnetic resonance acoustic radiation force imaging for in vivo transcranial ultrasound focus localization: A comparison of three reconstruction methods. NMR IN BIOMEDICINE 2021; 34:e4598. [PMID: 34396597 DOI: 10.1002/nbm.4598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/30/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Magnetic resonance acoustic radiation force imaging (MR-ARFI) is a promising tool for transcranial neurosurgery planning and monitoring. However, the ultrasound dose during ARFI is quite high due to the high intensity required and the repetitive ultrasound sonication. To reduce the ultrasound deposition and prevent unwanted neurological effects, undersampling in k-space data acquisition is adopted in the current study. Three reconstruction methods, keyhole, k-space hybrid and temporal differences (TED) compressed sensing, the latter two of which were initially proposed for MR thermometry, were applied to the in vivo transcranial focus localization based on MR-ARFI data in a retrospective way. The accuracies of the three methods were compared with the results from the fully sampled data as reference. The results showed that the keyhole method tended to smooth the displacement map and underestimate the peak displacement. The K-space hybrid method was better at recovering the displacement map and was robust to the undersampling pattern, while the TED method was more time efficient under a higher image resolution. For an image of a lower resolution, the K-space hybrid and TED methods were comparable in terms of accuracy when a high undersampling rate was applied. The results reported here facilitate the choice of appropriate undersampled reconstruction methods in transcranial focal localization based on MR-ARFI.
Collapse
Affiliation(s)
- Yangzi Qiao
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Yanbin Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Qingpu Leng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhou
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Long
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Jo Lee
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Yadong Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Xin Liu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| | - Chao Zou
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
13
|
Lo PA, Huang K, Zhou Q, Humayun MS, Yue L. Ultrasonic Retinal Neuromodulation and Acoustic Retinal Prosthesis. MICROMACHINES 2020; 11:mi11100929. [PMID: 33066085 PMCID: PMC7600354 DOI: 10.3390/mi11100929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022]
Abstract
Ultrasound is an emerging method for non-invasive neuromodulation. Studies in the past have demonstrated that ultrasound can reversibly activate and inhibit neural activities in the brain. Recent research shows the possibility of using ultrasound ranging from 0.5 to 43 MHz in acoustic frequency to activate the retinal neurons without causing detectable damages to the cells. This review recapitulates pilot studies that explored retinal responses to the ultrasound exposure, discusses the advantages and limitations of the ultrasonic stimulation, and offers an overview of engineering perspectives in developing an acoustic retinal prosthesis. For comparison, this article also presents studies in the ultrasonic stimulation of the visual cortex. Despite that, the summarized research is still in an early stage; ultrasonic retinal stimulation appears to be a viable technology that exhibits enormous therapeutic potential for non-invasive vision restoration.
Collapse
Affiliation(s)
- Pei-An Lo
- Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA; (P.-A.L.); (K.H.); (Q.Z.); (M.S.H.)
- Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Kyana Huang
- Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA; (P.-A.L.); (K.H.); (Q.Z.); (M.S.H.)
| | - Qifa Zhou
- Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA; (P.-A.L.); (K.H.); (Q.Z.); (M.S.H.)
- Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark S. Humayun
- Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA; (P.-A.L.); (K.H.); (Q.Z.); (M.S.H.)
- Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
| | - Lan Yue
- Roski Eye Institute, University of Southern California, Los Angeles, CA 90033, USA; (P.-A.L.); (K.H.); (Q.Z.); (M.S.H.)
- Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence:
| |
Collapse
|