1
|
Gao J, Liu M, Qian M, Tang H, Wang J, Ma L, Li Y, Dai X, Wang Z, Lu F, Zhang F. Fine-scale striatal parcellation using diffusion MRI tractography and graph neural networks. Med Image Anal 2025; 101:103482. [PMID: 39954340 DOI: 10.1016/j.media.2025.103482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/17/2025]
Abstract
The striatum, a crucial part of the basal ganglia, plays a key role in various brain functions through its interactions with the cortex. The complex structural and functional diversity across subdivisions within the striatum highlights the necessity for precise striatal segmentation. In this study, we introduce a novel deep clustering pipeline for automated, fine-scale parcellation of the striatum using diffusion MRI (dMRI) tractography. Initially, we employ a voxel-based probabilistic fiber tractography algorithm combined with a fiber-tract embedding technique to capture intricate dMRI connectivity patterns. To maintain critical inter-voxel relationships, our approach employs Graph Neural Networks (GNNs) to create accurate graph representations of the striatum. This involves encoding probabilistic fiber bundle characteristics as node attributes and refining edge weights using activation functions to enhance the graph's interpretability and accuracy. The methodology incorporates a Transformer-based GraphConv autoencoder in the pre-training phase to extract critical spatial features while minimizing reconstruction loss. In the fine-tuning phase, a novel joint loss mechanism markedly improves segmentation precision and anatomical fidelity. Integration of traditional clustering techniques with multi-head self-attention mechanisms further elevates the accuracy and robustness of our segmentation approach. This methodology provides new insights into the striatum's role in cognition and behavior and offers potential clinical applications for neurological disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Mingqi Liu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Maomin Qian
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Heping Tang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Junyi Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Liang Ma
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States.
| | - Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, 610039, Sichuan, China.
| | - Xin Dai
- School of Automation, Chongqing University, Chongqing, 400044, Chongqing, China.
| | - Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| | - Fengmei Lu
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, Chengdu, 611731, Sichuan, China.
| | - Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China.
| |
Collapse
|
2
|
Legarreta JH, Lan Z, Chen Y, Zhang F, Yeterian E, Makris N, Rushmore J, Rathi Y, O’Donnell LJ. Towards an informed choice of diffusion MRI image contrasts for cerebellar segmentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642452. [PMID: 40161663 PMCID: PMC11952381 DOI: 10.1101/2025.03.10.642452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The fine-grained segmentation of cerebellar structures is an essential step towards supplying increasingly accurate anatomically informed analyses, including, for example, white matter diffusion magnetic resonance imaging (MRI) tractography. Cerebellar tissue segmentation is typically performed on structural magnetic resonance imaging data, such as T1-weighted data, while connectivity between segmented regions is mapped using diffusion MRI tractography data. Small deviations in structural to diffusion MRI data co-registration may negatively impact connectivity analyses. Reliable segmentation of brain tissue performed directly on diffusion MRI data helps to circumvent such inaccuracies. Diffusion MRI enables the computation of many image contrasts, including a variety of tissue microstructure maps. While multiple methods have been proposed for the segmentation of cerebellar structures using diffusion MRI, little attention has been paid to the systematic evaluation of the performance of different available input image contrasts for the segmentation task. In this work, we evaluate and compare the segmentation performance of diffusion MRI-derived contrasts on the cerebellar segmentation task. Specifically, we include spherical mean (diffusion-weighted image average) and b0 (non-diffusion-weighted image average) contrasts, local signal parameterization contrasts (diffusion tensor and kurtosis fit maps), and the structural T1-weighted MRI contrast that is most commonly employed for the task. We train a popular deep-learning architecture using a publicly available dataset (HCP-YA), leveraging cerebellar region labels from the atlas-based SUIT cerebellar segmentation pipeline. By training and testing using many diffusion-MRI-derived image inputs, we find that the spherical mean image computed from b=1000 s/mm2 shell data provides stable performance across different metrics and significantly outperforms the tissue microstructure contrasts that are traditionally used in machine learning segmentation methods for diffusion MRI.
Collapse
Affiliation(s)
- Jon Haitz Legarreta
- Department of Radiology, Brigham and Women’s Hospital, Mass General Brigham/Harvard Medical School, Boston MA, USA
| | - Zhou Lan
- Department of Radiology, Brigham and Women’s Hospital, Mass General Brigham/Harvard Medical School, Boston MA, USA
- Center for Clinical Investigation, Brigham and Women’s Hospital, Mass General Brigham, Boston MA, USA
| | - Yuqian Chen
- Department of Radiology, Brigham and Women’s Hospital, Mass General Brigham/Harvard Medical School, Boston MA, USA
| | - Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Edward Yeterian
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
- Department of Psychology, Colby College, Waterville ME, USA
| | - Nikos Makris
- Department of Psychiatry, Brigham and Women’s Hospital, Mass General Brigham/Harvard Medical School, Boston MA, USA
| | - Jarrett Rushmore
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston MA, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Mass General Brigham/Harvard Medical School, Boston MA, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women’s Hospital, Mass General Brigham/Harvard Medical School, Boston MA, USA
| | - Lauren J. O’Donnell
- Department of Radiology, Brigham and Women’s Hospital, Mass General Brigham/Harvard Medical School, Boston MA, USA
| |
Collapse
|
3
|
Li C, Yang D, Yao S, Wang S, Wu Y, Zhang L, Li Q, Cho KIK, Seitz-Holland J, Ning L, Legarreta JH, Rathi Y, Westin CF, O'Donnell LJ, Sochen NA, Pasternak O, Zhang F. DDEvENet: Evidence-based ensemble learning for uncertainty-aware brain parcellation using diffusion MRI. Comput Med Imaging Graph 2025; 120:102489. [PMID: 39787735 PMCID: PMC11792617 DOI: 10.1016/j.compmedimag.2024.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/04/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
In this study, we developed an Evidential Ensemble Neural Network based on Deep learning and Diffusion MRI, namely DDEvENet, for anatomical brain parcellation. The key innovation of DDEvENet is the design of an evidential deep learning framework to quantify predictive uncertainty at each voxel during a single inference. To do so, we design an evidence-based ensemble learning framework for uncertainty-aware parcellation to leverage the multiple dMRI parameters derived from diffusion MRI. Using DDEvENet, we obtained accurate parcellation and uncertainty estimates across different datasets from healthy and clinical populations and with different imaging acquisitions. The overall network includes five parallel subnetworks, where each is dedicated to learning the FreeSurfer parcellation for a certain diffusion MRI parameter. An evidence-based ensemble methodology is then proposed to fuse the individual outputs. We perform experimental evaluations on large-scale datasets from multiple imaging sources, including high-quality diffusion MRI data from healthy adults and clinically diffusion MRI data from participants with various brain diseases (schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, Parkinson's disease, cerebral small vessel disease, and neurosurgical patients with brain tumors). Compared to several state-of-the-art methods, our experimental results demonstrate highly improved parcellation accuracy across the multiple testing datasets despite the differences in dMRI acquisition protocols and health conditions. Furthermore, thanks to the uncertainty estimation, our DDEvENet approach demonstrates a good ability to detect abnormal brain regions in patients with lesions that are consistent with expert-drawn results, enhancing the interpretability and reliability of the segmentation results.
Collapse
Affiliation(s)
- Chenjun Li
- University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Dian Yang
- University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shun Yao
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuyue Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ye Wu
- Nanjing University of Science and Technology, Nanjing, Jiangsu, China
| | - Le Zhang
- University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qiannuo Li
- East China University of Science and Technology, Shanghai, China
| | | | | | | | | | | | | | | | - Nir A Sochen
- School of Mathematical Sciences, University of Tel Aviv, Tel Aviv, Israel
| | | | - Fan Zhang
- University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Karimi D, Warfield SK. Diffusion MRI with Machine Learning. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00353. [PMID: 40206511 PMCID: PMC11981007 DOI: 10.1162/imag_a_00353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) of the brain offers unique capabilities including noninvasive probing of tissue microstructure and structural connectivity. It is widely used for clinical assessment of disease and injury, and for neuroscience research. Analyzing the dMRI data to extract useful information for medical and scientific purposes can be challenging. The dMRI measurements may suffer from strong noise and artifacts, and may exhibit high inter-session and inter-scanner variability in the data, as well as inter-subject heterogeneity in brain structure. Moreover, the relationship between measurements and the phenomena of interest can be highly complex. Recent years have witnessed increasing use of machine learning methods for dMRI analysis. This manuscript aims to assess these efforts, with a focus on methods that have addressed data preprocessing and harmonization, microstructure mapping, tractography, and white matter tract analysis. We study the main findings, strengths, and weaknesses of the existing methods and suggest topics for future research. We find that machine learning may be exceptionally suited to tackle some of the difficult tasks in dMRI analysis. However, for this to happen, several shortcomings of existing methods and critical unresolved issues need to be addressed. There is a pressing need to improve evaluation practices, to increase the availability of rich training datasets and validation benchmarks, as well as model generalizability, reliability, and explainability concerns.
Collapse
Affiliation(s)
- Davood Karimi
- Harvard Medical School and Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Simon K. Warfield
- Harvard Medical School and Boston Children’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Zhang F, Chen Y, Ning L, Rushmore J, Liu Q, Du M, Hassanzadeh‐Behbahani S, Legarreta J, Yeterian E, Makris N, Rathi Y, O'Donnell L. Assessment of the Depiction of Superficial White Matter Using Ultra-High-Resolution Diffusion MRI. Hum Brain Mapp 2024; 45:e70041. [PMID: 39392220 PMCID: PMC11467805 DOI: 10.1002/hbm.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024] Open
Abstract
The superficial white matter (SWM) consists of numerous short-range association fibers connecting adjacent and nearby gyri and plays an important role in brain function, development, aging, and various neurological disorders. Diffusion MRI (dMRI) tractography is an advanced imaging technique that enables in vivo mapping of the SWM. However, detailed imaging of the small, highly-curved fibers of the SWM is a challenge for current clinical and research dMRI acquisitions. This work investigates the efficacy of mapping the SWM using in vivo ultra-high-resolution dMRI data. We compare the SWM mapping performance from two dMRI acquisitions: a high-resolution 0.76-mm isotropic acquisition using the generalized slice-dithered enhanced resolution (gSlider) protocol and a lower resolution 1.25-mm isotropic acquisition obtained from the Human Connectome Project Young Adult (HCP-YA) database. Our results demonstrate significant differences in the cortico-cortical anatomical connectivity that is depicted by these two acquisitions. We perform a detailed assessment of the anatomical plausibility of these results with respect to the nonhuman primate (macaque) tract-tracing literature. We find that the high-resolution gSlider dataset is more successful at depicting a large number of true positive anatomical connections in the SWM. An additional cortical coverage analysis demonstrates significantly higher cortical coverage in the gSlider dataset for SWM streamlines under 40 mm in length. Overall, we conclude that the spatial resolution of the dMRI data is one important factor that can significantly affect the mapping of SWM. Considering the relatively long acquisition time, the application of dMRI tractography for SWM mapping in future work should consider the balance of data acquisition efforts and the efficacy of SWM depiction.
Collapse
Affiliation(s)
- Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yuqian Chen
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lipeng Ning
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jarrett Rushmore
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Qiang Liu
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Mubai Du
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
| | | | - Jon Haitz Legarreta
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Edward Yeterian
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of PsychologyColby CollegeWatervilleMaineUSA
| | - Nikos Makris
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lauren J. O'Donnell
- School of Information and Communication Engineering, University of Electronic Science and Technology of ChinaChengduChina
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
6
|
Li Y, Zhang W, Wu Y, Yin L, Zhu C, Chen Y, Cetin-Karayumak S, Cho KIK, Zekelman LR, Rushmore J, Rathi Y, Makris N, O'Donnell LJ, Zhang F. A diffusion MRI tractography atlas for concurrent white matter mapping across Eastern and Western populations. Sci Data 2024; 11:787. [PMID: 39019877 PMCID: PMC11255335 DOI: 10.1038/s41597-024-03624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
The study of brain differences across Eastern and Western populations provides vital insights for understanding potential cultural and genetic influences on cognition and mental health. Diffusion MRI (dMRI) tractography is an important tool in assessing white matter (WM) connectivity and brain tissue microstructure across different populations. However, a comprehensive investigation into WM fiber tracts between Eastern and Western populations is challenged due to the lack of a cross-population WM atlas and the large site-specific variability of dMRI data. This study presents a dMRI tractography atlas, namely the East-West WM Atlas, for concurrent WM mapping between Eastern and Western populations and creates a large, harmonized dMRI dataset (n=306) based on the Human Connectome Project and the Chinese Human Connectome Project. The curated WM atlas, as well as subject-specific data including the harmonized dMRI data, the whole brain tractography data, and parcellated WM fiber tracts and their diffusion measures, are publicly released. This resource is a valuable addition to facilitating the exploration of brain commonalities and differences across diverse cultural backgrounds.
Collapse
Affiliation(s)
- Yijie Li
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Li Yin
- West China Hospital of Medical Science, Sichuan University, Chengdu, China
| | - Ce Zhu
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuqian Chen
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | | | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Leo R Zekelman
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Jarrett Rushmore
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Nikos Makris
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| | - Fan Zhang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Zhu Z, Ma X, Wang W, Dong S, Wang K, Wu L, Luo G, Wang G, Li S. Boosting knowledge diversity, accuracy, and stability via tri-enhanced distillation for domain continual medical image segmentation. Med Image Anal 2024; 94:103112. [PMID: 38401270 DOI: 10.1016/j.media.2024.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/10/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Domain continual medical image segmentation plays a crucial role in clinical settings. This approach enables segmentation models to continually learn from a sequential data stream across multiple domains. However, it faces the challenge of catastrophic forgetting. Existing methods based on knowledge distillation show potential to address this challenge via a three-stage process: distillation, transfer, and fusion. Yet, each stage presents its unique issues that, collectively, amplify the problem of catastrophic forgetting. To address these issues at each stage, we propose a tri-enhanced distillation framework. (1) Stochastic Knowledge Augmentation reduces redundancy in knowledge, thereby increasing both the diversity and volume of knowledge derived from the old network. (2) Adaptive Knowledge Transfer selectively captures critical information from the old knowledge, facilitating a more accurate knowledge transfer. (3) Global Uncertainty-Guided Fusion introduces a global uncertainty view of the dataset to fuse the old and new knowledge with reduced bias, promoting a more stable knowledge fusion. Our experimental results not only validate the feasibility of our approach, but also demonstrate its superior performance compared to state-of-the-art methods. We suggest that our innovative tri-enhanced distillation framework may establish a robust benchmark for domain continual medical image segmentation.
Collapse
Affiliation(s)
- Zhanshi Zhu
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Xinghua Ma
- Faculty of Computing, Harbin Institute of Technology, Harbin, China
| | - Wei Wang
- Faculty of Computing, Harbin Institute of Technology, Shenzhen, China.
| | - Suyu Dong
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, China
| | - Kuanquan Wang
- Faculty of Computing, Harbin Institute of Technology, Harbin, China.
| | - Lianming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gongning Luo
- Faculty of Computing, Harbin Institute of Technology, Harbin, China.
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, China
| | - Shuo Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|