1
|
Ding W, Wang H, Qiao X, Li B, Huang Q. A deep learning method for total-body dynamic PET imaging with dual-time-window protocols. Eur J Nucl Med Mol Imaging 2025; 52:1448-1459. [PMID: 39688700 DOI: 10.1007/s00259-024-07012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE Prolonged scanning durations are one of the primary barriers to the widespread clinical adoption of dynamic Positron Emission Tomography (PET). In this paper, we developed a deep learning algorithm that capable of predicting dynamic images from dual-time-window protocols, thereby shortening the scanning time. METHODS This study includes 70 patients (mean age ± standard deviation, 53.61 ± 13.53 years; 32 males) diagnosed with pulmonary nodules or breast nodules between 2022 to 2024. Each patient underwent a 65-min dynamic total-body [18F]FDG PET/CT scan. Acquisitions using early-stop protocols and dual-time-window protocols were simulated to reduce the scanning time. To predict the missing frames, we developed a bidirectional sequence-to-sequence model with attention mechanism (Bi-AT-Seq2Seq); and then compared the model with unidirectional or non-attentional models in terms of Mean Absolute Error (MAE), Bias, Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity (SSIM) of predicted frames. Furthermore, we reported the comparison of concordance correlation coefficient (CCC) of the kinetic parameters between the proposed method and traditional methods. RESULTS The Bi-AT-Seq2Seq significantly outperform unidirectional or non-attentional models in terms of MAE, Bias, PSNR, and SSIM. Using a dual-time-window protocol, which includes a 10-min early scan followed by a 5-min late scan, improves the four metrics of predicted dynamic images by 37.31%, 36.24%, 7.10%, and 0.014% respectively, compared to the early-stop protocol with a 15-min acquisition. The CCCs of tumor' kinetic parameters estimated with recovered full time-activity-curves (TACs) is higher than those with abbreviated TACs. CONCLUSION The proposed algorithm can accurately generate a complete dynamic acquisition (65 min) from dual-time-window protocols (10 + 5 min).
Collapse
Affiliation(s)
- Wenxiang Ding
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hanzhong Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoya Qiao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qiu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Saini M, Fatemi M, Alizad A. Fast inter-frame motion correction in contrast-free ultrasound quantitative microvasculature imaging using deep learning. Sci Rep 2024; 14:26161. [PMID: 39478021 PMCID: PMC11525680 DOI: 10.1038/s41598-024-77610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Contrast-free ultrasound quantitative microvasculature imaging shows promise in several applications, including the assessment of benign and malignant lesions. However, motion represents one of the major challenges in imaging tumor microvessels in organs that are prone to physiological motions. This study aims at addressing potential microvessel image degradation in in vivo human thyroid due to its proximity to carotid artery. The pulsation of the carotid artery induces inter-frame motion that significantly degrades microvasculature images, resulting in diagnostic errors. The main objective of this study is to reduce inter-frame motion artifacts in high-frame-rate ultrasound imaging to achieve a more accurate visualization of tumor microvessel features. We propose a low-complex deep learning network comprising depth-wise separable convolutional layers and hybrid adaptive and squeeze-and-excite attention mechanisms to correct inter-frame motion in high-frame-rate images. Rigorous validation using phantom and in-vivo data with simulated inter-frame motion indicates average improvements of 35% in Pearson correlation coefficients (PCCs) between motion corrected and reference data with respect to that of motion corrupted data. Further, reconstruction of microvasculature images using motion-corrected frames demonstrates PCC improvement from 31 to 35%. Another thorough validation using in-vivo thyroid data with physiological inter-frame motion demonstrates average improvement of 20% in PCC and 40% in mean inter-frame correlation. Finally, comparison with the conventional image registration method indicates the suitability of proposed network for real-time inter-frame motion correction with 5000 times reduction in motion corrected frame prediction latency.
Collapse
Affiliation(s)
- Manali Saini
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Miller RJH, Slomka PJ. Artificial Intelligence in Nuclear Cardiology: An Update and Future Trends. Semin Nucl Med 2024; 54:648-657. [PMID: 38521708 DOI: 10.1053/j.semnuclmed.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/25/2024]
Abstract
Myocardial perfusion imaging (MPI), using either single photon emission computed tomography (SPECT) or positron emission tomography (PET), is one of the most commonly ordered cardiac imaging tests, with prominent clinical roles for disease diagnosis and risk prediction. Artificial intelligence (AI) could potentially play a role in many steps along the typical MPI workflow, from image acquisition through to clinical reporting and risk estimation. AI can be utilized to improve image quality, reducing radiation exposure and image acquisition times. Once images are acquired, AI can help optimize motion correction and image registration during image reconstruction or provide direct image attenuation correction. Utilizing these image sets, AI can segment a number of anatomic features from associated computed tomographic imaging or even generate synthetic attenuation imaging. Lastly, AI may play an important role in disease diagnosis or risk prediction by combining the large number of potentially important clinical, stress, and imaging-related variables. This review will focus on the most recent developments in the field, providing clinicians and researchers with a timely update on the field. Additionally, it will discuss future trends including applications of AI during multiple points of the typical MPI workflow to maximize clinical utility and methods to maximize the information that can be obtained from hybrid imaging.
Collapse
Affiliation(s)
- Robert J H Miller
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Biomedical Sciences, and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA; Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
| | - Piotr J Slomka
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Biomedical Sciences, and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA.
| |
Collapse
|
4
|
Guo X, Shi L, Chen X, Liu Q, Zhou B, Xie H, Liu YH, Palyo R, Miller EJ, Sinusas AJ, Staib L, Spottiswoode B, Liu C, Dvornek NC. TAI-GAN: A Temporally and Anatomically Informed Generative Adversarial Network for early-to-late frame conversion in dynamic cardiac PET inter-frame motion correction. Med Image Anal 2024; 96:103190. [PMID: 38820677 PMCID: PMC11180595 DOI: 10.1016/j.media.2024.103190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/12/2024] [Accepted: 05/01/2024] [Indexed: 06/02/2024]
Abstract
Inter-frame motion in dynamic cardiac positron emission tomography (PET) using rubidium-82 (82Rb) myocardial perfusion imaging impacts myocardial blood flow (MBF) quantification and the diagnosis accuracy of coronary artery diseases. However, the high cross-frame distribution variation due to rapid tracer kinetics poses a considerable challenge for inter-frame motion correction, especially for early frames where intensity-based image registration techniques often fail. To address this issue, we propose a novel method called Temporally and Anatomically Informed Generative Adversarial Network (TAI-GAN) that utilizes an all-to-one mapping to convert early frames into those with tracer distribution similar to the last reference frame. The TAI-GAN consists of a feature-wise linear modulation layer that encodes channel-wise parameters generated from temporal information and rough cardiac segmentation masks with local shifts that serve as anatomical information. Our proposed method was evaluated on a clinical 82Rb PET dataset, and the results show that our TAI-GAN can produce converted early frames with high image quality, comparable to the real reference frames. After TAI-GAN conversion, the motion estimation accuracy and subsequent myocardial blood flow (MBF) quantification with both conventional and deep learning-based motion correction methods were improved compared to using the original frames. The code is available at https://github.com/gxq1998/TAI-GAN.
Collapse
Affiliation(s)
- Xueqi Guo
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | | | - Xiongchao Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Qiong Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Bo Zhou
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Huidong Xie
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yi-Hwa Liu
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | | | - Edward J Miller
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Albert J Sinusas
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Lawrence Staib
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | | - Chi Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| | - Nicha C Dvornek
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Miller RJH, Slomka PJ. Current status and future directions in artificial intelligence for nuclear cardiology. Expert Rev Cardiovasc Ther 2024; 22:367-378. [PMID: 39001698 DOI: 10.1080/14779072.2024.2380764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Myocardial perfusion imaging (MPI) is one of the most commonly ordered cardiac imaging tests. Accurate motion correction, image registration, and reconstruction are critical for high-quality imaging, but this can be technically challenging and has traditionally relied on expert manual processing. With accurate processing, there is a rich variety of clinical, stress, functional, and anatomic data that can be integrated to guide patient management. AREAS COVERED PubMed and Google Scholar were reviewed for articles related to artificial intelligence in nuclear cardiology published between 2020 and 2024. We will outline the prominent roles for artificial intelligence (AI) solutions to provide motion correction, image registration, and reconstruction. We will review the role for AI in extracting anatomic data for hybrid MPI which is otherwise neglected. Lastly, we will discuss AI methods to integrate the wealth of data to improve disease diagnosis or risk stratification. EXPERT OPINION There is growing evidence that AI will transform the performance of MPI by automating and improving on aspects of image acquisition and reconstruction. Physicians and researchers will need to understand the potential strengths of AI in order to benefit from the full clinical utility of MPI.
Collapse
Affiliation(s)
- Robert J H Miller
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Biomedical Sciences, and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| | - Piotr J Slomka
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Biomedical Sciences, and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
6
|
Bors S, Abler D, Dietz M, Andrearczyk V, Fageot J, Nicod-Lalonde M, Schaefer N, DeKemp R, Kamani CH, Prior JO, Depeursinge A. Comparing various AI approaches to traditional quantitative assessment of the myocardial perfusion in [ 82Rb] PET for MACE prediction. Sci Rep 2024; 14:9644. [PMID: 38671059 PMCID: PMC11053111 DOI: 10.1038/s41598-024-60095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Assessing the individual risk of Major Adverse Cardiac Events (MACE) is of major importance as cardiovascular diseases remain the leading cause of death worldwide. Quantitative Myocardial Perfusion Imaging (MPI) parameters such as stress Myocardial Blood Flow (sMBF) or Myocardial Flow Reserve (MFR) constitutes the gold standard for prognosis assessment. We propose a systematic investigation of the value of Artificial Intelligence (AI) to leverage [82 Rb] Silicon PhotoMultiplier (SiPM) PET MPI for MACE prediction. We establish a general pipeline for AI model validation to assess and compare the performance of global (i.e. average of the entire MPI signal), regional (17 segments), radiomics and Convolutional Neural Network (CNN) models leveraging various MPI signals on a dataset of 234 patients. Results showed that all regional AI models significantly outperformed the global model ( p < 0.001 ), where the best AUC of 73.9% (CI 72.5-75.3) was obtained with a CNN model. A regional AI model based on MBF averages from 17 segments fed to a Logistic Regression (LR) constituted an excellent trade-off between model simplicity and performance, achieving an AUC of 73.4% (CI 72.3-74.7). A radiomics model based on intensity features revealed that the global average was the least important feature when compared to other aggregations of the MPI signal over the myocardium. We conclude that AI models can allow better personalized prognosis assessment for MACE.
Collapse
Affiliation(s)
- Sacha Bors
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
| | - Daniel Abler
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
| | - Matthieu Dietz
- INSERM U1060, CarMeN laboratory, University of Lyon, Lyon, France
| | - Vincent Andrearczyk
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
| | - Julien Fageot
- AudioVisual Communications Laboratory (LCAV), EPFL, Lausanne, Switzerland
| | - Marie Nicod-Lalonde
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Niklaus Schaefer
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- University of Lausanne, Lausanne, Switzerland
| | - Robert DeKemp
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Christel H Kamani
- Department of Cardiology, Lausanne University Hospital, Lausanne, Switzerland
| | - John O Prior
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland.
- University of Lausanne, Lausanne, Switzerland.
| | - Adrien Depeursinge
- Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital, Lausanne, Switzerland
- Institute of Informatics, School of Management, HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland, Sierre, Switzerland
| |
Collapse
|
7
|
de Scals S, Fraile LM, Udías JM, Martínez Cortés L, Oteo M, Morcillo MÁ, Carreras-Delgado JL, Cabrera-Martín MN, España S. Feasibility study of a SiPM-fiber detector for non-invasive measurement of arterial input function for preclinical and clinical positron emission tomography. EJNMMI Phys 2024; 11:12. [PMID: 38291187 PMCID: PMC10828322 DOI: 10.1186/s40658-024-00618-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
Pharmacokinetic positron emission tomography (PET) studies rely on the measurement of the arterial input function (AIF), which represents the time-activity curve of the radiotracer concentration in the blood plasma. Traditionally, obtaining the AIF requires invasive procedures, such as arterial catheterization, which can be challenging, time-consuming, and associated with potential risks. Therefore, the development of non-invasive techniques for AIF measurement is highly desirable. This study presents a detector for the non-invasive measurement of the AIF in PET studies. The detector is based on the combination of scintillation fibers and silicon photomultipliers (SiPMs) which leads to a very compact and rugged device. The feasibility of the detector was assessed through Monte Carlo simulations conducted on mouse tail and human wrist anatomies studying relevant parameters such as energy spectrum, detector efficiency and minimum detectable activity (MDA). The simulations involved the use of 18F and 68Ga isotopes, which exhibit significantly different positron ranges. In addition, several prototypes were built in order to study the different components of the detector including the scintillation fiber, the coating of the fiber, the SiPMs, and the operating configuration. Finally, the simulations were compared with experimental measurements conducted using a tube filled with both 18F and 68Ga to validate the obtained results. The MDA achieved for both anatomies (approximately 1000 kBq/mL for mice and 1 kBq/mL for humans) falls below the peak radiotracer concentrations typically found in PET studies, affirming the feasibility of conducting non-invasive AIF measurements with the fiber detector. The sensitivity for measurements with a tube filled with 18F (68Ga) was 1.2 (2.07) cps/(kBq/mL), while for simulations, it was 2.81 (6.23) cps/(kBq/mL). Further studies are needed to validate these results in pharmacokinetic PET studies.
Collapse
Affiliation(s)
- Sara de Scals
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Luis Mario Fraile
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - José Manuel Udías
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Laura Martínez Cortés
- Unidad de Aplicaciones Médicas de las Radiaciones Ionizantes, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Marta Oteo
- Unidad de Aplicaciones Médicas de las Radiaciones Ionizantes, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Miguel Ángel Morcillo
- Unidad de Aplicaciones Médicas de las Radiaciones Ionizantes, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | | | | | - Samuel España
- Grupo de Física Nuclear, EMFTEL and IPARCOS, Universidad Complutense de Madrid, Madrid, Spain.
- Instituto de Investigación del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
8
|
Christensen NL, Nordström J, Madsen S, Madsen MA, Gormsen LC, Kero T, Lubberink M, Tolbod LP. Detection and correction of patient motion in dynamic 15O-water PET MPI. J Nucl Cardiol 2023; 30:2736-2749. [PMID: 37639181 PMCID: PMC10682105 DOI: 10.1007/s12350-023-03358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/12/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Patient motion constitutes a limitation to 15O-water cardiac PET imaging. We examined the ability of image readers to detect and correct patient motion using simulated motion data and clinical patient scans. METHODS Simulated data consisting of 16 motions applied to 10 motion-free scans were motion corrected using two approaches, pre-analysis and post-analysis for motion identification. Both approaches employed a manual frame-by-frame correction method. In addition, a clinical cohort was analyzed for assessment of prevalence and effect of motion and motion correction. RESULTS Motion correction was performed on 94% (pre-analysis) and 64% (post-analysis) of the scans. Large motion artifacts were corrected in 91% (pre-analysis) and 74% (post-analysis) of scans. Artifacts in MBF were reduced in 56% (pre-analysis) and 58% (post-analysis) of the scans. The prevalence of motion in the clinical patient cohort (n = 762) was 10%. Motion correction altered exam interpretation in only 10 (1.3%) clinical patient exams. CONCLUSION Frame-by-frame motion correction after visual inspection is useful in reducing motion artifacts in cardiac 15O-water PET. Reviewing the initial results (parametric images and polar maps) as part of the motion correction process, reduced erroneous corrections in motion-free scans. In a large clinical cohort, the impact of motion correction was limited to few patients.
Collapse
Affiliation(s)
- Nana L Christensen
- Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, 8000, Aarhus C, Denmark.
- Department of Nuclear Medicine & PET, Aarhus University Hospital, Aarhus N, Denmark.
| | - Jonny Nordström
- Centre for Research & Development, Uppsala/Gävleborg County, Gävle, Sweden
- Department of Surgical Sciences/Nuclear Medicine & PET, Uppsala University, Uppsala, Sweden
| | - Simon Madsen
- Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, 8000, Aarhus C, Denmark
- Department of Nuclear Medicine & PET, Aarhus University Hospital, Aarhus N, Denmark
| | - Michael A Madsen
- Department of Nuclear Medicine & PET, Aarhus University Hospital, Aarhus N, Denmark
| | - Lars C Gormsen
- Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, 8000, Aarhus C, Denmark
- Department of Nuclear Medicine & PET, Aarhus University Hospital, Aarhus N, Denmark
| | - Tanja Kero
- Department of Surgical Sciences/Nuclear Medicine & PET, Uppsala University, Uppsala, Sweden
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences/Nuclear Medicine & PET, Uppsala University, Uppsala, Sweden
| | - Lars P Tolbod
- Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, 8000, Aarhus C, Denmark
- Department of Nuclear Medicine & PET, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
9
|
Jimenez-Mesa C, Arco JE, Martinez-Murcia FJ, Suckling J, Ramirez J, Gorriz JM. Applications of machine learning and deep learning in SPECT and PET imaging: General overview, challenges and future prospects. Pharmacol Res 2023; 197:106984. [PMID: 37940064 DOI: 10.1016/j.phrs.2023.106984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
The integration of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging techniques with machine learning (ML) algorithms, including deep learning (DL) models, is a promising approach. This integration enhances the precision and efficiency of current diagnostic and treatment strategies while offering invaluable insights into disease mechanisms. In this comprehensive review, we delve into the transformative impact of ML and DL in this domain. Firstly, a brief analysis is provided of how these algorithms have evolved and which are the most widely applied in this domain. Their different potential applications in nuclear imaging are then discussed, such as optimization of image adquisition or reconstruction, biomarkers identification, multimodal fusion and the development of diagnostic, prognostic, and disease progression evaluation systems. This is because they are able to analyse complex patterns and relationships within imaging data, as well as extracting quantitative and objective measures. Furthermore, we discuss the challenges in implementation, such as data standardization and limited sample sizes, and explore the clinical opportunities and future horizons, including data augmentation and explainable AI. Together, these factors are propelling the continuous advancement of more robust, transparent, and reliable systems.
Collapse
Affiliation(s)
- Carmen Jimenez-Mesa
- Department of Signal Theory, Networking and Communications, University of Granada, 18010, Spain
| | - Juan E Arco
- Department of Signal Theory, Networking and Communications, University of Granada, 18010, Spain; Department of Communications Engineering, University of Malaga, 29010, Spain
| | | | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge CB21TN, UK
| | - Javier Ramirez
- Department of Signal Theory, Networking and Communications, University of Granada, 18010, Spain
| | - Juan Manuel Gorriz
- Department of Signal Theory, Networking and Communications, University of Granada, 18010, Spain; Department of Psychiatry, University of Cambridge, Cambridge CB21TN, UK.
| |
Collapse
|
10
|
Guo X, Shi L, Chen X, Zhou B, Liu Q, Xie H, Liu YH, Palyo R, Miller EJ, Sinusas AJ, Spottiswoode B, Liu C, Dvornek NC. TAI-GAN: Temporally and Anatomically Informed GAN for Early-to-Late Frame Conversion in Dynamic Cardiac PET Motion Correction. SIMULATION AND SYNTHESIS IN MEDICAL IMAGING : ... INTERNATIONAL WORKSHOP, SASHIMI ..., HELD IN CONJUNCTION WITH MICCAI ..., PROCEEDINGS. SASHIMI (WORKSHOP) 2023; 14288:64-74. [PMID: 38464964 PMCID: PMC10923183 DOI: 10.1007/978-3-031-44689-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The rapid tracer kinetics of rubidium-82 (82Rb) and high variation of cross-frame distribution in dynamic cardiac positron emission tomography (PET) raise significant challenges for inter-frame motion correction, particularly for the early frames where conventional intensity-based image registration techniques are not applicable. Alternatively, a promising approach utilizes generative methods to handle the tracer distribution changes to assist existing registration methods. To improve frame-wise registration and parametric quantification, we propose a Temporally and Anatomically Informed Generative Adversarial Network (TAI-GAN) to transform the early frames into the late reference frame using an all-to-one mapping. Specifically, a feature-wise linear modulation layer encodes channel-wise parameters generated from temporal tracer kinetics information, and rough cardiac segmentations with local shifts serve as the anatomical information. We validated our proposed method on a clinical 82Rb PET dataset and found that our TAI-GAN can produce converted early frames with high image quality, comparable to the real reference frames. After TAI-GAN conversion, motion estimation accuracy and clinical myocardial blood flow (MBF) quantification were improved compared to using the original frames. Our code is published at https://github.com/gxq1998/TAI-GAN.
Collapse
Affiliation(s)
- Xueqi Guo
- Yale University, New Haven, CT 06511, USA
| | - Luyao Shi
- IBM Research, San Jose, CA 95120, USA
| | | | - Bo Zhou
- Yale University, New Haven, CT 06511, USA
| | - Qiong Liu
- Yale University, New Haven, CT 06511, USA
| | | | - Yi-Hwa Liu
- Yale University, New Haven, CT 06511, USA
| | | | | | | | | | - Chi Liu
- Yale University, New Haven, CT 06511, USA
| | | |
Collapse
|
11
|
Chen X, Zhou B, Xie H, Guo X, Zhang J, Duncan JS, Miller EJ, Sinusas AJ, Onofrey JA, Liu C. DuSFE: Dual-Channel Squeeze-Fusion-Excitation co-attention for cross-modality registration of cardiac SPECT and CT. Med Image Anal 2023; 88:102840. [PMID: 37216735 PMCID: PMC10524650 DOI: 10.1016/j.media.2023.102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) is widely applied for the diagnosis of cardiovascular diseases. Attenuation maps (μ-maps) derived from computed tomography (CT) are utilized for attenuation correction (AC) to improve the diagnostic accuracy of cardiac SPECT. However, in clinical practice, SPECT and CT scans are acquired sequentially, potentially inducing misregistration between the two images and further producing AC artifacts. Conventional intensity-based registration methods show poor performance in the cross-modality registration of SPECT and CT-derived μ-maps since the two imaging modalities might present totally different intensity patterns. Deep learning has shown great potential in medical imaging registration. However, existing deep learning strategies for medical image registration encoded the input images by simply concatenating the feature maps of different convolutional layers, which might not fully extract or fuse the input information. In addition, deep-learning-based cross-modality registration of cardiac SPECT and CT-derived μ-maps has not been investigated before. In this paper, we propose a novel Dual-Channel Squeeze-Fusion-Excitation (DuSFE) co-attention module for the cross-modality rigid registration of cardiac SPECT and CT-derived μ-maps. DuSFE is designed based on the co-attention mechanism of two cross-connected input data streams. The channel-wise or spatial features of SPECT and μ-maps are jointly encoded, fused, and recalibrated in the DuSFE module. DuSFE can be flexibly embedded at multiple convolutional layers to enable gradual feature fusion in different spatial dimensions. Our studies using clinical patient MPI studies demonstrated that the DuSFE-embedded neural network generated significantly lower registration errors and more accurate AC SPECT images than existing methods. We also showed that the DuSFE-embedded network did not over-correct or degrade the registration performance of motion-free cases. The source code of this work is available at https://github.com/XiongchaoChen/DuSFE_CrossRegistration.
Collapse
Affiliation(s)
- Xiongchao Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Bo Zhou
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Huidong Xie
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xueqi Guo
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Jiazhen Zhang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - James S Duncan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Edward J Miller
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Albert J Sinusas
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - John A Onofrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Chi Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
12
|
Guo X, Zhou B, Chen X, Chen MK, Liu C, Dvornek NC. MCP-Net: Introducing Patlak Loss Optimization to Whole-body Dynamic PET Inter-frame Motion Correction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; PP:10.1109/TMI.2023.3290003. [PMID: 37368811 PMCID: PMC10751388 DOI: 10.1109/tmi.2023.3290003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In whole-body dynamic positron emission tomography (PET), inter-frame subject motion causes spatial misalignment and affects parametric imaging. Many of the current deep learning inter-frame motion correction techniques focus solely on the anatomy-based registration problem, neglecting the tracer kinetics that contains functional information. To directly reduce the Patlak fitting error for 18F-FDG and further improve model performance, we propose an interframe motion correction framework with Patlak loss optimization integrated into the neural network (MCP-Net). The MCP-Net consists of a multiple-frame motion estimation block, an image-warping block, and an analytical Patlak block that estimates Patlak fitting using motion-corrected frames and the input function. A novel Patlak loss penalty component utilizing mean squared percentage fitting error is added to the loss function to reinforce the motion correction. The parametric images were generated using standard Patlak analysis following motion correction. Our framework enhanced the spatial alignment in both dynamic frames and parametric images and lowered normalized fitting error when compared to both conventional and deep learning benchmarks. MCP-Net also achieved the lowest motion prediction error and showed the best generalization capability. The potential of enhancing network performance and improving the quantitative accuracy of dynamic PET by directly utilizing tracer kinetics is suggested.
Collapse
|
13
|
Dai J, Wang H, Xu Y, Chen X, Tian R. Clinical application of AI-based PET images in oncological patients. Semin Cancer Biol 2023; 91:124-142. [PMID: 36906112 DOI: 10.1016/j.semcancer.2023.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Based on the advantages of revealing the functional status and molecular expression of tumor cells, positron emission tomography (PET) imaging has been performed in numerous types of malignant diseases for diagnosis and monitoring. However, insufficient image quality, the lack of a convincing evaluation tool and intra- and interobserver variation in human work are well-known limitations of nuclear medicine imaging and restrict its clinical application. Artificial intelligence (AI) has gained increasing interest in the field of medical imaging due to its powerful information collection and interpretation ability. The combination of AI and PET imaging potentially provides great assistance to physicians managing patients. Radiomics, an important branch of AI applied in medical imaging, can extract hundreds of abstract mathematical features of images for further analysis. In this review, an overview of the applications of AI in PET imaging is provided, focusing on image enhancement, tumor detection, response and prognosis prediction and correlation analyses with pathology or specific gene mutations in several types of tumors. Our aim is to describe recent clinical applications of AI-based PET imaging in malignant diseases and to focus on the description of possible future developments.
Collapse
Affiliation(s)
- Jiaona Dai
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hui Wang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuchao Xu
- School of Nuclear Science and Technology, University of South China, Hengyang City 421001, China
| | - Xiyang Chen
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Miller RJ. Artificial Intelligence in Nuclear Cardiology. Cardiol Clin 2023; 41:151-161. [PMID: 37003673 DOI: 10.1016/j.ccl.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Artificial intelligence (AI) encompasses a variety of computer algorithms that have a wide range of potential clinical applications in nuclear cardiology. This article will introduce core terminology and concepts for AI including classifications of AI as well as training and testing regimens. We will then highlight the potential role for AI to improve image registration and image quality. Next, we will discuss methods for AI-driven image attenuation correction. Finally, we will review advancements in machine learning and deep-learning applications for disease diagnosis and risk stratification, including efforts to improve clinical translation of this valuable technology with explainable AI models.
Collapse
|
15
|
Shi L, Zhang J, Toyonaga T, Shao D, Onofrey JA, Lu Y. Deep learning-based attenuation map generation with simultaneously reconstructed PET activity and attenuation and low-dose application. Phys Med Biol 2023; 68. [PMID: 36584395 DOI: 10.1088/1361-6560/acaf49] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
Objective. In PET/CT imaging, CT is used for positron emission tomography (PET) attenuation correction (AC). CT artifacts or misalignment between PET and CT can cause AC artifacts and quantification errors in PET. Simultaneous reconstruction (MLAA) of PET activity (λ-MLAA) and attenuation (μ-MLAA) maps was proposed to solve those issues using the time-of-flight PET raw data only. However,λ-MLAA still suffers from quantification error as compared to reconstruction using the gold-standard CT-based attenuation map (μ-CT). Recently, a deep learning (DL)-based framework was proposed to improve MLAA by predictingμ-DL fromλ-MLAA andμ-MLAA using an image domain loss function (IM-loss). However, IM-loss does not directly measure the AC errors according to the PET attenuation physics. Our preliminary studies showed that an additional physics-based loss function can lead to more accurate PET AC. The main objective of this study is to optimize the attenuation map generation framework for clinical full-dose18F-FDG studies. We also investigate the effectiveness of the optimized network on predicting attenuation maps for synthetic low-dose oncological PET studies.Approach. We optimized the proposed DL framework by applying different preprocessing steps and hyperparameter optimization, including patch size, weights of the loss terms and number of angles in the projection-domain loss term. The optimization was performed based on 100 skull-to-toe18F-FDG PET/CT scans with minimal misalignment. The optimized framework was further evaluated on 85 clinical full-dose neck-to-thigh18F-FDG cancer datasets as well as synthetic low-dose studies with only 10% of the full-dose raw data.Main results. Clinical evaluation of tumor quantification as well as physics-based figure-of-merit metric evaluation validated the promising performance of our proposed method. For both full-dose and low-dose studies, the proposed framework achieved <1% error in tumor standardized uptake value measures.Significance. It is of great clinical interest to achieve CT-less PET reconstruction, especially for low-dose PET studies.
Collapse
Affiliation(s)
- Luyao Shi
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America
| | - Jiazhen Zhang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| | - Dan Shao
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America.,Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - John A Onofrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States of America.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America.,Department of Urology, Yale University, New Haven, CT, United States of America
| | - Yihuan Lu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States of America
| |
Collapse
|
16
|
Guo X, Zhou B, Chen X, Liu C, Dvornek NC. MCP-Net: Inter-frame Motion Correction with Patlak Regularization for Whole-body Dynamic PET. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2022; 13434:163-172. [PMID: 38464686 PMCID: PMC10923180 DOI: 10.1007/978-3-031-16440-8_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Inter-frame patient motion introduces spatial misalignment and degrades parametric imaging in whole-body dynamic positron emission tomography (PET). Most current deep learning inter-frame motion correction works consider only the image registration problem, ignoring tracer kinetics. We propose an inter-frame Motion Correction framework with Patlak regularization (MCP-Net) to directly optimize the Patlak fitting error and further improve model performance. The MCP-Net contains three modules: a motion estimation module consisting of a multiple-frame 3-D U-Net with a convolutional long short-term memory layer combined at the bottleneck; an image warping module that performs spatial transformation; and an analytical Patlak module that estimates Patlak fitting with the motion-corrected frames and the individual input function. A Patlak loss penalization term using mean squared percentage fitting error is introduced to the loss function in addition to image similarity measurement and displacement gradient loss. Following motion correction, the parametric images were generated by standard Patlak analysis. Compared with both traditional and deep learning benchmarks, our network further corrected the residual spatial mismatch in the dynamic frames, improved the spatial alignment of Patlak Ki/Vb images, and reduced normalized fitting error. With the utilization of tracer dynamics and enhanced network performance, MCP-Net has the potential for further improving the quantitative accuracy of dynamic PET. Our code is released at https://github.com/gxq1998/MCP-Net.
Collapse
Affiliation(s)
- Xueqi Guo
- Yale University, New Haven, CT 06511, USA
| | - Bo Zhou
- Yale University, New Haven, CT 06511, USA
| | | | - Chi Liu
- Yale University, New Haven, CT 06511, USA
| | | |
Collapse
|
17
|
Guo X, Zhou B, Pigg D, Spottiswoode B, Casey ME, Liu C, Dvornek NC. Unsupervised inter-frame motion correction for whole-body dynamic PET using convolutional long short-term memory in a convolutional neural network. Med Image Anal 2022; 80:102524. [PMID: 35797734 PMCID: PMC10923189 DOI: 10.1016/j.media.2022.102524] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022]
Abstract
Subject motion in whole-body dynamic PET introduces inter-frame mismatch and seriously impacts parametric imaging. Traditional non-rigid registration methods are generally computationally intense and time-consuming. Deep learning approaches are promising in achieving high accuracy with fast speed, but have yet been investigated with consideration for tracer distribution changes or in the whole-body scope. In this work, we developed an unsupervised automatic deep learning-based framework to correct inter-frame body motion. The motion estimation network is a convolutional neural network with a combined convolutional long short-term memory layer, fully utilizing dynamic temporal features and spatial information. Our dataset contains 27 subjects each under a 90-min FDG whole-body dynamic PET scan. Evaluating performance in motion simulation studies and a 9-fold cross-validation on the human subject dataset, compared with both traditional and deep learning baselines, we demonstrated that the proposed network achieved the lowest motion prediction error, obtained superior performance in enhanced qualitative and quantitative spatial alignment between parametric Ki and Vb images, and significantly reduced parametric fitting error. We also showed the potential of the proposed motion correction method for impacting downstream analysis of the estimated parametric images, improving the ability to distinguish malignant from benign hypermetabolic regions of interest. Once trained, the motion estimation inference time of our proposed network was around 460 times faster than the conventional registration baseline, showing its potential to be easily applied in clinical settings.
Collapse
Affiliation(s)
- Xueqi Guo
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Bo Zhou
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - David Pigg
- Siemens Medical Solutions USA, Inc., Knoxville, TN, 37932, USA
| | | | - Michael E Casey
- Siemens Medical Solutions USA, Inc., Knoxville, TN, 37932, USA
| | - Chi Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06511, USA.
| | - Nicha C Dvornek
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
18
|
Sun T, Wu Y, Bai Y, Wang Z, Shen C, Wang W, Li C, Hu Z, Liang D, Liu X, Zheng H, Yang Y, Wang M. An iterative image-based inter-frame motion compensation method for dynamic brain PET imaging. Phys Med Biol 2022; 67. [PMID: 35021156 DOI: 10.1088/1361-6560/ac4a8f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/12/2022] [Indexed: 11/11/2022]
Abstract
As a non-invasive imaging tool, positron emission tomography (PET) plays an important role in brain science and disease research. Dynamic acquisition is one way of brain PET imaging. Its wide application in clinical research has often been hindered by practical challenges, such as patient involuntary movement, which could degrade both image quality and the accuracy of the quantification. This is even more obvious in scans of patients with neurodegeneration or mental disorders. Conventional motion compensation methods were either based on images or raw measured data, were shown to be able to reduce the effect of motion on the image quality. As for a dynamic PET scan, motion compensation can be challenging as tracer kinetics and relatively high noise can be present in dynamic frames. In this work, we propose an image-based inter-frame motion compensation approach specifically designed for dynamic brain PET imaging. Our method has an iterative implementation that only requires reconstructed images, based on which the inter-frame subject movement can be estimated and compensated. The method utilized tracer-specific kinetic modelling and can deal with simple and complex movement patterns. The synthesized phantom study showed that the proposed method can compensate for the simulated motion in scans with18F-FDG,18F-Fallypride and18F-AV45. Fifteen dynamic18F-FDG patient scans with motion artifacts were also processed. The quality of the recovered image was superior to the one of the non-corrected images and the corrected images with other image-based methods. The proposed method enables retrospective image quality control for dynamic brain PET imaging, hence facilitating the applications of dynamic PET in clinics and research.
Collapse
Affiliation(s)
- Tao Sun
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Yaping Wu
- Henan Provincial People's Hospital and the People's Hospital of Zhengzhou, University of Zhengzhou, People's Republic of China
| | - Yan Bai
- Henan Provincial People's Hospital and the People's Hospital of Zhengzhou, University of Zhengzhou, People's Republic of China
| | - Zhenguo Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Chushu Shen
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Wei Wang
- United Imaging Healthcare, Shanghai, People's Republic of China
| | - Chenwei Li
- United Imaging Healthcare, Shanghai, People's Republic of China
| | - Zhanli Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Yongfeng Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, People's Republic of China
| | - Meiyun Wang
- Henan Provincial People's Hospital and the People's Hospital of Zhengzhou, University of Zhengzhou, People's Republic of China
| |
Collapse
|
19
|
Nye JA, Piccinelli M, Hwang D, David Cooke C, Paeng JC, Lee JM, Cho SG, Folks R, Bom HS, Koo BK, Garcia EV. Dynamic cardiac PET motion correction using 3D normalized gradient fields in patients and phantom simulations. Med Phys 2021; 48:5072-5084. [PMID: 34174095 DOI: 10.1002/mp.15059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 11/09/2022] Open
Abstract
This work expands on the implementation of three-dimensional (3D) normalized gradient fields to correct for whole-body motion and cardiac creep in [N-13]-ammonia patient studies and evaluates its accuracy using a dynamic phantom simulation model. METHODS A full rigid-body algorithm was developed using 3D normalized gradient fields including a multi-resolution step and sampling off the voxel grid to reduce interpolation artifacts. Optimization was performed using a weighted similarity metric that accounts for opposing gradients between images of blood pool and perfused tissue without the need for segmentation. Forty-three retrospective dynamic [N-13]-ammonia PET/CT rest/adenosine-stress patient studies were motion corrected and the mean motion parameters plotted at each frame time point. Motion correction accuracy was assessed using a comprehensive dynamic XCAT simulation incorporating published physiologic parameters of the heart's trajectory following adenosine infusion as well as corrupted attenuation correction commonly observed in clinical studies. Accuracy of the algorithm was assessed objectively by comparing the errors between isosurfaces and centers of mass of the motion corrected XCAT simulations. RESULTS In the patient studies, the overall mean cranial-to-caudal translation was 7 mm at stress over the duration of the adenosine infusion. Noninvasive clinical measures of relative flow reserve and myocardial flow reserve were highly correlated with their invasive analogues. Motion correction accuracy assessed with the XCAT simulations showed an error of <1 mm in late perfusion frames that broadened gradually to <3 mm in earlier frames containing blood pool. CONCLUSION This work demonstrates that patients undergoing [N-13]-ammonia dynamic PET/CT exhibit a large cranial-to-caudal translation related to cardiac creep primarily at stress and to a lesser extent at rest, which can be accurately corrected by optimizing their 3D normalized gradient fields. Our approach provides a solution to the challenging condition where the image intensity and its gradients are opposed without the need for segmentation and remains robust in the presence of PET-CT mismatch.
Collapse
Affiliation(s)
- Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Marina Piccinelli
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Doyeon Hwang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Charles David Cooke
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
| | - Joo Myung Lee
- Samsung Medical Center, Heart Vascular Stroke Institute, Seoul, Korea
| | - Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Russell Folks
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Ernest V Garcia
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|