1
|
Wang Y, Zeng T, Liu F, Dou Q, Cao P, Chang HC, Deng Q, Hui ES. Illuminating the unseen: Advancing MRI domain generalization through causality. Med Image Anal 2025; 101:103459. [PMID: 39952023 DOI: 10.1016/j.media.2025.103459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 02/17/2025]
Abstract
Deep learning methods have shown promise in accelerated MRI reconstruction but face significant challenges under domain shifts between training and testing datasets, such as changes in image contrasts, anatomical regions, and acquisition strategies. To address these challenges, we present the first domain generalization framework specifically designed for accelerated MRI reconstruction to robustness across unseen domains. The framework employs progressive strategies to enforce domain invariance, starting with image-level fidelity consistency to ensure robust reconstruction quality across domains, and feature alignment to capture domain-invariant representations. Advancing beyond these foundations, we propose a novel approach enforcing mechanism-level invariance, termed GenCA-MRI, which aligns intrinsic causal relationships within MRI data. We further develop a computational strategy that significantly reduces the complexity of causal alignment, ensuring its feasibility for real-world applications. Extensive experiments validate the framework's effectiveness, demonstrating both numerical and visual improvements over the baseline algorithm. GenCA-MRI presents the overall best performance, achieving a PSNR improvement up to 2.15 dB on fastMRI and 1.24 dB on IXI dataset at 8× acceleration, with superior performance in preserving anatomical details and mitigating domain-shift problem.
Collapse
Affiliation(s)
- Yunqi Wang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; CU Lab for AI in Radiology (CLAIR), The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Tianjiao Zeng
- School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Furui Liu
- Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Qi Dou
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Peng Cao
- Department of Diagnostic Radiology, University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Hing-Chiu Chang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Qiao Deng
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; CU Lab for AI in Radiology (CLAIR), The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Edward S Hui
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; CU Lab for AI in Radiology (CLAIR), The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Psychiatry, The Chinese University of Hong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Chen S, Zhang R, Liang H, Qian Y, Zhou X. Coupling of state space modules and attention mechanisms: An input-aware multi-contrast MRI synthesis method. Med Phys 2025; 52:2269-2278. [PMID: 39714363 DOI: 10.1002/mp.17598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Medical imaging plays a pivotal role in the real-time monitoring of patients during the diagnostic and therapeutic processes. However, in clinical scenarios, the acquisition of multi-modal imaging protocols is often impeded by a number of factors, including time and economic costs, the cooperation willingness of patients, imaging quality, and even safety concerns. PURPOSE We proposed a learning-based medical image synthesis method to simplify the acquisition of multi-contrast MRI. METHODS We redesigned the basic structure of the Mamba block and explored different integration patterns between Mamba layers and Transformer layers to make it more suitable for medical image synthesis tasks. Experiments were conducted on the IXI (a total of 575 samples, training set: 450 samples; validation set: 25 samples; test set: 100 samples) and BRATS (a total of 494 samples, training set: 350 samples; validation set: 44 samples; test set: 100 samples) datasets to assess the synthesis performance of our proposed method in comparison to some state-of-the-art models on the task of multi-contrast MRI synthesis. RESULTS Our proposed model outperformed other state-of-the-art models in some multi-contrast MRI synthesis tasks. In the synthesis task from T1 to PD, our proposed method achieved the peak signal-to-noise ratio (PSNR) of 33.70 dB (95% CI, 33.61, 33.79) and the structural similarity index (SSIM) of 0.966 (95% CI, 0.964, 0.968). In the synthesis task from T2 to PD, the model achieved a PSNR of 33.90 dB (95% CI, 33.82, 33.98) and SSMI of 0.971 (95% CI, 0.969, 0.973). In the synthesis task from FLAIR to T2, the model achieved PSNR of 30.43 dB (95% CI, 30.29, 30.57) and SSIM of 0.938 (95% CI, 0.935, 0.941). CONCLUSIONS Our proposed method could effectively model not only the high-dimensional, nonlinear mapping relationships between the magnetic signals of the hydrogen nucleus in tissues and the proton density signals in tissues, but also of the recovery process of suppressed liquid signals in FLAIR. The model proposed in our work employed distinct mechanisms in the synthesis of images belonging to normal and lesion samples, which demonstrated that our model had a profound comprehension of the input data. We also proved that in a hierarchical network, only the deeper self-attention layers were responsible for directing more attention on lesion areas.
Collapse
Affiliation(s)
- Shuai Chen
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Ruoyu Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Huazheng Liang
- Monash Suzhou Research Institute, Suzhou, Jiangsu Province, China
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yunzhu Qian
- Department of Stomatology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu Province, China
| | - Xuefeng Zhou
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Zhang L, Li X, Chen W. CAMP-Net: Consistency-Aware Multi-Prior Network for Accelerated MRI Reconstruction. IEEE J Biomed Health Inform 2025; 29:2006-2019. [PMID: 40030677 DOI: 10.1109/jbhi.2024.3516758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Undersampling -space data in magnetic resonance imaging (MRI) reduces scan time but pose challenges in image reconstruction. Considerable progress has been made in reconstructing accelerated MRI. However, restoration of high-frequency image details in highly undersampled data remains challenging. To address this issue, we propose CAMP-Net, an unrolling-based Consistency-Aware Multi-Prior Network for accelerated MRI reconstruction. CAMP-Net leverages complementary multi-prior knowledge and multi-slice information from various domains to enhance reconstruction quality. Specifically, CAMP-Net comprises three interleaved modules for image enhancement, -space restoration, and calibration consistency, respectively. These modules jointly learn priors from data in image domain, -domain, and calibration region, respectively, in data-driven manner during each unrolled iteration. Notably, the encoded calibration prior knowledge extracted from auto-calibrating signals implicitly guides the learning of consistency-aware -space correlation for reliable interpolation of missing -space data. To maximize the benefits of image domain and -domain prior knowledge, the reconstructions are aggregated in a frequency fusion module, exploiting their complementary properties to optimize the trade-off between artifact removal and fine detail preservation. Additionally, we incorporate a surface data fidelity layer during the learning of -domain and calibration domain priors to prevent degradation of the reconstruction caused by padding-induced data imperfections. We evaluate the generalizability and robustness of our method on three large public datasets with varying acceleration factors and sampling patterns. The experimental results demonstrate that our method outperforms state-of-the-art approaches in terms of both reconstruction quality and mapping estimation, particularly in scenarios with high acceleration factors.
Collapse
|
4
|
Giannakopoulos II, Carluccio G, Keerthivasan MB, Koerzdoerfer G, Lakshmanan K, De Moura HL, Serrallés JEC, Lattanzi R. MR electrical properties mapping using vision transformers and canny edge detectors. Magn Reson Med 2025; 93:1117-1131. [PMID: 39415436 PMCID: PMC11955224 DOI: 10.1002/mrm.30338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
PURPOSE We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements. THEORY AND METHODS Our network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue-mimicking phantoms and fine-tuned it on a dataset of 11 000 realistic head models. We assessed performance in-distribution simulated data and out-of-distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer. RESULTS The conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground-truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe-measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values. CONCLUSION We introduced a new learning-based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically-usable in vivo EP reconstruction protocols.
Collapse
Affiliation(s)
- Ilias I. Giannakopoulos
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | | | | | | | - Karthik Lakshmanan
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Hector L. De Moura
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - José E. Cruz Serrallés
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Riccardo Lattanzi
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
5
|
Ahmed S, Jinchao F, Ferzund J, Ali MU, Yaqub M, Manan MA, Mehmood A. GraFMRI: A graph-based fusion framework for robust multi-modal MRI reconstruction. Magn Reson Imaging 2025; 116:110279. [PMID: 39561859 DOI: 10.1016/j.mri.2024.110279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE This study introduces GraFMRI, a novel framework designed to address the challenges of reconstructing high-quality MRI images from undersampled k-space data. Traditional methods often suffer from noise amplification and loss of structural detail, leading to suboptimal image quality. GraFMRI leverages Graph Neural Networks (GNNs) to transform multi-modal MRI data (T1, T2, PD) into a graph-based representation, enabling the model to capture intricate spatial relationships and inter-modality dependencies. METHODS The framework integrates Graph-Based Non-Local Means (NLM) Filtering for effective noise suppression and Adversarial Training to reduce artifacts. A dynamic attention mechanism enables the model to focus on key anatomical regions, even when fully-sampled reference images are unavailable. GraFMRI was evaluated on the IXI and fastMRI datasets using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) as metrics for reconstruction quality. RESULTS GraFMRI consistently outperforms traditional and self-supervised reconstruction techniques. Significant improvements in multi-modal fusion were observed, with better preservation of information across modalities. Noise suppression through NLM filtering and artifact reduction via adversarial training led to higher PSNR and SSIM scores across both datasets. The dynamic attention mechanism further enhanced the accuracy of the reconstructions by focusing on critical anatomical regions. CONCLUSION GraFMRI provides a scalable, robust solution for multi-modal MRI reconstruction, addressing noise and artifact challenges while enhancing diagnostic accuracy. Its ability to fuse information from different MRI modalities makes it adaptable to various clinical applications, improving the quality and reliability of reconstructed images.
Collapse
Affiliation(s)
- Shahzad Ahmed
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Feng Jinchao
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.
| | - Javed Ferzund
- Department of Computer Science, COMSATS University Islamabad Sahiwal Campus Sahiwal 57000, Pakistan
| | - Muhammad Usman Ali
- Department of Computer Science, COMSATS University Islamabad Sahiwal Campus Sahiwal 57000, Pakistan
| | - Muhammad Yaqub
- School of Biomedical Science, Hunan University, Changsha, China
| | - Malik Abdul Manan
- Beijing Key Laboratory of Computational Intelligence and Intelligent System, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Atif Mehmood
- Department of Computer Science and Technology, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
6
|
Atalık A, Chopra S, Sodickson DK. Accelerating multi-coil MR image reconstruction using weak supervision. MAGMA (NEW YORK, N.Y.) 2025; 38:37-51. [PMID: 39382814 DOI: 10.1007/s10334-024-01206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Deep-learning-based MR image reconstruction in settings where large fully sampled dataset collection is infeasible requires methods that effectively use both under-sampled and fully sampled datasets. This paper evaluates a weakly supervised, multi-coil, physics-guided approach to MR image reconstruction, leveraging both dataset types, to improve both the quality and robustness of reconstruction. A physics-guided end-to-end variational network (VarNet) is pretrained in a self-supervised manner using a 4 × under-sampled dataset following the self-supervised learning via data undersampling (SSDU) methodology. The pre-trained weights are transferred to another VarNet, which is fine-tuned using a smaller, fully sampled dataset by optimizing multi-scale structural similarity (MS-SSIM) loss in image space. The proposed methodology is compared with fully self-supervised and fully supervised training. Reconstruction quality improvements in SSIM, PSNR, and NRMSE when abundant training data is available (the high-data regime), and enhanced robustness when training data is scarce (the low-data regime) are demonstrated using weak supervision for knee and brain MR image reconstructions at 8 × and 10 × acceleration, respectively. Multi-coil physics-guided MR image reconstruction using both under-sampled and fully sampled datasets is achievable with transfer learning and fine-tuning. This methodology can provide improved reconstruction quality in the high-data regime and improved robustness in the low-data regime at high acceleration rates.
Collapse
Affiliation(s)
- Arda Atalık
- Center for Data Science, New York University, 60 Fifth Ave, New York, NY, 10011, USA.
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY, 10016, USA.
| | - Sumit Chopra
- Courant Institute of Mathematical Sciences, New York University, 60 Fifth Ave, New York, NY, 10011, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Daniel K Sodickson
- Center for Data Science, New York University, 60 Fifth Ave, New York, NY, 10011, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, NY, 10016, USA
| |
Collapse
|
7
|
Huang J, Wu Y, Wang F, Fang Y, Nan Y, Alkan C, Abraham D, Liao C, Xu L, Gao Z, Wu W, Zhu L, Chen Z, Lally P, Bangerter N, Setsompop K, Guo Y, Rueckert D, Wang G, Yang G. Data- and Physics-Driven Deep Learning Based Reconstruction for Fast MRI: Fundamentals and Methodologies. IEEE Rev Biomed Eng 2025; 18:152-171. [PMID: 39437302 DOI: 10.1109/rbme.2024.3485022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Magnetic Resonance Imaging (MRI) is a pivotal clinical diagnostic tool, yet its extended scanning times often compromise patient comfort and image quality, especially in volumetric, temporal and quantitative scans. This review elucidates recent advances in MRI acceleration via data and physics-driven models, leveraging techniques from algorithm unrolling models, enhancement-based methods, and plug-and-play models to the emerging full spectrum of generative model-based methods. We also explore the synergistic integration of data models with physics-based insights, encompassing the advancements in multi-coil hardware accelerations like parallel imaging and simultaneous multi-slice imaging, and the optimization of sampling patterns. We then focus on domain-specific challenges and opportunities, including image redundancy exploitation, image integrity, evaluation metrics, data heterogeneity, and model generalization. This work also discusses potential solutions and future research directions, with an emphasis on the role of data harmonization and federated learning for further improving the general applicability and performance of these methods in MRI reconstruction.
Collapse
|
8
|
Kim JW, Khan AU, Banerjee I. Systematic Review of Hybrid Vision Transformer Architectures for Radiological Image Analysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-024-01322-4. [PMID: 39871042 DOI: 10.1007/s10278-024-01322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 01/29/2025]
Abstract
Vision transformer (ViT)and convolutional neural networks (CNNs) each possess distinct strengths in medical imaging: ViT excels in capturing long-range dependencies through self-attention, while CNNs are adept at extracting local features via spatial convolution filters. While ViT may struggle with capturing detailed local spatial information, critical for tasks like anomaly detection in medical imaging, shallow CNNs often fail to effectively abstract global context. This study aims to explore and evaluate hybrid architectures that integrate ViT and CNN to leverage their complementary strengths for enhanced performance in medical vision tasks, such as segmentation, classification, reconstruction, and prediction. Following PRISMA guideline, a systematic review was conducted on 34 articles published between 2020 and Sept. 2024. These articles proposed novel hybrid ViT-CNN architectures specifically for medical imaging tasks in radiology. The review focused on analyzing architectural variations, merging strategies between ViT and CNN, innovative applications of ViT, and efficiency metrics including parameters, inference time (GFlops), and performance benchmarks. The review identified that integrating ViT and CNN can mitigate the limitations of each architecture offering comprehensive solutions that combine global context understanding with precise local feature extraction. We benchmarked the articles based on architectural variations, merging strategies, innovative uses of ViT, and efficiency metrics (number of parameters, inference time (GFlops), and performance), and derived a ranked list. By synthesizing current literature, this review defines fundamental concepts of hybrid vision transformers and highlights emerging trends in the field. It provides a clear direction for future research aimed at optimizing the integration of ViT and CNN for effective utilization in medical imaging, contributing to advancements in diagnostic accuracy and image analysis. We performed systematic review of hybrid vision transformer architecture using PRISMA guideline and performed thorough comparative analysis to benchmark the architectures.
Collapse
Affiliation(s)
- Ji Woong Kim
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Imon Banerjee
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.
- Department of Radiology, Mayo Clinic, Phoenix, AZ, USA.
- Department of Artificial Intelligence and Informatics (AI&I), Mayo Clinic, Scottsdale, AZ, USA.
| |
Collapse
|
9
|
Wu R, Li C, Zou J, Liu X, Zheng H, Wang S. Generalizable Reconstruction for Accelerating MR Imaging via Federated Learning With Neural Architecture Search. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:106-117. [PMID: 39037877 DOI: 10.1109/tmi.2024.3432388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Heterogeneous data captured by different scanning devices and imaging protocols can affect the generalization performance of the deep learning magnetic resonance (MR) reconstruction model. While a centralized training model is effective in mitigating this problem, it raises concerns about privacy protection. Federated learning is a distributed training paradigm that can utilize multi-institutional data for collaborative training without sharing data. However, existing federated learning MR image reconstruction methods rely on models designed manually by experts, which are complex and computationally expensive, suffering from performance degradation when facing heterogeneous data distributions. In addition, these methods give inadequate consideration to fairness issues, namely ensuring that the model's training does not introduce bias towards any specific dataset's distribution. To this end, this paper proposes a generalizable federated neural architecture search framework for accelerating MR imaging (GAutoMRI). Specifically, automatic neural architecture search is investigated for effective and efficient neural network representation learning of MR images from different centers. Furthermore, we design a fairness adjustment approach that can enable the model to learn features fairly from inconsistent distributions of different devices and centers, and thus facilitate the model to generalize well to the unseen center. Extensive experiments show that our proposed GAutoMRI has better performances and generalization ability compared with seven state-of-the-art federated learning methods. Moreover, the GAutoMRI model is significantly more lightweight, making it an efficient choice for MR image reconstruction tasks. The code will be made available at https://github.com/ternencewu123/GAutoMRI.
Collapse
|
10
|
Viqar M, Sahin E, Stoykova E, Madjarova V. Reconstruction of Optical Coherence Tomography Images from Wavelength Space Using Deep Learning. SENSORS (BASEL, SWITZERLAND) 2024; 25:93. [PMID: 39796883 PMCID: PMC11723098 DOI: 10.3390/s25010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Conventional Fourier domain Optical Coherence Tomography (FD-OCT) systems depend on resampling into a wavenumber (k) domain to extract the depth profile. This either necessitates additional hardware resources or amplifies the existing computational complexity. Moreover, the OCT images also suffer from speckle noise, due to systemic reliance on low-coherence interferometry. We propose a streamlined and computationally efficient approach based on Deep Learning (DL) which enables reconstructing speckle-reduced OCT images directly from the wavelength (λ) domain. For reconstruction, two encoder-decoder styled networks, namely Spatial Domain Convolution Neural Network (SD-CNN) and Fourier Domain CNN (FD-CNN), are used sequentially. The SD-CNN exploits the highly degraded images obtained by Fourier transforming the (λ) domain fringes to reconstruct the deteriorated morphological structures along with suppression of unwanted noise. The FD-CNN leverages this output to enhance the image quality further by optimization in the Fourier domain (FD). We quantitatively and visually demonstrate the efficacy of the method in obtaining high-quality OCT images. Furthermore, we illustrate the computational complexity reduction by harnessing the power of DL models. We believe that this work lays the framework for further innovations in the realm of OCT image reconstruction.
Collapse
Affiliation(s)
- Maryam Viqar
- Faculty of Information Technology and Communication Sciences, Tampere University, 33720 Tampere, Finland;
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (V.M.)
| | - Erdem Sahin
- Faculty of Information Technology and Communication Sciences, Tampere University, 33720 Tampere, Finland;
| | - Elena Stoykova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (V.M.)
| | - Violeta Madjarova
- Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.S.); (V.M.)
| |
Collapse
|
11
|
Liu Y, Pang Y, Li J, Chen Y, Yap PT. Architecture-Agnostic Untrained Network Priors for Image Reconstruction with Frequency Regularization. COMPUTER VISION - ECCV ... : ... EUROPEAN CONFERENCE ON COMPUTER VISION : PROCEEDINGS. EUROPEAN CONFERENCE ON COMPUTER VISION 2024; 15072:341-358. [PMID: 39734749 PMCID: PMC11670387 DOI: 10.1007/978-3-031-72630-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Untrained networks inspired by deep image priors have shown promising capabilities in recovering high-quality images from noisy or partial measurements without requiring training sets. Their success is widely attributed to implicit regularization due to the spectral bias of suitable network architectures. However, the application of such network-based priors often entails superfluous architectural decisions, risks of overfitting, and lengthy optimization processes, all of which hinder their practicality. To address these challenges, we propose efficient architecture-agnostic techniques to directly modulate the spectral bias of network priors: 1) bandwidth-constrained input, 2) bandwidth-controllable upsamplers, and 3) Lipschitz-regularized convolutional layers. We show that, with just a few lines of code, we can reduce overfitting in underperforming architectures and close performance gaps with high-performing counterparts, minimizing the need for extensive architecture tuning. This makes it possible to employ a more compact model to achieve performance similar or superior to larger models while reducing runtime. Demonstrated on inpainting-like MRI reconstruction task, our results signify for the first time that architectural biases, overfitting, and runtime issues of untrained network priors can be simultaneously addressed without architectural modifications. Our code is publicly available .
Collapse
Affiliation(s)
- Yilin Liu
- Computer Science, University of North Carolina at Chapel Hill
| | - Yunkui Pang
- Computer Science, University of North Carolina at Chapel Hill
| | - Jiang Li
- Computer Science, University of North Carolina at Chapel Hill
| | - Yong Chen
- Radiology, Case Western Reserve University
| | - Pew-Thian Yap
- Radiology, University of North Carolina at Chapel Hill
| |
Collapse
|
12
|
Zhang H, Ma Q, Qiu Y, Lai Z. ACGRHA-Net: Accelerated multi-contrast MR imaging with adjacency complementary graph assisted residual hybrid attention network. Neuroimage 2024; 303:120921. [PMID: 39521395 DOI: 10.1016/j.neuroimage.2024.120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Multi-contrast magnetic resonance (MR) imaging is an advanced technology used in medical diagnosis, but the long acquisition process can lead to patient discomfort and limit its broader application. Shortening acquisition time by undersampling k-space data introduces noticeable aliasing artifacts. To address this, we propose a method that reconstructs multi-contrast MR images from zero-filled data by utilizing a fully-sampled auxiliary contrast MR image as a prior to learn an adjacency complementary graph. This graph is then combined with a residual hybrid attention network, forming the adjacency complementary graph assisted residual hybrid attention network (ACGRHA-Net) for multi-contrast MR image reconstruction. Specifically, the optimal structural similarity is represented by a graph learned from the fully sampled auxiliary image, where the node features and adjacency matrices are designed to precisely capture structural information among different contrast images. This structural similarity enables effective fusion with the target image, improving the detail reconstruction. Additionally, a residual hybrid attention module is designed in parallel with the graph convolution network, allowing it to effectively capture key features and adaptively emphasize these important features in target contrast MR images. This strategy prioritizes crucial information while preserving shallow features, thereby achieving comprehensive feature fusion at deeper levels to enhance multi-contrast MR image reconstruction. Extensive experiments on the different datasets, using various sampling patterns and accelerated factors demonstrate that the proposed method outperforms the current state-of-the-art reconstruction methods.
Collapse
Affiliation(s)
- Haotian Zhang
- School of Ocean Information Engineering, Jimei University, Xiamen, China
| | - Qiaoyu Ma
- School of Ocean Information Engineering, Jimei University, Xiamen, China
| | - Yiran Qiu
- School of Ocean Information Engineering, Jimei University, Xiamen, China
| | - Zongying Lai
- School of Ocean Information Engineering, Jimei University, Xiamen, China.
| |
Collapse
|
13
|
Zijlstra F, While PT. Deep-learning-based image reconstruction with limited data: generating synthetic raw data using deep learning. MAGMA (NEW YORK, N.Y.) 2024; 37:1059-1076. [PMID: 39207581 PMCID: PMC11582256 DOI: 10.1007/s10334-024-01193-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
OBJECT Deep learning has shown great promise for fast reconstruction of accelerated MRI acquisitions by learning from large amounts of raw data. However, raw data is not always available in sufficient quantities. This study investigates synthetic data generation to complement small datasets and improve reconstruction quality. MATERIALS AND METHODS An adversarial auto-encoder was trained to generate phase and coil sensitivity maps from magnitude images, which were combined into synthetic raw data. On a fourfold accelerated MR reconstruction task, deep-learning-based reconstruction networks were trained with varying amounts of training data (20 to 160 scans). Test set performance was compared between baseline experiments and experiments that incorporated synthetic training data. RESULTS Training with synthetic raw data showed decreasing reconstruction errors with increasing amounts of training data, but importantly this was magnitude-only data, rather than real raw data. For small training sets, training with synthetic data decreased the mean absolute error (MAE) by up to 7.5%, whereas for larger training sets the MAE increased by up to 2.6%. DISCUSSION Synthetic raw data generation improved reconstruction quality in scenarios with limited training data. A major advantage of synthetic data generation is that it allows for the reuse of magnitude-only datasets, which are more readily available than raw datasets.
Collapse
Affiliation(s)
- Frank Zijlstra
- Department of Radiology and Nuclear Medicine, St Olav's University Hospital, Postboks 3250 Torgarden, 7006, Trondheim, Norway.
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| | - Peter Thomas While
- Department of Radiology and Nuclear Medicine, St Olav's University Hospital, Postboks 3250 Torgarden, 7006, Trondheim, Norway
- Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
14
|
Kim S, Park H, Park SH. A review of deep learning-based reconstruction methods for accelerated MRI using spatiotemporal and multi-contrast redundancies. Biomed Eng Lett 2024; 14:1221-1242. [PMID: 39465106 PMCID: PMC11502678 DOI: 10.1007/s13534-024-00425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 10/29/2024] Open
Abstract
Accelerated magnetic resonance imaging (MRI) has played an essential role in reducing data acquisition time for MRI. Acceleration can be achieved by acquiring fewer data points in k-space, which results in various artifacts in the image domain. Conventional reconstruction methods have resolved the artifacts by utilizing multi-coil information, but with limited robustness. Recently, numerous deep learning-based reconstruction methods have been developed, enabling outstanding reconstruction performances with higher acceleration. Advances in hardware and developments of specialized network architectures have produced such achievements. Besides, MRI signals contain various redundant information including multi-coil redundancy, multi-contrast redundancy, and spatiotemporal redundancy. Utilization of the redundant information combined with deep learning approaches allow not only higher acceleration, but also well-preserved details in the reconstructed images. Consequently, this review paper introduces the basic concepts of deep learning and conventional accelerated MRI reconstruction methods, followed by review of recent deep learning-based reconstruction methods that exploit various redundancies. Lastly, the paper concludes by discussing the challenges, limitations, and potential directions of future developments.
Collapse
Affiliation(s)
- Seonghyuk Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - HyunWook Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung-Hong Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
15
|
Dong X, Yang K, Liu J, Tang F, Liao W, Zhang Y, Liang S. Cross-Domain Mutual-Assistance Learning Framework for Fully Automated Diagnosis of Primary Tumor in Nasopharyngeal Carcinoma. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3676-3689. [PMID: 38739507 DOI: 10.1109/tmi.2024.3400406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Accurate T-staging of nasopharyngeal carcinoma (NPC) holds paramount importance in guiding treatment decisions and prognosticating outcomes for distinct risk groups. Regrettably, the landscape of deep learning-based techniques for T-staging in NPC remains sparse, and existing methodologies often exhibit suboptimal performance due to their neglect of crucial domain-specific knowledge pertinent to primary tumor diagnosis. To address these issues, we propose a new cross-domain mutual-assistance learning framework for fully automated diagnosis of primary tumor using H&N MR images. Specifically, we tackle primary tumor diagnosis task with the convolutional neural network consisting of a 3D cross-domain knowledge perception network (CKP net) for excavated cross-domain-invariant features emphasizing tumor intensity variations and internal tumor heterogeneity, and a multi-domain mutual-information sharing fusion network (M2SF net), comprising a dual-pathway domain-specific representation module and a mutual information fusion module, for intelligently gauging and amalgamating multi-domain, multi-scale T-stage diagnosis-oriented features. The proposed 3D cross-domain mutual-assistance learning framework not only embraces task-specific multi-domain diagnostic knowledge but also automates the entire process of primary tumor diagnosis. We evaluate our model on an internal and an external MR images dataset in a three-fold cross-validation paradigm. Exhaustive experimental results demonstrate that our method outperforms the other algorithms, and obtains promising performance for tumor segmentation and T-staging. These findings underscore its potential for clinical application, offering valuable assistance to clinicians in treatment decision-making and prognostication for various risk groups.
Collapse
|
16
|
Yan Y, Wang H, Huang Y, He N, Zhu L, Xu Y, Li Y, Zheng Y. Cross-Modal Vertical Federated Learning for MRI Reconstruction. IEEE J Biomed Health Inform 2024; 28:6384-6394. [PMID: 38294925 DOI: 10.1109/jbhi.2024.3360720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Federated learning enables multiple hospitals to cooperatively learn a shared model without privacy disclosure. Existing methods often take a common assumption that the data from different hospitals have the same modalities. However, such a setting is difficult to fully satisfy in practical applications, since the imaging guidelines may be different between hospitals, which makes the number of individuals with the same set of modalities limited. To this end, we formulate this practical-yet-challenging cross-modal vertical federated learning task, in which data from multiple hospitals have different modalities with a small amount of multi-modality data collected from the same individuals. To tackle such a situation, we develop a novel framework, namely Federated Consistent Regularization constrained Feature Disentanglement (Fed-CRFD), for boosting MRI reconstruction by effectively exploring the overlapping samples (i.e., same patients with different modalities at different hospitals) and solving the domain shift problem caused by different modalities. Particularly, our Fed-CRFD involves an intra-client feature disentangle scheme to decouple data into modality-invariant and modality-specific features, where the modality-invariant features are leveraged to mitigate the domain shift problem. In addition, a cross-client latent representation consistency constraint is proposed specifically for the overlapping samples to further align the modality-invariant features extracted from different modalities. Hence, our method can fully exploit the multi-source data from hospitals while alleviating the domain shift problem. Extensive experiments on two typical MRI datasets demonstrate that our network clearly outperforms state-of-the-art MRI reconstruction methods.
Collapse
|
17
|
Shafique M, Qazi SA, Omer H. Compressed SVD-based L + S model to reconstruct undersampled dynamic MRI data using parallel architecture. MAGMA (NEW YORK, N.Y.) 2024; 37:825-844. [PMID: 37978992 DOI: 10.1007/s10334-023-01128-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/27/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Magnetic Resonance Imaging (MRI) is a highly demanded medical imaging system due to high resolution, large volumetric coverage, and ability to capture the dynamic and functional information of body organs e.g. cardiac MRI is employed to assess cardiac structure and evaluate blood flow dynamics through the cardiac valves. Long scan time is the main drawback of MRI, which makes it difficult for the patients to remain still during the scanning process. OBJECTIVE By collecting fewer measurements, MRI scan time can be shortened, but this undersampling causes aliasing artifacts in the reconstructed images. Advanced image reconstruction algorithms have been used in literature to overcome these undersampling artifacts. These algorithms are computationally expensive and require a long time for reconstruction which makes them infeasible for real-time clinical applications e.g. cardiac MRI. However, exploiting the inherent parallelism in these algorithms can help to reduce their computation time. METHODS Low-rank plus sparse (L+S) matrix decomposition model is a technique used in literature to reconstruct the highly undersampled dynamic MRI (dMRI) data at the expense of long reconstruction time. In this paper, Compressed Singular Value Decomposition (cSVD) model is used in L+S decomposition model (instead of conventional SVD) to reduce the reconstruction time. The results provide improved quality of the reconstructed images. Furthermore, it has been observed that cSVD and other parts of the L+S model possess highly parallel operations; therefore, a customized GPU based parallel architecture of the modified L+S model has been presented to further reduce the reconstruction time. RESULTS Four cardiac MRI datasets (three different cardiac perfusion acquired from different patients and one cardiac cine data), each with different acceleration factors of 2, 6 and 8 are used for experiments in this paper. Experimental results demonstrate that using the proposed parallel architecture for the reconstruction of cardiac perfusion data provides a speed-up factor up to 19.15× (with memory latency) and 70.55× (without memory latency) in comparison to the conventional CPU reconstruction with no compromise on image quality. CONCLUSION The proposed method is well-suited for real-time clinical applications, offering a substantial reduction in reconstruction time.
Collapse
Affiliation(s)
- Muhammad Shafique
- Medical Image Processing Research Group (MIPRG), Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad, Pakistan.
- Department of Electrical Engineering, University of Poonch Rawalakot, Rawalakot, AJ&K, Pakistan.
| | - Sohaib Ayaz Qazi
- Cardiovascular Sciences, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Hammad Omer
- Medical Image Processing Research Group (MIPRG), Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
18
|
Xue Z, Zhu S, Yang F, Gao J, Peng H, Zou C, Jin H, Hu C. A hybrid deep image prior and compressed sensing reconstruction method for highly accelerated 3D coronary magnetic resonance angiography. Front Cardiovasc Med 2024; 11:1408351. [PMID: 39328236 PMCID: PMC11424428 DOI: 10.3389/fcvm.2024.1408351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction High-resolution whole-heart coronary magnetic resonance angiography (CMRA) often suffers from unreasonably long scan times, rendering imaging acceleration highly desirable. Traditional reconstruction methods used in CMRA rely on either hand-crafted priors or supervised learning models. Although the latter often yield superior reconstruction quality, they require a large amount of training data and memory resources, and may encounter generalization issues when dealing with out-of-distribution datasets. Methods To address these challenges, we introduce an unsupervised reconstruction method that combines deep image prior (DIP) with compressed sensing (CS) to accelerate 3D CMRA. This method incorporates a slice-by-slice DIP reconstruction and 3D total variation (TV) regularization, enabling high-quality reconstruction under a significant acceleration while enforcing continuity in the slice direction. We evaluated our method by comparing it to iterative SENSE, CS-TV, CS-wavelet, and other DIP-based variants, using both retrospectively and prospectively undersampled datasets. Results The results demonstrate the superiority of our 3D DIP-CS approach, which improved the reconstruction accuracy relative to the other approaches across both datasets. Ablation studies further reveal the benefits of combining DIP with 3D TV regularization, which leads to significant improvements of image quality over pure DIP-based methods. Evaluation of vessel sharpness and image quality scores shows that DIP-CS improves the quality of reformatted coronary arteries. Discussion The proposed method enables scan-specific reconstruction of high-quality 3D CMRA from a five-minute acquisition, without relying on fully-sampled training data or placing a heavy burden on memory resources.
Collapse
Affiliation(s)
- Zhihao Xue
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Sicheng Zhu
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yang
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Gao
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Peng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Chao Zou
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Hang Jin
- Department of Radiology, Zhongshan Hospital, Fudan University and Shanghai Medical Imaging Institute, Shanghai, China
| | - Chenxi Hu
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Sivgin I, Bedel HA, Ozturk S, Cukur T. A Plug-In Graph Neural Network to Boost Temporal Sensitivity in fMRI Analysis. IEEE J Biomed Health Inform 2024; 28:5323-5334. [PMID: 38885104 DOI: 10.1109/jbhi.2024.3415000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Learning-based methods offer performance leaps over traditional methods in classification analysis of high-dimensional functional MRI (fMRI) data. In this domain, deep-learning models that analyze functional connectivity (FC) features among brain regions have been particularly promising. However, many existing models receive as input temporally static FC features that summarize inter-regional interactions across an entire scan, reducing the temporal sensitivity of classifiers by limiting their ability to leverage information on dynamic FC features of brain activity. To improve the performance of baseline classification models without compromising efficiency, here we propose a novel plug-in based on a graph neural network, GraphCorr, to provide enhanced input features to baseline models. The proposed plug-in computes a set of latent FC features with enhanced temporal information while maintaining comparable dimensionality to static features. Taking brain regions as nodes and blood-oxygen-level-dependent (BOLD) signals as node inputs, GraphCorr leverages a node embedder module based on a transformer encoder to capture dynamic latent representations of BOLD signals. GraphCorr also leverages a lag filter module to account for delayed interactions across nodes by learning correlational features of windowed BOLD signals across time delays. These two feature groups are then fused via a message passing algorithm executed on the formulated graph. Comprehensive demonstrations on three public datasets indicate improved classification performance for several state-of-the-art graph and convolutional baseline models when they are augmented with GraphCorr.
Collapse
|
20
|
Sun Y, Liu X, Liu Y, Jin R, Pang Y. DIRECTION: Deep cascaded reconstruction residual-based feature modulation network for fast MRI reconstruction. Magn Reson Imaging 2024; 111:157-167. [PMID: 38642780 DOI: 10.1016/j.mri.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/24/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Deep cascaded networks have been extensively studied and applied to accelerate Magnetic Resonance Imaging (MRI) and have shown promising results. Most existing works employ a large cascading number for the sake of superior performances. However, due to the lack of proper guidance, the reconstruction performance can easily reach a plateau and even face degradation if simply increasing the cascading number. In this paper, we aim to boost the reconstruction performance from a novel perspective by proposing a parallel architecture called DIRECTION that fully exploits the guiding value of the reconstruction residual of each subnetwork. Specifically, we introduce a novel Reconstruction Residual-Based Feature Modulation Mechanism (RRFMM) which utilizes the reconstruction residual of the previous subnetwork to guide the next subnetwork at the feature level. To achieve this, a Residual Attention Modulation Block (RAMB) is proposed to generate attention maps using multi-scale residual features to modulate the image features of the corresponding scales. Equipped with this strategy, each subnetwork within the cascaded network possesses its unique optimization objective and emphasis rather than blindly updating its parameters. To further boost the performance, we introduce the Cross-Stage Feature Reuse Connection (CSFRC) and the Reconstruction Dense Connection (RDC), which can reduce information loss and enhance representative ability. We conduct sufficient experiments and evaluate our method on the fastMRI knee dataset using multiple subsampling masks. Comprehensive experimental results show that our method can markedly boost the performance of cascaded networks and significantly outperforms other compared state-of-the-art methods quantitatively and qualitatively.
Collapse
Affiliation(s)
- Yong Sun
- TJK-BIIT Lab, School of Electrical and Information Engineering, Tianjin 300072, China.
| | - Xiaohan Liu
- TJK-BIIT Lab, School of Electrical and Information Engineering, Tianjin 300072, China.
| | - Yiming Liu
- TJK-BIIT Lab, School of Electrical and Information Engineering, Tianjin 300072, China; Tiandatz Technology, Tianjin 301723, China.
| | - Ruiqi Jin
- TJK-BIIT Lab, School of Electrical and Information Engineering, Tianjin 300072, China.
| | - Yanwei Pang
- TJK-BIIT Lab, School of Electrical and Information Engineering, Tianjin 300072, China.
| |
Collapse
|
21
|
Siedler TM, Jakob PM, Herold V. Enhancing quality and speed in database-free neural network reconstructions of undersampled MRI with SCAMPI. Magn Reson Med 2024; 92:1232-1247. [PMID: 38748852 DOI: 10.1002/mrm.30114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 06/27/2024]
Abstract
PURPOSE We present SCAMPI (Sparsity Constrained Application of deep Magnetic resonance Priors for Image reconstruction), an untrained deep Neural Network for MRI reconstruction without previous training on datasets. It expands the Deep Image Prior approach with a multidomain, sparsity-enforcing loss function to achieve higher image quality at a faster convergence speed than previously reported methods. METHODS Two-dimensional MRI data from the FastMRI dataset with Cartesian undersampling in phase-encoding direction were reconstructed for different acceleration rates for single coil and multicoil data. RESULTS The performance of our architecture was compared to state-of-the-art Compressed Sensing methods and ConvDecoder, another untrained Neural Network for two-dimensional MRI reconstruction. SCAMPI outperforms these by better reducing undersampling artifacts and yielding lower error metrics in multicoil imaging. In comparison to ConvDecoder, the U-Net architecture combined with an elaborated loss-function allows for much faster convergence at higher image quality. SCAMPI can reconstruct multicoil data without explicit knowledge of coil sensitivity profiles. Moreover, it is a novel tool for reconstructing undersampled single coil k-space data. CONCLUSION Our approach avoids overfitting to dataset features, that can occur in Neural Networks trained on databases, because the network parameters are tuned only on the reconstruction data. It allows better results and faster reconstruction than the baseline untrained Neural Network approach.
Collapse
Affiliation(s)
- Thomas M Siedler
- Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany
| | - Peter M Jakob
- Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany
| | - Volker Herold
- Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Chen C, Xiong L, Lin Y, Li M, Song Z, Su J, Cao W. Super-resolution reconstruction for early cervical cancer magnetic resonance imaging based on deep learning. Biomed Eng Online 2024; 23:84. [PMID: 39175006 PMCID: PMC11342621 DOI: 10.1186/s12938-024-01281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
This study aims to develop a super-resolution (SR) algorithm tailored specifically for enhancing the image quality and resolution of early cervical cancer (CC) magnetic resonance imaging (MRI) images. The proposed method is subjected to both qualitative and quantitative analyses, thoroughly investigating its performance across various upscaling factors and assessing its impact on medical image segmentation tasks. The innovative SR algorithm employed for reconstructing early CC MRI images integrates complex architectures and deep convolutional kernels. Training is conducted on matched pairs of input images through a multi-input model. The research findings highlight the significant advantages of the proposed SR method on two distinct datasets at different upscaling factors. Specifically, at a 2× upscaling factor, the sagittal test set outperforms the state-of-the-art methods in the PSNR index evaluation, second only to the hybrid attention transformer, while the axial test set outperforms the state-of-the-art methods in both PSNR and SSIM index evaluation. At a 4× upscaling factor, both the sagittal test set and the axial test set achieve the best results in the evaluation of PNSR and SSIM indicators. This method not only effectively enhances image quality, but also exhibits superior performance in medical segmentation tasks, thereby providing a more reliable foundation for clinical diagnosis and image analysis.
Collapse
Affiliation(s)
- Chunxia Chen
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Gulou District, Fuzhou, 350001, Fujian, China
| | - Liu Xiong
- School of Optoelectronic and Communication Engineering, Xiamen University of Technology, No.600 Ligong Road, Jimei District, Xiamen, 361024, Fujian, China
| | - Yongping Lin
- School of Optoelectronic and Communication Engineering, Xiamen University of Technology, No.600 Ligong Road, Jimei District, Xiamen, 361024, Fujian, China.
| | - Ming Li
- School of Optoelectronic and Communication Engineering, Xiamen University of Technology, No.600 Ligong Road, Jimei District, Xiamen, 361024, Fujian, China
| | - Zhiyu Song
- School of Optoelectronic and Communication Engineering, Xiamen University of Technology, No.600 Ligong Road, Jimei District, Xiamen, 361024, Fujian, China
| | - Jialin Su
- School of Optoelectronic and Communication Engineering, Xiamen University of Technology, No.600 Ligong Road, Jimei District, Xiamen, 361024, Fujian, China
| | - Wenting Cao
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, No.18 Daoshan Road, Gulou District, Fuzhou, 350001, Fujian, China
| |
Collapse
|
23
|
Wang S, Wu R, Jia S, Diakite A, Li C, Liu Q, Zheng H, Ying L. Knowledge-driven deep learning for fast MR imaging: Undersampled MR image reconstruction from supervised to un-supervised learning. Magn Reson Med 2024; 92:496-518. [PMID: 38624162 DOI: 10.1002/mrm.30105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Deep learning (DL) has emerged as a leading approach in accelerating MRI. It employs deep neural networks to extract knowledge from available datasets and then applies the trained networks to reconstruct accurate images from limited measurements. Unlike natural image restoration problems, MRI involves physics-based imaging processes, unique data properties, and diverse imaging tasks. This domain knowledge needs to be integrated with data-driven approaches. Our review will introduce the significant challenges faced by such knowledge-driven DL approaches in the context of fast MRI along with several notable solutions, which include learning neural networks and addressing different imaging application scenarios. The traits and trends of these techniques have also been given which have shifted from supervised learning to semi-supervised learning, and finally, to unsupervised learning methods. In addition, MR vendors' choices of DL reconstruction have been provided along with some discussions on open questions and future directions, which are critical for the reliable imaging systems.
Collapse
Affiliation(s)
- Shanshan Wang
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ruoyou Wu
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sen Jia
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Alou Diakite
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiegen Liu
- Department of Electronic Information Engineering, Nanchang University, Nanchang, China
| | - Hairong Zheng
- Paul C Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Leslie Ying
- Department of Biomedical Engineering and Department of Electrical Engineering, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
24
|
Nerella S, Bandyopadhyay S, Zhang J, Contreras M, Siegel S, Bumin A, Silva B, Sena J, Shickel B, Bihorac A, Khezeli K, Rashidi P. Transformers and large language models in healthcare: A review. Artif Intell Med 2024; 154:102900. [PMID: 38878555 PMCID: PMC11638972 DOI: 10.1016/j.artmed.2024.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/09/2024]
Abstract
With Artificial Intelligence (AI) increasingly permeating various aspects of society, including healthcare, the adoption of the Transformers neural network architecture is rapidly changing many applications. Transformer is a type of deep learning architecture initially developed to solve general-purpose Natural Language Processing (NLP) tasks and has subsequently been adapted in many fields, including healthcare. In this survey paper, we provide an overview of how this architecture has been adopted to analyze various forms of healthcare data, including clinical NLP, medical imaging, structured Electronic Health Records (EHR), social media, bio-physiological signals, biomolecular sequences. Furthermore, which have also include the articles that used the transformer architecture for generating surgical instructions and predicting adverse outcomes after surgeries under the umbrella of critical care. Under diverse settings, these models have been used for clinical diagnosis, report generation, data reconstruction, and drug/protein synthesis. Finally, we also discuss the benefits and limitations of using transformers in healthcare and examine issues such as computational cost, model interpretability, fairness, alignment with human values, ethical implications, and environmental impact.
Collapse
Affiliation(s)
- Subhash Nerella
- Department of Biomedical Engineering, University of Florida, Gainesville, United States
| | | | - Jiaqing Zhang
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, United States
| | - Miguel Contreras
- Department of Biomedical Engineering, University of Florida, Gainesville, United States
| | - Scott Siegel
- Department of Biomedical Engineering, University of Florida, Gainesville, United States
| | - Aysegul Bumin
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, United States
| | - Brandon Silva
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, United States
| | - Jessica Sena
- Department Of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Benjamin Shickel
- Department of Medicine, University of Florida, Gainesville, United States
| | - Azra Bihorac
- Department of Medicine, University of Florida, Gainesville, United States
| | - Kia Khezeli
- Department of Biomedical Engineering, University of Florida, Gainesville, United States
| | - Parisa Rashidi
- Department of Biomedical Engineering, University of Florida, Gainesville, United States.
| |
Collapse
|
25
|
Sharma R, Tsiamyrtzis P, Webb AG, Leiss EL, Tsekos NV. Learning to deep learning: statistics and a paradigm test in selecting a UNet architecture to enhance MRI. MAGMA (NEW YORK, N.Y.) 2024; 37:507-528. [PMID: 37989921 DOI: 10.1007/s10334-023-01127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVE This study aims to assess the statistical significance of training parameters in 240 dense UNets (DUNets) used for enhancing low Signal-to-Noise Ratio (SNR) and undersampled MRI in various acquisition protocols. The objective is to determine the validity of differences between different DUNet configurations and their impact on image quality metrics. MATERIALS AND METHODS To achieve this, we trained all DUNets using the same learning rate and number of epochs, with variations in 5 acquisition protocols, 24 loss function weightings, and 2 ground truths. We calculated evaluation metrics for two metric regions of interest (ROI). We employed both Analysis of Variance (ANOVA) and Mixed Effects Model (MEM) to assess the statistical significance of the independent parameters, aiming to compare their efficacy in revealing differences and interactions among fixed parameters. RESULTS ANOVA analysis showed that, except for the acquisition protocol, fixed variables were statistically insignificant. In contrast, MEM analysis revealed that all fixed parameters and their interactions held statistical significance. This emphasizes the need for advanced statistical analysis in comparative studies, where MEM can uncover finer distinctions often overlooked by ANOVA. DISCUSSION These findings highlight the importance of utilizing appropriate statistical analysis when comparing different deep learning models. Additionally, the surprising effectiveness of the UNet architecture in enhancing various acquisition protocols underscores the potential for developing improved methods for characterizing and training deep learning models. This study serves as a stepping stone toward enhancing the transparency and comparability of deep learning techniques for medical imaging applications.
Collapse
Affiliation(s)
- Rishabh Sharma
- Medical Robotics and Imaging Lab, Department of Computer Science, 501, Philip G. Hoffman Hall, University of Houston, 4800 Calhoun Road, Houston, TX, 77204, USA
| | - Panagiotis Tsiamyrtzis
- Department of Mechanical Engineering, Politecnico Di Milano, Milan, Italy
- Department of Statistics, Athens University of Economics and Business, Athens, Greece
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ernst L Leiss
- Department of Computer Science, University of Houston, Houston, TX, USA
| | - Nikolaos V Tsekos
- Medical Robotics and Imaging Lab, Department of Computer Science, 501, Philip G. Hoffman Hall, University of Houston, 4800 Calhoun Road, Houston, TX, 77204, USA.
| |
Collapse
|
26
|
Liu X, Pang Y, Liu Y, Jin R, Sun Y, Liu Y, Xiao J. Dual-domain faster Fourier convolution based network for MR image reconstruction. Comput Biol Med 2024; 177:108603. [PMID: 38781646 DOI: 10.1016/j.compbiomed.2024.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/15/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Deep learning methods for fast MRI have shown promise in reconstructing high-quality images from undersampled multi-coil k-space data, leading to reduced scan duration. However, existing methods encounter challenges related to limited receptive fields in dual-domain (k-space and image domains) reconstruction networks, rigid data consistency operations, and suboptimal refinement structures, which collectively restrict overall reconstruction performance. This study introduces a comprehensive framework that addresses these challenges and enhances MR image reconstruction quality. Firstly, we propose Faster Inverse Fourier Convolution (FasterIFC), a frequency domain convolutional operator that significantly expands the receptive field of k-space domain reconstruction networks. Expanding the information extraction range to the entire frequency spectrum according to the spectral convolution theorem in Fourier theory enables the network to easily utilize richer redundant long-range information from adjacent, symmetrical, and diagonal locations of multi-coil k-space data. Secondly, we introduce a novel softer Data Consistency (softerDC) layer, which achieves an enhanced balance between data consistency and smoothness. This layer facilitates the implementation of diverse data consistency strategies across distinct frequency positions, addressing the inflexibility observed in current methods. Finally, we present the Dual-Domain Faster Fourier Convolution Based Network (D2F2), which features a centrosymmetric dual-domain parallel structure based on FasterIFC. This architecture optimally leverages dual-domain data characteristics while substantially expanding the receptive field in both domains. Coupled with the softerDC layer, D2F2 demonstrates superior performance on the NYU fastMRI dataset at multiple acceleration factors, surpassing state-of-the-art methods in both quantitative and qualitative evaluations.
Collapse
Affiliation(s)
- Xiaohan Liu
- TJK-BIIT Lab, School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China; Tiandatz Technology Co. Ltd., Tianjin, 300072, China.
| | - Yanwei Pang
- TJK-BIIT Lab, School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
| | - Yiming Liu
- TJK-BIIT Lab, School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
| | - Ruiqi Jin
- TJK-BIIT Lab, School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
| | - Yong Sun
- TJK-BIIT Lab, School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
| | - Yu Liu
- TJK-BIIT Lab, School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
| | - Jing Xiao
- TJK-BIIT Lab, School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China; Department of Economic Management, Hebei Chemical and Pharmaceutical College, Shijiazhuang, Hebei, 050026, China.
| |
Collapse
|
27
|
Heckel R, Jacob M, Chaudhari A, Perlman O, Shimron E. Deep learning for accelerated and robust MRI reconstruction. MAGMA (NEW YORK, N.Y.) 2024; 37:335-368. [PMID: 39042206 DOI: 10.1007/s10334-024-01173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024]
Abstract
Deep learning (DL) has recently emerged as a pivotal technology for enhancing magnetic resonance imaging (MRI), a critical tool in diagnostic radiology. This review paper provides a comprehensive overview of recent advances in DL for MRI reconstruction, and focuses on various DL approaches and architectures designed to improve image quality, accelerate scans, and address data-related challenges. It explores end-to-end neural networks, pre-trained and generative models, and self-supervised methods, and highlights their contributions to overcoming traditional MRI limitations. It also discusses the role of DL in optimizing acquisition protocols, enhancing robustness against distribution shifts, and tackling biases. Drawing on the extensive literature and practical insights, it outlines current successes, limitations, and future directions for leveraging DL in MRI reconstruction, while emphasizing the potential of DL to significantly impact clinical imaging practices.
Collapse
Affiliation(s)
- Reinhard Heckel
- Department of computer engineering, Technical University of Munich, Munich, Germany
| | - Mathews Jacob
- Department of Electrical and Computer Engineering, University of Iowa, Iowa, 52242, IA, USA
| | - Akshay Chaudhari
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, 94305, CA, USA
| | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Shimron
- Department of Electrical and Computer Engineering, Technion-Israel Institute of Technology, Haifa, 3200004, Israel.
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 3200004, Israel.
| |
Collapse
|
28
|
Chaudhary MFA, Gerard SE, Christensen GE, Cooper CB, Schroeder JD, Hoffman EA, Reinhardt JM. LungViT: Ensembling Cascade of Texture Sensitive Hierarchical Vision Transformers for Cross-Volume Chest CT Image-to-Image Translation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2448-2465. [PMID: 38373126 PMCID: PMC11227912 DOI: 10.1109/tmi.2024.3367321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Chest computed tomography (CT) at inspiration is often complemented by an expiratory CT to identify peripheral airways disease. Additionally, co-registered inspiratory-expiratory volumes can be used to derive various markers of lung function. Expiratory CT scans, however, may not be acquired due to dose or scan time considerations or may be inadequate due to motion or insufficient exhale; leading to a missed opportunity to evaluate underlying small airways disease. Here, we propose LungViT- a generative adversarial learning approach using hierarchical vision transformers for translating inspiratory CT intensities to corresponding expiratory CT intensities. LungViT addresses several limitations of the traditional generative models including slicewise discontinuities, limited size of generated volumes, and their inability to model texture transfer at volumetric level. We propose a shifted-window hierarchical vision transformer architecture with squeeze-and-excitation decoder blocks for modeling dependencies between features. We also propose a multiview texture similarity distance metric for texture and style transfer in 3D. To incorporate global information into the training process and refine the output of our model, we use ensemble cascading. LungViT is able to generate large 3D volumes of size 320×320×320 . We train and validate our model using a diverse cohort of 1500 subjects with varying disease severity. To assess model generalizability beyond the development set biases, we evaluate our model on an out-of-distribution external validation set of 200 subjects. Clinical validation on internal and external testing sets shows that synthetic volumes could be reliably adopted for deriving clinical endpoints of chronic obstructive pulmonary disease.
Collapse
|
29
|
Suwannasak A, Angkurawaranon S, Sangpin P, Chatnuntawech I, Wantanajittikul K, Yarach U. Deep learning-based super-resolution of structural brain MRI at 1.5 T: application to quantitative volume measurement. MAGMA (NEW YORK, N.Y.) 2024; 37:465-475. [PMID: 38758489 DOI: 10.1007/s10334-024-01165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE This study investigated the feasibility of using deep learning-based super-resolution (DL-SR) technique on low-resolution (LR) images to generate high-resolution (HR) MR images with the aim of scan time reduction. The efficacy of DL-SR was also assessed through the application of brain volume measurement (BVM). MATERIALS AND METHODS In vivo brain images acquired with 3D-T1W from various MRI scanners were utilized. For model training, LR images were generated by downsampling the original 1 mm-2 mm isotropic resolution images. Pairs of LR and HR images were used for training 3D residual dense net (RDN). For model testing, actual scanned 2 mm isotropic resolution 3D-T1W images with one-minute scan time were used. Normalized root-mean-square error (NRMSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) were used for model evaluation. The evaluation also included brain volume measurement, with assessments of subcortical brain regions. RESULTS The results showed that DL-SR model improved the quality of LR images compared with cubic interpolation, as indicated by NRMSE (24.22% vs 30.13%), PSNR (26.19 vs 24.65), and SSIM (0.96 vs 0.95). For volumetric assessments, there were no significant differences between DL-SR and actual HR images (p > 0.05, Pearson's correlation > 0.90) at seven subcortical regions. DISCUSSION The combination of LR MRI and DL-SR enables addressing prolonged scan time in 3D MRI scans while providing sufficient image quality without affecting brain volume measurement.
Collapse
Affiliation(s)
- Atita Suwannasak
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Intavaroros Road, Muang, Chiang Mai, 50200, Thailand
| | - Salita Angkurawaranon
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Intavaroros Road, Muang, Chiang Mai, Thailand
| | - Prapatsorn Sangpin
- Philips (Thailand) Ltd, New Petchburi Road, Bangkapi, Huaykwang, Bangkok, Thailand
| | - Itthi Chatnuntawech
- National Nanotechnology Center (NANOTEC), Phahon Yothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Kittichai Wantanajittikul
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Intavaroros Road, Muang, Chiang Mai, 50200, Thailand
| | - Uten Yarach
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, 110 Intavaroros Road, Muang, Chiang Mai, 50200, Thailand.
| |
Collapse
|
30
|
Wu Z, Li X. Adaptive Knowledge Distillation for High-Quality Unsupervised MRI Reconstruction With Model-Driven Priors. IEEE J Biomed Health Inform 2024; 28:3571-3582. [PMID: 38349826 DOI: 10.1109/jbhi.2024.3365784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Magnetic Resonance Imaging (MRI) reconstruction has made significant progress with the introduction of Deep Learning (DL) technology combined with Compressed Sensing (CS). However, most existing methods require large fully sampled training datasets to supervise the training process, which may be unavailable in many applications. Current unsupervised models also show limitations in performance or speed and may face unaligned distributions during testing. This paper proposes an unsupervised method to train competitive reconstruction models that can generate high-quality samples in an end-to-end style. Firstly teacher models are trained by filling the re-undersampled images and compared with the undersampled images in a self-supervised manner. The teacher models are then distilled to train another cascade model that can leverage the entire undersampled k-space during its training and testing. Additionally, we propose an adaptive distillation method to re-weight the samples based on the variance of teachers, which represents the confidence of the reconstruction results, to improve the quality of distillation. Experimental results on multiple datasets demonstrate that our method significantly accelerates the inference process while preserving or even improving the performance compared to the teacher model. In our tests, the distilled models show 5%-10% improvements in PSNR and SSIM compared with no distillation and are 10 times faster than the teacher.
Collapse
|
31
|
Li Z, Li S, Zhang Z, Wang F, Wu F, Gao S. Radial Undersampled MRI Reconstruction Using Deep Learning With Mutual Constraints Between Real and Imaginary Components of K-Space. IEEE J Biomed Health Inform 2024; 28:3583-3596. [PMID: 38261493 DOI: 10.1109/jbhi.2024.3357784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The deep learning method is an efficient solution for improving the quality of undersampled magnetic resonance (MR) image reconstruction while reducing lengthy data acquisition. Most deep learning methods neglect the mutual constraints between the real and imaginary components of complex-valued k-space data. In this paper, a new complex-valued convolutional neural network, namely, Dense-U-Dense Net (DUD-Net), is proposed to interpolate the undersampled k-space data and reconstruct MR images. The proposed network comprises dense layers, U-Net, and other dense layers in sequence. The dense layers are used to simulate the mutual constraints between real and imaginary components, and U-Net performs feature sparsity and interpolation estimation for k-space data. Two MRI datasets were used to evaluate the proposed method: brain magnitude-only MR images and knee complex-valued k-space data. Several operations were conducted for data preprocessing. First, the complex-valued MR images were synthesized by phase modulation on magnitude-only images. Second, a radial trajectory based on the golden angle was used for k-space undersampling, whereby a reversible normalization method was proposed to balance the distribution of positive and negative values in k-space data. The optimal performance of DUD-Net was demonstrated based on a quantitative evaluation of inter-method and intra-method comparisons. When compared with other methods, significant improvements were achieved, PSNRs were increased by 10.78 and 5.74dB, whereas RMSEs were decreased by 71.53% and 30.31% for magnitude and phase image, respectively. It is concluded that DUD-Net significantly improves the performance of MR image reconstruction.
Collapse
|
32
|
Zhao X, Yang T, Li B, Yang A, Yan Y, Jiao C. DiffGAN: An adversarial diffusion model with local transformer for MRI reconstruction. Magn Reson Imaging 2024; 109:108-119. [PMID: 38492787 DOI: 10.1016/j.mri.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Magnetic resonance imaging (MRI) is non-invasive and crucial for clinical diagnosis, but it has long acquisition time and aliasing artifacts. Accelerated imaging techniques can effectively reduce the scanning time of MRI, thereby decreasing the anxiety and discomfort of patients. Vision Transformer (ViT) based methods have greatly improved MRI image reconstruction, but their computational complexity and memory requirements for the self-attention mechanism grow quadratically with image resolution, which limits their use for high resolution images. In addition, the current generative adversarial networks in MRI reconstruction are difficult to train stably. To address these problems, we propose a Local Vision Transformer (LVT) based adversarial Diffusion model (Diff-GAN) for accelerating MRI reconstruction. We employ a generative adversarial network (GAN) as the reverse diffusion model to enable large diffusion steps. In the forward diffusion module, we use a diffusion process to generate Gaussian mixture distribution noise, which mitigates the gradient vanishing issue in GAN training. This network leverages the LVT module with the local self-attention, which can capture high-quality local features and detailed information. We evaluate our method on four datasets: IXI, MICCAI 2013, MRNet and FastMRI, and demonstrate that Diff-GAN can outperform several state-of-the-art GAN-based methods for MRI reconstruction.
Collapse
Affiliation(s)
- Xiang Zhao
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Tiejun Yang
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China; Key Laboratory of Grain Information Processing and Control (HAUT), Ministry of Education, Zhengzhou, China; Henan Key Laboratory of Grain Photoelectric Detection and Control (HAUT), Zhengzhou, Henan, China.
| | - Bingjie Li
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Aolin Yang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yanghui Yan
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chunxia Jiao
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
33
|
Chen S, Duan J, Ren X, Wang J, Liu Y. DFUSNN: zero-shot dual-domain fusion unsupervised neural network for parallel MRI reconstruction. Phys Med Biol 2024; 69:105028. [PMID: 38604186 DOI: 10.1088/1361-6560/ad3dbc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Objective. Recently, deep learning models have been used to reconstruct parallel magnetic resonance (MR) images from undersampled k-space data. However, most existing approaches depend on large databases of fully sampled MR data for training, which can be challenging or sometimes infeasible to acquire in certain scenarios. The goal is to develop an effective alternative for improved reconstruction quality that does not rely on external training datasets.Approach. We introduce a novel zero-shot dual-domain fusion unsupervised neural network (DFUSNN) for parallel MR imaging reconstruction without any external training datasets. We employ the Noise2Noise (N2N) network for the reconstruction in the k-space domain, integrate phase and coil sensitivity smoothness priors into the k-space N2N network, and use an early stopping criterion to prevent overfitting. Additionally, we propose a dual-domain fusion method based on Bayesian optimization to enhance reconstruction quality efficiently.Results. Simulation experiments conducted on three datasets with different undersampling patterns showed that the DFUSNN outperforms all other competing unsupervised methods and the one-shot Hankel-k-space generative model (HKGM). The DFUSNN also achieves comparable results to the supervised Deep-SLR method.Significance. The novel DFUSNN model offers a viable solution for reconstructing high-quality MR images without the need for external training datasets, thereby overcoming a major hurdle in scenarios where acquiring fully sampled MR data is difficult.
Collapse
Affiliation(s)
- Shengyi Chen
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Jizhong Duan
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Xinmin Ren
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Junfeng Wang
- Department of Hepatobiliary Surgery, First People's Hospital of Yunnan Province, Kunming 650030, People's Republic of China
| | - Yu Liu
- School of Microelectronics, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
34
|
Hossain MB, Shinde RK, Imtiaz SM, Hossain FMF, Jeon SH, Kwon KC, Kim N. Swin Transformer and the Unet Architecture to Correct Motion Artifacts in Magnetic Resonance Image Reconstruction. Int J Biomed Imaging 2024; 2024:8972980. [PMID: 38725808 PMCID: PMC11081754 DOI: 10.1155/2024/8972980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
We present a deep learning-based method that corrects motion artifacts and thus accelerates data acquisition and reconstruction of magnetic resonance images. The novel model, the Motion Artifact Correction by Swin Network (MACS-Net), uses a Swin transformer layer as the fundamental block and the Unet architecture as the neural network backbone. We employ a hierarchical transformer with shifted windows to extract multiscale contextual features during encoding. A new dual upsampling technique is employed to enhance the spatial resolutions of feature maps in the Swin transformer-based decoder layer. A raw magnetic resonance imaging dataset is used for network training and testing; the data contain various motion artifacts with ground truth images of the same subjects. The results were compared to six state-of-the-art MRI image motion correction methods using two types of motions. When motions were brief (within 5 s), the method reduced the average normalized root mean square error (NRMSE) from 45.25% to 17.51%, increased the mean structural similarity index measure (SSIM) from 79.43% to 91.72%, and increased the peak signal-to-noise ratio (PSNR) from 18.24 to 26.57 dB. Similarly, when motions were extended from 5 to 10 s, our approach decreased the average NRMSE from 60.30% to 21.04%, improved the mean SSIM from 33.86% to 90.33%, and increased the PSNR from 15.64 to 24.99 dB. The anatomical structures of the corrected images and the motion-free brain data were similar.
Collapse
Affiliation(s)
- Md. Biddut Hossain
- Department of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea
| | - Rupali Kiran Shinde
- Department of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea
| | - Shariar Md Imtiaz
- Department of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea
| | - F. M. Fahmid Hossain
- Department of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea
| | - Seok-Hee Jeon
- Department of Electronics Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Ki-Chul Kwon
- Department of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea
| | - Nam Kim
- Department of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
35
|
Chen Z, Niu C, Gao Q, Wang G, Shan H. LIT-Former: Linking In-Plane and Through-Plane Transformers for Simultaneous CT Image Denoising and Deblurring. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1880-1894. [PMID: 38194396 DOI: 10.1109/tmi.2024.3351723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
This paper studies 3D low-dose computed tomography (CT) imaging. Although various deep learning methods were developed in this context, typically they focus on 2D images and perform denoising due to low-dose and deblurring for super-resolution separately. Up to date, little work was done for simultaneous in-plane denoising and through-plane deblurring, which is important to obtain high-quality 3D CT images with lower radiation and faster imaging speed. For this task, a straightforward method is to directly train an end-to-end 3D network. However, it demands much more training data and expensive computational costs. Here, we propose to link in-plane and through-plane transformers for simultaneous in-plane denoising and through-plane deblurring, termed as LIT-Former, which can efficiently synergize in-plane and through-plane sub-tasks for 3D CT imaging and enjoy the advantages of both convolution and transformer networks. LIT-Former has two novel designs: efficient multi-head self-attention modules (eMSM) and efficient convolutional feed-forward networks (eCFN). First, eMSM integrates in-plane 2D self-attention and through-plane 1D self-attention to efficiently capture global interactions of 3D self-attention, the core unit of transformer networks. Second, eCFN integrates 2D convolution and 1D convolution to extract local information of 3D convolution in the same fashion. As a result, the proposed LIT-Former synergizes these two sub-tasks, significantly reducing the computational complexity as compared to 3D counterparts and enabling rapid convergence. Extensive experimental results on simulated and clinical datasets demonstrate superior performance over state-of-the-art models. The source code is made available at https://github.com/hao1635/LIT-Former.
Collapse
|
36
|
Dalmaz O, Mirza MU, Elmas G, Ozbey M, Dar SUH, Ceyani E, Oguz KK, Avestimehr S, Çukur T. One model to unite them all: Personalized federated learning of multi-contrast MRI synthesis. Med Image Anal 2024; 94:103121. [PMID: 38402791 DOI: 10.1016/j.media.2024.103121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Curation of large, diverse MRI datasets via multi-institutional collaborations can help improve learning of generalizable synthesis models that reliably translate source- onto target-contrast images. To facilitate collaborations, federated learning (FL) adopts decentralized model training while mitigating privacy concerns by avoiding sharing of imaging data. However, conventional FL methods can be impaired by the inherent heterogeneity in the data distribution, with domain shifts evident within and across imaging sites. Here we introduce the first personalized FL method for MRI Synthesis (pFLSynth) that improves reliability against data heterogeneity via model specialization to individual sites and synthesis tasks (i.e., source-target contrasts). To do this, pFLSynth leverages an adversarial model equipped with novel personalization blocks that control the statistics of generated feature maps across the spatial/channel dimensions, given latent variables specific to sites and tasks. To further promote communication efficiency and site specialization, partial network aggregation is employed over later generator stages while earlier generator stages and the discriminator are trained locally. As such, pFLSynth enables multi-task training of multi-site synthesis models with high generalization performance across sites and tasks. Comprehensive experiments demonstrate the superior performance and reliability of pFLSynth in MRI synthesis against prior federated methods.
Collapse
Affiliation(s)
- Onat Dalmaz
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Muhammad U Mirza
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Gokberk Elmas
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Muzaffer Ozbey
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Salman U H Dar
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey
| | - Emir Ceyani
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Kader K Oguz
- Department of Radiology, University of California, Davis Medical Center, Sacramento, CA 95817, USA
| | - Salman Avestimehr
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Tolga Çukur
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara 06800, Turkey; National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara 06800, Turkey; Neuroscience Program, Bilkent University, Ankara 06800, Turkey.
| |
Collapse
|
37
|
Yan Y, Yang T, Jiao C, Yang A, Miao J. IWNeXt: an image-wavelet domain ConvNeXt-based network for self-supervised multi-contrast MRI reconstruction. Phys Med Biol 2024; 69:085005. [PMID: 38479022 DOI: 10.1088/1361-6560/ad33b4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Objective.Multi-contrast magnetic resonance imaging (MC MRI) can obtain more comprehensive anatomical information of the same scanning object but requires a longer acquisition time than single-contrast MRI. To accelerate MC MRI speed, recent studies only collect partial k-space data of one modality (target contrast) to reconstruct the remaining non-sampled measurements using a deep learning-based model with the assistance of another fully sampled modality (reference contrast). However, MC MRI reconstruction mainly performs the image domain reconstruction with conventional CNN-based structures by full supervision. It ignores the prior information from reference contrast images in other sparse domains and requires fully sampled target contrast data. In addition, because of the limited receptive field, conventional CNN-based networks are difficult to build a high-quality non-local dependency.Approach.In the paper, we propose an Image-Wavelet domain ConvNeXt-based network (IWNeXt) for self-supervised MC MRI reconstruction. Firstly, INeXt and WNeXt based on ConvNeXt reconstruct undersampled target contrast data in the image domain and refine the initial reconstructed result in the wavelet domain respectively. To generate more tissue details in the refinement stage, reference contrast wavelet sub-bands are used as additional supplementary information for wavelet domain reconstruction. Then we design a novel attention ConvNeXt block for feature extraction, which can capture the non-local information of the MC image. Finally, the cross-domain consistency loss is designed for self-supervised learning. Especially, the frequency domain consistency loss deduces the non-sampled data, while the image and wavelet domain consistency loss retain more high-frequency information in the final reconstruction.Main results.Numerous experiments are conducted on the HCP dataset and the M4Raw dataset with different sampling trajectories. Compared with DuDoRNet, our model improves by 1.651 dB in the peak signal-to-noise ratio.Significance.IWNeXt is a potential cross-domain method that can enhance the accuracy of MC MRI reconstruction and reduce reliance on fully sampled target contrast images.
Collapse
Affiliation(s)
- Yanghui Yan
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Tiejun Yang
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
- Key Laboratory of Grain Information Processing and Control (HAUT), Ministry of Education, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Grain Photoelectric Detection and Control (HAUT), Zhengzhou, Henan, People's Republic of China
| | - Chunxia Jiao
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Aolin Yang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Jianyu Miao
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| |
Collapse
|
38
|
Bao Q, Liu X, Xu J, Xia L, Otikovs M, Xie H, Liu K, Zhang Z, Zhou X, Liu C. Unsupervised deep learning model for correcting Nyquist ghosts of single-shot spatiotemporal encoding. Magn Reson Med 2024; 91:1368-1383. [PMID: 38073072 DOI: 10.1002/mrm.29925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 02/03/2024]
Abstract
PURPOSE To design an unsupervised deep learning (DL) model for correcting Nyquist ghosts of single-shot spatiotemporal encoding (SPEN) and evaluate the model for real MRI applications. METHODS The proposed method consists of three main components: (1) an unsupervised network that combines Residual Encoder and Restricted Subspace Mapping (RERSM-net) and is trained to generate a phase-difference map based on the even and odd SPEN images; (2) a spin physical forward model to obtain the corrected image with the learned phase difference map; and (3) cycle-consistency loss that is explored for training the RERSM-net. RESULTS The proposed RERSM-net could effectively generate smooth phase difference maps and correct Nyquist ghosts of single-shot SPEN. Both simulation and real in vivo MRI experiments demonstrated that our method outperforms the state-of-the-art SPEN Nyquist ghost correction method. Furthermore, the ablation experiments of generating phase-difference maps show the advantages of the proposed unsupervised model. CONCLUSION The proposed method can effectively correct Nyquist ghosts for the single-shot SPEN sequence.
Collapse
Affiliation(s)
- Qingjia Bao
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, China
| | - Xinjie Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingyun Xu
- School of Information Engineering, Wuhan University of Technology, Wuhan, China
| | - Liyang Xia
- School of Information Engineering, Wuhan University of Technology, Wuhan, China
| | | | - Han Xie
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, China
| | - Kewen Liu
- School of Information Engineering, Wuhan University of Technology, Wuhan, China
| | - Zhi Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Optics Valley Laboratory, Wuhan, China
| | - Chaoyang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, Innovation Academy for Precision Measurement Science and Technology, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Optics Valley Laboratory, Wuhan, China
| |
Collapse
|
39
|
Liu Y, Zhang Z, Yue J, Guo W. SCANeXt: Enhancing 3D medical image segmentation with dual attention network and depth-wise convolution. Heliyon 2024; 10:e26775. [PMID: 38439873 PMCID: PMC10909707 DOI: 10.1016/j.heliyon.2024.e26775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
Existing approaches to 3D medical image segmentation can be generally categorized into convolution-based or transformer-based methods. While convolutional neural networks (CNNs) demonstrate proficiency in extracting local features, they encounter challenges in capturing global representations. In contrast, the consecutive self-attention modules present in vision transformers excel at capturing long-range dependencies and achieving an expanded receptive field. In this paper, we propose a novel approach, termed SCANeXt, for 3D medical image segmentation. Our method combines the strengths of dual attention (Spatial and Channel Attention) and ConvNeXt to enhance representation learning for 3D medical images. In particular, we propose a novel self-attention mechanism crafted to encompass spatial and channel relationships throughout the entire feature dimension. To further extract multiscale features, we introduce a depth-wise convolution block inspired by ConvNeXt after the dual attention block. Extensive evaluations on three benchmark datasets, namely Synapse, BraTS, and ACDC, demonstrate the effectiveness of our proposed method in terms of accuracy. Our SCANeXt model achieves a state-of-the-art result with a Dice Similarity Score of 95.18% on the ACDC dataset, significantly outperforming current methods.
Collapse
Affiliation(s)
- Yajun Liu
- Shanghai Key Laboratory of Intelligent Sensing and Recognition, Shanghai Jiao Tong University, China
| | - Zenghui Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Recognition, Shanghai Jiao Tong University, China
| | - Jiang Yue
- Department of Endocrinology and Metabolism, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Weiwei Guo
- Center for Digital Innovation, Tongji University, China
| |
Collapse
|
40
|
Huang J, Ferreira PF, Wang L, Wu Y, Aviles-Rivero AI, Schönlieb CB, Scott AD, Khalique Z, Dwornik M, Rajakulasingam R, De Silva R, Pennell DJ, Nielles-Vallespin S, Yang G. Deep learning-based diffusion tensor cardiac magnetic resonance reconstruction: a comparison study. Sci Rep 2024; 14:5658. [PMID: 38454072 PMCID: PMC10920645 DOI: 10.1038/s41598-024-55880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
In vivo cardiac diffusion tensor imaging (cDTI) is a promising Magnetic Resonance Imaging (MRI) technique for evaluating the microstructure of myocardial tissue in living hearts, providing insights into cardiac function and enabling the development of innovative therapeutic strategies. However, the integration of cDTI into routine clinical practice poses challenging due to the technical obstacles involved in the acquisition, such as low signal-to-noise ratio and prolonged scanning times. In this study, we investigated and implemented three different types of deep learning-based MRI reconstruction models for cDTI reconstruction. We evaluated the performance of these models based on the reconstruction quality assessment, the diffusion tensor parameter assessment as well as the computational cost assessment. Our results indicate that the models discussed in this study can be applied for clinical use at an acceleration factor (AF) of × 2 and × 4 , with the D5C5 model showing superior fidelity for reconstruction and the SwinMR model providing higher perceptual scores. There is no statistical difference from the reference for all diffusion tensor parameters at AF × 2 or most DT parameters at AF × 4 , and the quality of most diffusion tensor parameter maps is visually acceptable. SwinMR is recommended as the optimal approach for reconstruction at AF × 2 and AF × 4 . However, we believe that the models discussed in this study are not yet ready for clinical use at a higher AF. At AF × 8 , the performance of all models discussed remains limited, with only half of the diffusion tensor parameters being recovered to a level with no statistical difference from the reference. Some diffusion tensor parameter maps even provide wrong and misleading information.
Collapse
Grants
- Wellcome Trust
- RG/19/1/34160 British Heart Foundation
- This study was supported in part by the UKRI Future Leaders Fellowship (MR/V023799/1), BHF (RG/19/1/34160), the ERC IMI (101005122), the H2020 (952172), the MRC (MC/PC/21013), the Royal Society (IEC/NSFC/211235), the NVIDIA Academic Hardware Grant Program, EPSRC (EP/V029428/1, EP/S026045/1, EP/T003553/1, EP/N014588/1, EP/T017961/1), and the Cambridge Mathematics of Information in Healthcare Hub (CMIH) Partnership Fund.
Collapse
Affiliation(s)
- Jiahao Huang
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK.
- Bioengineering Department and Imperial-X, Imperial College London, London, W12 7SL, UK.
| | - Pedro F Ferreira
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Lichao Wang
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Department of Computing, Imperial College London, London, UK
| | - Yinzhe Wu
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Angelica I Aviles-Rivero
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Carola-Bibiane Schönlieb
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Andrew D Scott
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Zohya Khalique
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Maria Dwornik
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Ramyah Rajakulasingam
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Ranil De Silva
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Dudley J Pennell
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Sonia Nielles-Vallespin
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK
| | - Guang Yang
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK.
- Cardiovascular Research Centre, Royal Brompton Hospital, London, SW7 2AZ, UK.
- Bioengineering Department and Imperial-X, Imperial College London, London, W12 7SL, UK.
| |
Collapse
|
41
|
Li B, Hu W, Feng CM, Li Y, Liu Z, Xu Y. Multi-Contrast Complementary Learning for Accelerated MR Imaging. IEEE J Biomed Health Inform 2024; 28:1436-1447. [PMID: 38157466 DOI: 10.1109/jbhi.2023.3348328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Thanks to its powerful ability to depict high-resolution anatomical information, magnetic resonance imaging (MRI) has become an essential non-invasive scanning technique in clinical practice. However, excessive acquisition time often leads to the degradation of image quality and psychological discomfort among subjects, hindering its further popularization. Besides reconstructing images from the undersampled protocol itself, multi-contrast MRI protocols bring promising solutions by leveraging additional morphological priors for the target modality. Nevertheless, previous multi-contrast techniques mainly adopt a simple fusion mechanism that inevitably ignores valuable knowledge. In this work, we propose a novel multi-contrast complementary information aggregation network named MCCA, aiming to exploit available complementary representations fully to reconstruct the undersampled modality. Specifically, a multi-scale feature fusion mechanism has been introduced to incorporate complementary-transferable knowledge into the target modality. Moreover, a hybrid convolution transformer block was developed to extract global-local context dependencies simultaneously, which combines the advantages of CNNs while maintaining the merits of Transformers. Compared to existing MRI reconstruction methods, the proposed method has demonstrated its superiority through extensive experiments on different datasets under different acceleration factors and undersampling patterns.
Collapse
|
42
|
Hossain MB, Shinde RK, Oh S, Kwon KC, Kim N. A Systematic Review and Identification of the Challenges of Deep Learning Techniques for Undersampled Magnetic Resonance Image Reconstruction. SENSORS (BASEL, SWITZERLAND) 2024; 24:753. [PMID: 38339469 PMCID: PMC10856856 DOI: 10.3390/s24030753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Deep learning (DL) in magnetic resonance imaging (MRI) shows excellent performance in image reconstruction from undersampled k-space data. Artifact-free and high-quality MRI reconstruction is essential for ensuring accurate diagnosis, supporting clinical decision-making, enhancing patient safety, facilitating efficient workflows, and contributing to the validity of research studies and clinical trials. Recently, deep learning has demonstrated several advantages over conventional MRI reconstruction methods. Conventional methods rely on manual feature engineering to capture complex patterns and are usually computationally demanding due to their iterative nature. Conversely, DL methods use neural networks with hundreds of thousands of parameters and automatically learn relevant features and representations directly from the data. Nevertheless, there are some limitations to DL-based techniques concerning MRI reconstruction tasks, such as the need for large, labeled datasets, the possibility of overfitting, and the complexity of model training. Researchers are striving to develop DL models that are more efficient, adaptable, and capable of providing valuable information for medical practitioners. We provide a comprehensive overview of the current developments and clinical uses by focusing on state-of-the-art DL architectures and tools used in MRI reconstruction. This study has three objectives. Our main objective is to describe how various DL designs have changed over time and talk about cutting-edge tactics, including their advantages and disadvantages. Hence, data pre- and post-processing approaches are assessed using publicly available MRI datasets and source codes. Secondly, this work aims to provide an extensive overview of the ongoing research on transformers and deep convolutional neural networks for rapid MRI reconstruction. Thirdly, we discuss several network training strategies, like supervised, unsupervised, transfer learning, and federated learning for rapid and efficient MRI reconstruction. Consequently, this article provides significant resources for future improvement of MRI data pre-processing and fast image reconstruction.
Collapse
Affiliation(s)
- Md. Biddut Hossain
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| | - Rupali Kiran Shinde
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| | - Sukhoon Oh
- Research Equipment Operation Department, Korea Basic Science Institute, Cheongju-si 28119, Chungcheongbuk-do, Republic of Korea;
| | - Ki-Chul Kwon
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| | - Nam Kim
- School of Information and Communication Engineering, Chungbuk National University, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea; (M.B.H.); (R.K.S.)
| |
Collapse
|
43
|
Ekanayake M, Pawar K, Harandi M, Egan G, Chen Z. McSTRA: A multi-branch cascaded swin transformer for point spread function-guided robust MRI reconstruction. Comput Biol Med 2024; 168:107775. [PMID: 38061154 DOI: 10.1016/j.compbiomed.2023.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Deep learning MRI reconstruction methods are often based on Convolutional neural network (CNN) models; however, they are limited in capturing global correlations among image features due to the intrinsic locality of the convolution operation. Conversely, the recent vision transformer models (ViT) are capable of capturing global correlations by applying self-attention operations on image patches. Nevertheless, the existing transformer models for MRI reconstruction rarely leverage the physics of MRI. In this paper, we propose a novel physics-based transformer model titled, the Multi-branch Cascaded Swin Transformers (McSTRA) for robust MRI reconstruction. McSTRA combines several interconnected MRI physics-related concepts with the Swin transformers: it exploits global MRI features via the shifted window self-attention mechanism; it extracts MRI features belonging to different spectral components via a multi-branch setup; it iterates between intermediate de-aliasing and data consistency via a cascaded network with intermediate loss computations; furthermore, we propose a point spread function-guided positional embedding generation mechanism for the Swin transformers which exploit the spread of the aliasing artifacts for effective reconstruction. With the combination of all these components, McSTRA outperforms the state-of-the-art methods while demonstrating robustness in adversarial conditions such as higher accelerations, noisy data, different undersampling protocols, out-of-distribution data, and abnormalities in anatomy.
Collapse
Affiliation(s)
- Mevan Ekanayake
- Monash Biomedical Imaging, Monash University, Australia; Department of Electrical and Computer Systems Engineering, Monash University, Australia.
| | - Kamlesh Pawar
- Monash Biomedical Imaging, Monash University, Australia
| | - Mehrtash Harandi
- Department of Electrical and Computer Systems Engineering, Monash University, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Australia; School of Psychological Sciences, Monash University, Australia
| | - Zhaolin Chen
- Monash Biomedical Imaging, Monash University, Australia; Department of Data Science and AI, Monash University, Australia
| |
Collapse
|
44
|
Zaid Alkilani A, Çukur T, Saritas EU. FD-Net: An unsupervised deep forward-distortion model for susceptibility artifact correction in EPI. Magn Reson Med 2024; 91:280-296. [PMID: 37811681 DOI: 10.1002/mrm.29851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE To introduce an unsupervised deep-learning method for fast and effective correction of susceptibility artifacts in reversed phase-encode (PE) image pairs acquired with echo planar imaging (EPI). METHODS Recent learning-based correction approaches in EPI estimate a displacement field, unwarp the reversed-PE image pair with the estimated field, and average the unwarped pair to yield a corrected image. Unsupervised learning in these unwarping-based methods is commonly attained via a similarity constraint between the unwarped images in reversed-PE directions, neglecting consistency to the acquired EPI images. This work introduces a novel unsupervised deep Forward-Distortion Network (FD-Net) that predicts both the susceptibility-induced displacement field and the underlying anatomically correct image. Unlike previous methods, FD-Net enforces the forward-distortions of the correct image in both PE directions to be consistent with the acquired reversed-PE image pair. FD-Net further leverages a multiresolution architecture to maintain high local and global performance. RESULTS FD-Net performs competitively with a gold-standard reference method (TOPUP) in image quality, while enabling a leap in computational efficiency. Furthermore, FD-Net outperforms recent unwarping-based methods for unsupervised correction in terms of both image and field quality. CONCLUSION The unsupervised FD-Net method introduces a deep forward-distortion approach to enable fast, high-fidelity correction of susceptibility artifacts in EPI by maintaining consistency to measured data. Therefore, it holds great promise for improving the anatomical accuracy of EPI imaging.
Collapse
Affiliation(s)
- Abdallah Zaid Alkilani
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Tolga Çukur
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Neuroscience Graduate Program, Bilkent University, Ankara, Turkey
| | - Emine Ulku Saritas
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Neuroscience Graduate Program, Bilkent University, Ankara, Turkey
| |
Collapse
|
45
|
Azad R, Kazerouni A, Heidari M, Aghdam EK, Molaei A, Jia Y, Jose A, Roy R, Merhof D. Advances in medical image analysis with vision Transformers: A comprehensive review. Med Image Anal 2024; 91:103000. [PMID: 37883822 DOI: 10.1016/j.media.2023.103000] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
The remarkable performance of the Transformer architecture in natural language processing has recently also triggered broad interest in Computer Vision. Among other merits, Transformers are witnessed as capable of learning long-range dependencies and spatial correlations, which is a clear advantage over convolutional neural networks (CNNs), which have been the de facto standard in Computer Vision problems so far. Thus, Transformers have become an integral part of modern medical image analysis. In this review, we provide an encyclopedic review of the applications of Transformers in medical imaging. Specifically, we present a systematic and thorough review of relevant recent Transformer literature for different medical image analysis tasks, including classification, segmentation, detection, registration, synthesis, and clinical report generation. For each of these applications, we investigate the novelty, strengths and weaknesses of the different proposed strategies and develop taxonomies highlighting key properties and contributions. Further, if applicable, we outline current benchmarks on different datasets. Finally, we summarize key challenges and discuss different future research directions. In addition, we have provided cited papers with their corresponding implementations in https://github.com/mindflow-institue/Awesome-Transformer.
Collapse
Affiliation(s)
- Reza Azad
- Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, Aachen, Germany
| | - Amirhossein Kazerouni
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Moein Heidari
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | | | - Amirali Molaei
- School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Yiwei Jia
- Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, Aachen, Germany
| | - Abin Jose
- Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, Aachen, Germany
| | - Rijo Roy
- Faculty of Electrical Engineering and Information Technology, RWTH Aachen University, Aachen, Germany
| | - Dorit Merhof
- Faculty of Informatics and Data Science, University of Regensburg, Regensburg, Germany; Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany.
| |
Collapse
|
46
|
Cao C, Huang W, Hu F, Gao X. Hierarchical neural architecture search with adaptive global-local feature learning for Magnetic Resonance Image reconstruction. Comput Biol Med 2024; 168:107774. [PMID: 38039897 DOI: 10.1016/j.compbiomed.2023.107774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Neural architecture search (NAS) has been introduced into the design of deep neural network architectures for Magnetic Resonance Imaging (MRI) reconstruction since NAS-based methods can acquire the complex network architecture automatically without professional designing experience and improve the model's generalization ability. However, current NAS-based MRI reconstruction methods suffer from a lack of efficient operators in the search space, which leads to challenges in effectively recovering high-frequency details. This limitation is primarily due to the prevalent use of convolution operators in the current search space, which struggle to capture both global and local features of MR images simultaneously, resulting in insufficient information utilization. To address this issue, a generative adversarial network (GAN) based model is proposed to reconstruct the MR image from under-sampled K-space data. Firstly, parameterized global and local feature learning modules at multiple scales are added into the search space to improve the capability of recovering high-frequency details. Secondly, to mitigate the increased search time caused by the augmented search space, a hierarchical NAS is designed to learn the global-local feature learning modules that enable the reconstruction network to learn global and local information of MR images at different scales adaptively. Thirdly, to reduce the number of network parameters and computational complexity, the standard operations in global-local feature learning modules are replaced with lightweight operations. Finally, experiments on several publicly available brain MRI image datasets evaluate the performance of the proposed method. Compared to the state-of-the-art MRI reconstruction methods, the proposed method yields better reconstruction results in terms of peak signal-to-noise ratio and structural similarity at a lower computational cost. Additionally, our reconstruction results are validated through a brain tumor classification task, affirming the practicability of the proposed method. Our code is available at https://github.com/wwHwo/HNASMRI.
Collapse
Affiliation(s)
- Chunhong Cao
- MOE Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, Xiangtan, 411100, China
| | - Wenwei Huang
- MOE Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, Xiangtan, 411100, China
| | - Fang Hu
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University, Chenzhou, 423043, China.
| | - Xieping Gao
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
47
|
Gungor A, Askin B, Soydan DA, Top CB, Saritas EU, Cukur T. DEQ-MPI: A Deep Equilibrium Reconstruction With Learned Consistency for Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:321-334. [PMID: 37527298 DOI: 10.1109/tmi.2023.3300704] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Magnetic particle imaging (MPI) offers unparalleled contrast and resolution for tracing magnetic nanoparticles. A common imaging procedure calibrates a system matrix (SM) that is used to reconstruct data from subsequent scans. The ill-posed reconstruction problem can be solved by simultaneously enforcing data consistency based on the SM and regularizing the solution based on an image prior. Traditional hand-crafted priors cannot capture the complex attributes of MPI images, whereas recent MPI methods based on learned priors can suffer from extensive inference times or limited generalization performance. Here, we introduce a novel physics-driven method for MPI reconstruction based on a deep equilibrium model with learned data consistency (DEQ-MPI). DEQ-MPI reconstructs images by augmenting neural networks into an iterative optimization, as inspired by unrolling methods in deep learning. Yet, conventional unrolling methods are computationally restricted to few iterations resulting in non-convergent solutions, and they use hand-crafted consistency measures that can yield suboptimal capture of the data distribution. DEQ-MPI instead trains an implicit mapping to maximize the quality of a convergent solution, and it incorporates a learned consistency measure to better account for the data distribution. Demonstrations on simulated and experimental data indicate that DEQ-MPI achieves superior image quality and competitive inference time to state-of-the-art MPI reconstruction methods.
Collapse
|
48
|
Ozbey M, Dalmaz O, Dar SUH, Bedel HA, Ozturk S, Gungor A, Cukur T. Unsupervised Medical Image Translation With Adversarial Diffusion Models. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:3524-3539. [PMID: 37379177 DOI: 10.1109/tmi.2023.3290149] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Imputation of missing images via source-to-target modality translation can improve diversity in medical imaging protocols. A pervasive approach for synthesizing target images involves one-shot mapping through generative adversarial networks (GAN). Yet, GAN models that implicitly characterize the image distribution can suffer from limited sample fidelity. Here, we propose a novel method based on adversarial diffusion modeling, SynDiff, for improved performance in medical image translation. To capture a direct correlate of the image distribution, SynDiff leverages a conditional diffusion process that progressively maps noise and source images onto the target image. For fast and accurate image sampling during inference, large diffusion steps are taken with adversarial projections in the reverse diffusion direction. To enable training on unpaired datasets, a cycle-consistent architecture is devised with coupled diffusive and non-diffusive modules that bilaterally translate between two modalities. Extensive assessments are reported on the utility of SynDiff against competing GAN and diffusion models in multi-contrast MRI and MRI-CT translation. Our demonstrations indicate that SynDiff offers quantitatively and qualitatively superior performance against competing baselines.
Collapse
|
49
|
Yan Y, Yang T, Zhao X, Jiao C, Yang A, Miao J. DC-SiamNet: Deep contrastive Siamese network for self-supervised MRI reconstruction. Comput Biol Med 2023; 167:107619. [PMID: 37925909 DOI: 10.1016/j.compbiomed.2023.107619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Reconstruction methods based on deep learning have greatly shortened the data acquisition time of magnetic resonance imaging (MRI). However, these methods typically utilize massive fully sampled data for supervised training, restricting their application in certain clinical scenarios and posing challenges to the reconstruction effect when high-quality MR images are unavailable. Recently, self-supervised methods have been developed that only undersampled MRI images participate in the network training. Nevertheless, due to the lack of complete referable MR image data, self-supervised reconstruction is prone to produce incorrect structure contents, such as unnatural texture details and over-smoothed tissue sites. To solve this problem, we propose a self-supervised Deep Contrastive Siamese Network (DC-SiamNet) for fast MR imaging. First, DC-SiamNet performs the reconstruction with a Siamese unrolled structure and obtains visual representations in different iterative phases. Particularly, an attention-weighted average pooling module is employed at the bottleneck layer of the U-shape regularization unit, which can effectively aggregate valuable local information of the underlying feature map in the generated representation vector. Then, a novel hybrid loss function is designed to drive the self-supervised reconstruction and contrastive learning simultaneously by forcing the output consistency across different branches in the frequency domain, the image domain, and the latent space. The proposed method is extensively evaluated with different sampling patterns on the IXI brain dataset and the MRINet knee dataset. Experimental results show that DC-SiamNet can achieve 0.93 in structural similarity and 33.984 dB in peak signal-to-noise ratio on the IXI brain dataset under 8x acceleration. It has better reconstruction accuracy than other methods, and the performance is close to the corresponding model trained with full supervision, especially when the sampling rate is low. In addition, generalization experiments verify that our method has a strong cross-domain reconstruction ability for different contrast brain images.
Collapse
Affiliation(s)
- Yanghui Yan
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Tiejun Yang
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, China; Key Laboratory of Grain Information Processing and Control (HAUT), Ministry of Education, Zhengzhou, China; Henan Key Laboratory of Grain Photoelectric Detection and Control (HAUT), Zhengzhou, Henan, China.
| | - Xiang Zhao
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Chunxia Jiao
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Aolin Yang
- School of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianyu Miao
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
50
|
Ahmed H, Zhang Q, Wong F, Donnan R, Alomainy A. Lesion Detection in Optical Coherence Tomography with Transformer-Enhanced Detector. J Imaging 2023; 9:244. [PMID: 37998091 PMCID: PMC10671998 DOI: 10.3390/jimaging9110244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023] Open
Abstract
Optical coherence tomography (OCT) is an emerging imaging tool in healthcare with common applications in ophthalmology for the detection of retinal diseases and in dentistry for the early detection of tooth decay. Speckle noise is ubiquitous in OCT images, which can hinder diagnosis by clinicians. In this paper, a region-based, deep learning framework for the detection of anomalies is proposed for OCT-acquired images. The core of the framework is Transformer-Enhanced Detection (TED), which includes attention gates (AGs) to ensure focus is placed on the foreground while identifying and removing noise artifacts as anomalies. TED was designed to detect the different types of anomalies commonly present in OCT images for diagnostic purposes and thus aid clinical interpretation. Extensive quantitative evaluations were performed to measure the performance of TED against current, widely known, deep learning detection algorithms. Three different datasets were tested: two dental and one CT (hosting scans of lung nodules, livers, etc.). The results showed that the approach verifiably detected tooth decay and numerous lesions across two modalities, achieving superior performance compared to several well-known algorithms. The proposed method improved the accuracy of detection by 16-22% and the Intersection over Union (IOU) by 10% for both dentistry datasets. For the CT dataset, the performance metrics were similarly improved by 9% and 20%, respectively.
Collapse
Affiliation(s)
- Hanya Ahmed
- Department of Electronic Engineering and Computer Science, Queen Mary University of London—QMUL, London E1 4NS, UK (R.D.); (A.A.)
| | - Qianni Zhang
- Department of Electronic Engineering and Computer Science, Queen Mary University of London—QMUL, London E1 4NS, UK (R.D.); (A.A.)
| | - Ferranti Wong
- Institute of Dentistry at Barts Health, Queen Mary University of London—QMUL, London E1 4NS, UK
| | - Robert Donnan
- Department of Electronic Engineering and Computer Science, Queen Mary University of London—QMUL, London E1 4NS, UK (R.D.); (A.A.)
| | - Akram Alomainy
- Department of Electronic Engineering and Computer Science, Queen Mary University of London—QMUL, London E1 4NS, UK (R.D.); (A.A.)
| |
Collapse
|