1
|
Guo S, Liu Z, Yang Z, Lee CH, Lv Q, Shen L. Multi-scale multi-object semi-supervised consistency learning for ultrasound image segmentation. Neural Netw 2025; 184:107095. [PMID: 39754842 DOI: 10.1016/j.neunet.2024.107095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/18/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Manual annotation of ultrasound images relies on expert knowledge and requires significant time and financial resources. Semi-supervised learning (SSL) exploits large amounts of unlabeled data to improve model performance under limited labeled data. However, it faces two challenges: fusion of contextual information at multiple scales and bias of spatial information between multiple objects. We propose a consistency learning-based multi-scale multi-object (MSMO) semi-supervised framework for ultrasound image segmentation. MSMO addresses these challenges by employing a contextual-aware encoder coupled with a multi-object semantic calibration and fusion decoder. First, the encoder extracts multi-scale multi-objects context-aware features, and introduces attention module to refine the feature map and enhance channel information interaction. Then, the decoder uses HConvLSTM to calibrate the output features of the current object by using the hidden state of the previous object, and recursively fuses multi-object semantics at different scales. Finally, MSMO further reduces variations among multiple decoders in different perturbations through consistency constraints, thereby producing consistent predictions for highly uncertain areas. Extensive experiments show that proposed MSMO outperforms the SSL baseline on four benchmark datasets, whether for single-object or multi-object ultrasound image segmentation. MSMO significantly reduces the burden of manual analysis of ultrasound images and holds great potential as a clinical tool. The source code is accessible to the public at: https://github.com/lol88/MSMO.
Collapse
Affiliation(s)
- Saidi Guo
- School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450002, China; School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaoshan Liu
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Ziduo Yang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore; School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Chau Hung Lee
- Department of Radiology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Qiujie Lv
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China.
| | - Lei Shen
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.
| |
Collapse
|
2
|
Lasala A, Fiorentino MC, Bandini A, Moccia S. FetalBrainAwareNet: Bridging GANs with anatomical insight for fetal ultrasound brain plane synthesis. Comput Med Imaging Graph 2024; 116:102405. [PMID: 38824716 DOI: 10.1016/j.compmedimag.2024.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Over the past decade, deep-learning (DL) algorithms have become a promising tool to aid clinicians in identifying fetal head standard planes (FHSPs) during ultrasound (US) examination. However, the adoption of these algorithms in clinical settings is still hindered by the lack of large annotated datasets. To overcome this barrier, we introduce FetalBrainAwareNet, an innovative framework designed to synthesize anatomically accurate images of FHSPs. FetalBrainAwareNet introduces a cutting-edge approach that utilizes class activation maps as a prior in its conditional adversarial training process. This approach fosters the presence of the specific anatomical landmarks in the synthesized images. Additionally, we investigate specialized regularization terms within the adversarial training loss function to control the morphology of the fetal skull and foster the differentiation between the standard planes, ensuring that the synthetic images faithfully represent real US scans in both structure and overall appearance. The versatility of our FetalBrainAwareNet framework is highlighted by its ability to generate high-quality images of three predominant FHSPs using a singular, integrated framework. Quantitative (Fréchet inception distance of 88.52) and qualitative (t-SNE) results suggest that our framework generates US images with greater variability compared to state-of-the-art methods. By using the synthetic images generated with our framework, we increase the accuracy of FHSP classifiers by 3.2% compared to training the same classifiers solely with real acquisitions. These achievements suggest that using our synthetic images to increase the training set could provide benefits to enhance the performance of DL algorithms for FHSPs classification that could be integrated in real clinical scenarios.
Collapse
Affiliation(s)
- Angelo Lasala
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy.
| | | | - Andrea Bandini
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy; Health Science Interdisciplinary Research Center, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Sara Moccia
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
3
|
Zhuang M, Chen Z, Yang Y, Kettunen L, Wang H. Annotation-efficient training of medical image segmentation network based on scribble guidance in difficult areas. Int J Comput Assist Radiol Surg 2024; 19:87-96. [PMID: 37233894 DOI: 10.1007/s11548-023-02931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE The training of deep medical image segmentation networks usually requires a large amount of human-annotated data. To alleviate the burden of human labor, many semi- or non-supervised methods have been developed. However, due to the complexity of clinical scenario, insufficient training labels still causes inaccurate segmentation in some difficult local areas such as heterogeneous tumors and fuzzy boundaries. METHODS We propose an annotation-efficient training approach, which only requires scribble guidance in the difficult areas. A segmentation network is initially trained with a small amount of fully annotated data and then used to produce pseudo labels for more training data. Human supervisors draw scribbles in the areas of incorrect pseudo labels (i.e., difficult areas), and the scribbles are converted into pseudo label maps using a probability-modulated geodesic transform. To reduce the influence of the potential errors in the pseudo labels, a confidence map of the pseudo labels is generated by jointly considering the pixel-to-scribble geodesic distance and the network output probability. The pseudo labels and confidence maps are iteratively optimized with the update of the network, and the network training is promoted by the pseudo labels and the confidence maps in turn. RESULTS Cross-validation based on two data sets (brain tumor MRI and liver tumor CT) showed that our method significantly reduces the annotation time while maintains the segmentation accuracy of difficult areas (e.g., tumors). Using 90 scribble-annotated training images (annotated time: ~ 9 h), our method achieved the same performance as using 45 fully annotated images (annotation time: > 100 h) but required much shorter annotation time. CONCLUSION Compared to the conventional full annotation approaches, the proposed method significantly saves the annotation efforts by focusing the human supervisions on the most difficult regions. It provides an annotation-efficient way for training medical image segmentation networks in complex clinical scenario.
Collapse
Affiliation(s)
- Mingrui Zhuang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, 116024, China
| | - Zhonghua Chen
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, 116024, China
- Faculty of Information Technology, University of Jyväskylä, 40100, Jyvaskyla, Finland
| | - Yuxin Yang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, 116024, China
| | - Lauri Kettunen
- Faculty of Information Technology, University of Jyväskylä, 40100, Jyvaskyla, Finland
| | - Hongkai Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, 116024, China.
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian, China.
| |
Collapse
|
4
|
Dong Y, Wang T, Ma C, Li Z, Chellali R. DE-UFormer: U-shaped dual encoder architectures for brain tumor segmentation. Phys Med Biol 2023; 68:195019. [PMID: 37699403 DOI: 10.1088/1361-6560/acf911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Objective. In brain tumor segmentation tasks, the convolutional neural network (CNN) or transformer is usually acted as the encoder since the encoder is necessary to be used. On one hand, the convolution operation of CNN has advantages of extracting local information although its performance of obtaining global expressions is bad. On the other hand, the attention mechanism of the transformer is good at establishing remote dependencies while it is lacking in the ability to extract high-precision local information. Either high precision local information or global contextual information is crucial in brain tumor segmentation tasks. The aim of this paper is to propose a brain tumor segmentation model that can simultaneously extract and fuse high-precision local and global contextual information.Approach. We propose a network model DE-Uformer with dual encoders to obtain local features and global representations using both CNN encoder and Transformer encoder. On the basis of this, we further propose the nested encoder-aware feature fusion (NEaFF) module for effective deep fusion of the information under each dimension. It may establishe remote dependencies of features under a single encoder via the spatial attention Transformer. Meanwhile ,it also investigates how features extracted from two encoders are related with the cross-encoder attention transformer.Main results. The proposed algorithm segmentation have been performed on BraTS2020 dataset and private meningioma dataset. Results show that it is significantly better than current state-of-the-art brain tumor segmentation methods.Significance. The method proposed in this paper greatly improves the accuracy of brain tumor segmentation. This advancement helps healthcare professionals perform a more comprehensive analysis and assessment of brain tumors, thereby improving diagnostic accuracy and reliability. This fully automated brain model segmentation model with high accuracy is of great significance for critical decisions made by physicians in selecting treatment strategies and preoperative planning.
Collapse
Affiliation(s)
- Yan Dong
- College of Electrical Engineering And Control Science, Nanjing Tech University NanJing, People's Republic of China
| | - Ting Wang
- College of Electrical Engineering And Control Science, Nanjing Tech University NanJing, People's Republic of China
| | - Chiyuan Ma
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University NanJing, People's Republic of China
| | - Zhenxing Li
- Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University NanJing, People's Republic of China
| | - Ryad Chellali
- College of Electrical Engineering And Control Science, Nanjing Tech University NanJing, People's Republic of China
| |
Collapse
|
5
|
Sui G, Zhang Z, Liu S, Chen S, Liu X. Pulmonary nodules segmentation based on domain adaptation. Phys Med Biol 2023; 68:155015. [PMID: 37406634 DOI: 10.1088/1361-6560/ace498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
With the development of deep learning, the methods based on transfer learning have promoted the progress of medical image segmentation. However, the domain shift and complex background information of medical images limit the further improvement of the segmentation accuracy. Domain adaptation can compensate for the sample shortage by learning important information from a similar source dataset. Therefore, a segmentation method based on adversarial domain adaptation with background mask (ADAB) is proposed in this paper. Firstly, two ADAB networks are built for the source and target data segmentation, respectively. Next, to extract the foreground features that are the input of the discriminators, the background masks are generated according to the region growth algorithm. Then, to update the parameters in the target network without being affected by the conflict between the distinguishing differences of the discriminator and the domain shift reduction of the adversarial domain adaptation, a gradient reversal layer propagation is embedded in the ADAB model for the target data. Finally, an enhanced boundaries loss is deduced to make the target network sensitive to the edge of the area to be segmented. The performance of the proposed method is evaluated in the segmentation of pulmonary nodules in computed tomography images. Experimental results show that the proposed approach has a potential prospect in medical image processing.
Collapse
Affiliation(s)
- Guozheng Sui
- College of Automation and Electronic Engineering, Qingdao University of Science and Technology, People's Republic of China
| | - Zaixian Zhang
- Radiology Department, The Affiliated Hospital of Qingdao University, People's Republic of China
| | - Shunli Liu
- Radiology Department, The Affiliated Hospital of Qingdao University, People's Republic of China
| | - Shuang Chen
- College of Automation and Electronic Engineering, Qingdao University of Science and Technology, People's Republic of China
| | - Xuefeng Liu
- College of Automation and Electronic Engineering, Qingdao University of Science and Technology, People's Republic of China
| |
Collapse
|
6
|
Wang Y, Xia W, Yan Z, Zhao L, Bian X, Liu C, Qi Z, Zhang S, Tang Z. Root canal treatment planning by automatic tooth and root canal segmentation in dental CBCT with deep multi-task feature learning. Med Image Anal 2023; 85:102750. [PMID: 36682153 DOI: 10.1016/j.media.2023.102750] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/16/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Accurate and automatic segmentation of individual tooth and root canal from cone-beam computed tomography (CBCT) images is an essential but challenging step for dental surgical planning. In this paper, we propose a novel framework, which consists of two neural networks, DentalNet and PulpNet, for efficient, precise, and fully automatic tooth instance segmentation and root canal segmentation from CBCT images. We first use the proposed DentalNet to achieve tooth instance segmentation and identification. Then, the region of interest (ROI) of the affected tooth is extracted and fed into the PulpNet to obtain precise segmentation of the pulp chamber and the root canal space. These two networks are trained by multi-task feature learning and evaluated on two clinical datasets respectively and achieve superior performances to several comparing methods. In addition, we incorporate our method into an efficient clinical workflow to improve the surgical planning process. In two clinical case studies, our workflow took only 2 min instead of 6 h to obtain the 3D model of tooth and root canal effectively for the surgical planning, resulting in satisfying outcomes in difficult root canal treatments.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Wenjun Xia
- Shanghai Xuhui District Dental Center, Shanghai 200031, China
| | - Zhennan Yan
- SenseBrain Technology, Princeton, NJ 08540, USA
| | - Liang Zhao
- SenseTime Research, Shanghai 200233, China
| | - Xiaohe Bian
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Chang Liu
- SenseTime Research, Shanghai 200233, China
| | - Zhengnan Qi
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China
| | - Shaoting Zhang
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China; Centre for Perceptual and Interactive Intelligence (CPII), Hong Kong Special Administrative Region of China.
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| |
Collapse
|
7
|
Chen J, Chen S, Wee L, Dekker A, Bermejo I. Deep learning based unpaired image-to-image translation applications for medical physics: a systematic review. Phys Med Biol 2023; 68. [PMID: 36753766 DOI: 10.1088/1361-6560/acba74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
Purpose. There is a growing number of publications on the application of unpaired image-to-image (I2I) translation in medical imaging. However, a systematic review covering the current state of this topic for medical physicists is lacking. The aim of this article is to provide a comprehensive review of current challenges and opportunities for medical physicists and engineers to apply I2I translation in practice.Methods and materials. The PubMed electronic database was searched using terms referring to unpaired (unsupervised), I2I translation, and medical imaging. This review has been reported in compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. From each full-text article, we extracted information extracted regarding technical and clinical applications of methods, Transparent Reporting for Individual Prognosis Or Diagnosis (TRIPOD) study type, performance of algorithm and accessibility of source code and pre-trained models.Results. Among 461 unique records, 55 full-text articles were included in the review. The major technical applications described in the selected literature are segmentation (26 studies), unpaired domain adaptation (18 studies), and denoising (8 studies). In terms of clinical applications, unpaired I2I translation has been used for automatic contouring of regions of interest in MRI, CT, x-ray and ultrasound images, fast MRI or low dose CT imaging, CT or MRI only based radiotherapy planning, etc Only 5 studies validated their models using an independent test set and none were externally validated by independent researchers. Finally, 12 articles published their source code and only one study published their pre-trained models.Conclusion. I2I translation of medical images offers a range of valuable applications for medical physicists. However, the scarcity of external validation studies of I2I models and the shortage of publicly available pre-trained models limits the immediate applicability of the proposed methods in practice.
Collapse
Affiliation(s)
- Junhua Chen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Shenlun Chen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Leonard Wee
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Inigo Bermejo
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| |
Collapse
|
8
|
Wang Y, Cai H, Pu Y, Li J, Yang F, Yang C, Chen L, Hu Z. The value of AI in the Diagnosis, Treatment, and Prognosis of Malignant Lung Cancer. FRONTIERS IN RADIOLOGY 2022; 2:810731. [PMID: 37492685 PMCID: PMC10365105 DOI: 10.3389/fradi.2022.810731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/30/2022] [Indexed: 07/27/2023]
Abstract
Malignant tumors is a serious public health threat. Among them, lung cancer, which has the highest fatality rate globally, has significantly endangered human health. With the development of artificial intelligence (AI) and its integration with medicine, AI research in malignant lung tumors has become critical. This article reviews the value of CAD, computer neural network deep learning, radiomics, molecular biomarkers, and digital pathology for the diagnosis, treatment, and prognosis of malignant lung tumors.
Collapse
Affiliation(s)
- Yue Wang
- Department of PET/CT Center, Cancer Center of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Haihua Cai
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yongzhu Pu
- Department of PET/CT Center, Cancer Center of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jindan Li
- Department of PET/CT Center, Cancer Center of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fake Yang
- Department of PET/CT Center, Cancer Center of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Conghui Yang
- Department of PET/CT Center, Cancer Center of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Long Chen
- Department of PET/CT Center, Cancer Center of Yunnan Province, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
9
|
Zhang Z, Tian C, Bai HX, Jiao Z, Tian X. Discriminative Error Prediction Network for Semi-supervised Colon Gland Segmentation. Med Image Anal 2022; 79:102458. [DOI: 10.1016/j.media.2022.102458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|