1
|
Verkhovnikova EN, Timoshenko RV, Vaneev AN, Tikhonova TN, Fadeev VV, Gorelkin PV, Erofeev AS. Recent advances in development of glucose nanosensors for cellular analysis and other applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1949-1961. [PMID: 39962963 DOI: 10.1039/d4ay02235a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Diabetes mellitus is a disease that affects a large number of people around the world. There are no effective methods to completely cure diabetes, and patients have to constantly monitor their blood sugar levels, so there is still a need for improved sensors. In addition to diabetes, quantitative values of glucose levels affect the development of some endocrine diseases and problems with nervous tissue. In this review, we will describe existing developments, the principles of glucose measurement, sensor designs, the materials they are made of, and how nanotechnology is improving the sensors under development by increasing sensitivity and surface area and improving catalytic properties.
Collapse
Affiliation(s)
- Ekaterina N Verkhovnikova
- Research Laboratory of Biophysics, National University of Science and Technology "MISiS", 119049 Moscow, Russia.
| | - Roman V Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology "MISiS", 119049 Moscow, Russia.
| | - Alexander N Vaneev
- Research Laboratory of Biophysics, National University of Science and Technology "MISiS", 119049 Moscow, Russia.
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana N Tikhonova
- Department of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Victor V Fadeev
- Department of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Peter V Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology "MISiS", 119049 Moscow, Russia.
| | - Alexander S Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology "MISiS", 119049 Moscow, Russia.
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Huang Q, Chen J, Zhao Y, Huang J, Liu H. Advancements in electrochemical glucose sensors. Talanta 2025; 281:126897. [PMID: 39293246 DOI: 10.1016/j.talanta.2024.126897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
The development of electrochemical glucose sensors with high sensitivity, specificity, and stability, enabling real-time continuous monitoring, has posed a significant challenge. However, an opportunity exists to fabricate electrochemical glucose biosensors with optimal performance through innovative device structures and surface modification materials. This paper provides a comprehensive review of recent advances in electrochemical glucose sensors. Novel classes of nanomaterials-including metal nanoparticles, carbon-based nanomaterials, and metal-organic frameworks-with excellent electronic conductivity and high specific surface areas, have increased the availability of reactive sites to improved contact with glucose molecules. Furthermore, in line with the trend in electrochemical glucose sensor development, research progress concerning their utilisation with sweat, tears, saliva, and interstitial fluid is described. To facilitate the commercialisation of these sensors, further enhancements in biocompatibility and stability are required. Finally, the characteristics of the ideal electrochemical glucose sensor are described and the developmental trends in this field are outlines.
Collapse
Affiliation(s)
- Qing Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China; Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China
| | - Jingqiu Chen
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Yunong Zhao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Jing Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China
| | - Huan Liu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Wuhan, Hubei, 430074, China.
| |
Collapse
|
3
|
Antonova IV, Ivanov AI, Shavelkina MB, Poteryayev DA, Buzmakova AA, Soots RA. Engineering of graphene-based composites with hexagonal boron nitride and PEDOT:PSS for sensing applications. Phys Chem Chem Phys 2024; 26:7844-7854. [PMID: 38376373 DOI: 10.1039/d3cp05953g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
A unique nanomaterial has been developed for sweat analysis, including glucose level monitoring. Simple resusable low-cost sensors from composite materials based on graphene, hexagonal boron nitride, and conductive PEDOT:PSS (poly(3,4-ethylenedioxythiophene)polystyrene sulfonate) polymer have been developed and fabricated via 2D printing on flexible substrates. The sensors were tested as biosensors using different water-based solutions. A strong increase in the current response (several orders of magnitude) was observed for aqua vapors or glucose solution vapors. This property is associated with the sorption capacity of graphene synthesized in a volume of plasma jets and thus having many active centers on the surface. The structure and properties of graphene synthesized in a plasma are different from those of graphene created by other methods. As a result, the current response for a wearable sensor is 3-5 orders of magnitude higher for the reference blood glucose concentration range of 4-14 mM. It has been found that the most promising sensor with the highest response was fabricated based on the graphene:PEDOT:PSS composite. The graphene:h-BN:PEDOT:PSS (h-BN is hexagonal boron nitride) sensors demonstrated a longer response and the highest response after the functionalization of the sensors with a glucose oxidase enzyme. The reusable wearable graphene:PEDOT:PSS glucose sensors on a paper substrate demonstrated a current response of 10-10 to 10-5 A for an operating voltage of 0.5 V and glucose range of 4-10 mM.
Collapse
Affiliation(s)
- Irina V Antonova
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
- Department of Semiconductor Devices and Microelectronics, Novosibirsk State Technical University, 20 K. Marx Str., Novosibirsk 630073, Russia
| | - Artem I Ivanov
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
| | - Marina B Shavelkina
- Joint Institute for High Temperatures RAS, Izhorskaya Str. 13 Bd.2, Moscow 125412, Russia
| | - Dmitriy A Poteryayev
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
- Department of Semiconductor Devices and Microelectronics, Novosibirsk State Technical University, 20 K. Marx Str., Novosibirsk 630073, Russia
| | - Anna A Buzmakova
- Department of Semiconductor Devices and Microelectronics, Novosibirsk State Technical University, 20 K. Marx Str., Novosibirsk 630073, Russia
| | - Regina A Soots
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Av., Novosibirsk 630090, Russia.
| |
Collapse
|
4
|
Abrha FH, Wondimu TH, Kahsay MH, Fufa Bakare F, Andoshe DM, Kim JY. Graphene-based biosensors for detecting coronavirus: a brief review. NANOSCALE 2023; 15:18184-18197. [PMID: 37927083 DOI: 10.1039/d3nr04583h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The coronavirus (SARS-CoV-2) disease has affected the globe with 770 437 327 confirmed cases, including about 6 956 900 deaths, according to the World Health Organization (WHO) as of September 2023. Hence, it is imperative to develop diagnostic technologies, such as a rapid cost-effective SARS-CoV-2 detection method. A typical biosensor enables biomolecule detection with an appropriate transducer by generating a measurable signal from the sample. Graphene can be employed as a component for ultrasensitive and selective biosensors based on its physical, optical, and electrochemical properties. Herein, we briefly review graphene-based electrochemical, field-effect transistor (FET), and surface plasmon biosensors for detecting the SARS-CoV-2 target. In addition, details on the surface modification, immobilization, sensitivity and limit of detection (LOD) of all three sensors with regard to SARS-CoV-2 were reported. Finally, the point-of-care (POC) detection of SARS-CoV-2 using a portable smartphone and a wearable watch is a current topic of interest.
Collapse
Affiliation(s)
- Filimon Hadish Abrha
- Department of Chemistry, College of Natural and Computational Sciences, Aksum University, Aksum 1010, Ethiopia
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Tadele Hunde Wondimu
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Mebrahtu Hagos Kahsay
- Department of Applied Chemistry, College of Natural and Computational Sciences, Mekelle University, Mekelle 231, Ethiopia
- Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Fetene Fufa Bakare
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Dinsefa Mensur Andoshe
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
| | - Jung Yong Kim
- Department of Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia.
- Center of Advanced Materials Science and Engineering, Adama Science and Technology University, Adama 1888, Ethiopia
| |
Collapse
|
5
|
Farahmandpour M, Haghshenas H, Kordrostami Z. Blood glucose sensing by back gated transistor strips sensitized by CuO hollow spheres and rGO. Sci Rep 2022; 12:21872. [PMID: 36536057 PMCID: PMC9763381 DOI: 10.1038/s41598-022-26287-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, a highly sensitive flexible glucose sensor based on a field effect transistor (FET) has been fabricated. It is shown that the proposed flexible transistor can be used as new non-enzymatic blood glucose test strips. CuO hollow-spheres decorated with reduced graphene oxide have been synthesized using the hydrothermal method. The shells of the hollow micro-spheres are formed by nanostructures. The synthesized nanostructured hollow micro-spheres (rGO/CuO-NHS) are deposited on a flexible PET substrate between interdigitated electrodes as the channel of a back gate transistor. The channel concentration and the FET bias are optimized so that the sensor exhibits extremely low limit of detection and high sensitivity. The combination of selective porous CuO hollow spheres and the high surface to volume ratio of their nanostructured shells with the high mobility and high conductivity rGO led to faster and higher charge-transfer capability and superior electro-catalyst activity for glucose oxidation. The glucose-dependent electrical responses of the sensor is measured in both resistive and transistor action modes. The amplification of the current by the induced electric field of the gate in the proposed FET-based biosensor provides advantages such as higher sensitivity and lower limit of detection compared to the resistive sensor. The flexible glucose sensor has a sensitivity of 600 μA μM-1 and a limit of detection of 1 nM with high reproducibility, good stability, and highly selectivity. The high accuracy response of the biosensor towards the real blood serum samples showed that it can be used as a test strip for glucose detection in real blood samples.
Collapse
Affiliation(s)
- Milad Farahmandpour
- grid.444860.a0000 0004 0600 0546Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran ,grid.444860.a0000 0004 0600 0546Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz, Iran
| | - Hassan Haghshenas
- grid.444860.a0000 0004 0600 0546Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran ,grid.444860.a0000 0004 0600 0546Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz, Iran
| | - Zoheir Kordrostami
- grid.444860.a0000 0004 0600 0546Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz, Iran ,grid.444860.a0000 0004 0600 0546Research Center for Design and Fabrication of Advanced Electronic Devices, Shiraz University of Technology, Shiraz, Iran
| |
Collapse
|
6
|
Banerjee AN. Green syntheses of graphene and its applications in internet of things (IoT)-a status review. NANOTECHNOLOGY 2022; 33:322003. [PMID: 35395654 DOI: 10.1088/1361-6528/ac6599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Internet of Things (IoT) is a trending technological field that converts any physical object into a communicable smarter one by converging the physical world with the digital world. This innovative technology connects the device to the internet and provides a platform to collect real-time data, cloud storage, and analyze the collected data to trigger smart actions from a remote location via remote notifications, etc. Because of its wide-ranging applications, this technology can be integrated into almost all the industries. Another trending field with tremendous opportunities is Nanotechnology, which provides many benefits in several areas of life, and helps to improve many technological and industrial sectors. So, integration of IoT and Nanotechnology can bring about the very important field of Internet of Nanothings (IoNT), which can re-shape the communication industry. For that, data (collected from trillions of nanosensors, connected to billions of devices) would be the 'ultimate truth', which could be generated from highly efficient nanosensors, fabricated from various novel nanomaterials, one of which is graphene, the so-called 'wonder material' of the 21st century. Therefore, graphene-assisted IoT/IoNT platforms may revolutionize the communication technologies around the globe. In this article, a status review of the smart applications of graphene in the IoT sector is presented. Firstly, various green synthesis of graphene for sustainable development is elucidated, followed by its applications in various nanosensors, detectors, actuators, memory, and nano-communication devices. Also, the future market prospects are discussed to converge various emerging concepts like machine learning, fog/edge computing, artificial intelligence, big data, and blockchain, with the graphene-assisted IoT field to bring about the concept of 'all-round connectivity in every sphere possible'.
Collapse
|
7
|
Manimekala T, Sivasubramanian R, Dharmalingam G. Nanomaterial-Based Biosensors using Field-Effect Transistors: A Review. JOURNAL OF ELECTRONIC MATERIALS 2022; 51:1950-1973. [PMID: 35250154 PMCID: PMC8881998 DOI: 10.1007/s11664-022-09492-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/01/2022] [Indexed: 05/05/2023]
Abstract
Field-effect transistor biosensors (Bio-FET) have attracted great interest in recent years owing to their distinctive properties like high sensitivity, good selectivity, and easy integration into portable and wearable electronic devices. Bio-FET performance mainly relies on the constituent components such as the bio-recognition layer and the transducer, which ensures device stability, sensitivity, and lifetime. Nanomaterial-based Bio-FETs are excellent candidates for biosensing applications. This review discusses the basic concepts, function, and working principles of Bio-FETs, and focuses on the progress of recent research in Bio-FETs in the sensing of neurotransmitters, glucose, nucleic acids, proteins, viruses, and cancer biomarkers using nanomaterials. Finally, challenges in the development of Bio-FETs, as well as an outlook on the prospects of nano Bio-FET-based sensing in various fields, are discussed.
Collapse
Affiliation(s)
- T. Manimekala
- Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, Tamilnadu 641004 India
- Electrochemical Sensors and Energy Materials Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, Tamilnadu 641004 India
| | - R. Sivasubramanian
- Electrochemical Sensors and Energy Materials Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, Tamilnadu 641004 India
| | - Gnanaprakash Dharmalingam
- Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore, Tamilnadu 641004 India
| |
Collapse
|
8
|
Al-Dairy AR, Albiss B, Jaradat AA. Computational Modeling of ZnO-NRs and Graphene Nanostructure as a Glucose Biosensor. SENSING AND IMAGING 2021; 22:30. [DOI: 10.1007/s11220-021-00353-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/13/2021] [Accepted: 06/16/2021] [Indexed: 09/02/2023]
|
9
|
Thakre KG, Barai DP, Bhanvase BA. A review of graphene-TiO 2 and graphene-ZnO nanocomposite photocatalysts for wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2414-2460. [PMID: 34378264 DOI: 10.1002/wer.1623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Technologies for wastewater remediation have been growing ever since the environmental and health concern is realized. Development of nanomaterials has enabled mankind to have different methods to treat the various kinds of inorganic and organic pollutants present in wastewater from many resources. Among the many materials, semiconductor materials have found many environmental applications due to their outstanding photocatalytic activities. TiO2 and ZnO are more effectively used as photocatalyst or adsorbents in the withdrawal of inorganic as well as organic wastes from the wastewater. On the other hand, graphene is tremendously being investigated for applications in environmental remediation in view of the superior physical, optical, thermal, and electronic properties of graphene nanocomposites. In this work, graphene-TiO2 and graphene-ZnO nanocomposites have been reviewed for photocatalytic wastewater treatment. The various preparation techniques of these nanocomposites have been discussed. Also, different design strategies for graphene-based photocatalyst have been revealed. These nanocomposites exhibit promising applications in most of the water purification processes which are reviewed in this work. Along with this, the development of these nanocomposites using biomass-derived graphene has also been introduced. PRACTITIONER POINTS: Graphene-TiO2 and graphene-ZnO nanocomposites are effective for wastewater treatment through photocatalysis. These nanocomposite photocatalysts have been used in the form of membrane as well as antibacterial agents. Synthetic strategies and design considerations of graphene-based photocatalyst play a major role. Biomass-derived graphene-TiO2 and graphene-ZnO nanocomposites have also found application in wastewater treatment.
Collapse
Affiliation(s)
- Kunal G Thakre
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Divya P Barai
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Bharat A Bhanvase
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
10
|
Abstract
Graphene-based materials are found as excellent resources and employed as efficient anti-microbial agents, and they have been receiving significant attention from scientists and researchers in this regard. By giving special attention to recent applications of graphene-based materials, the current review is dedicated to unveiling the antimicrobial properties of graphene and its hybrid composites and their preparation methods. Different factors like the number of layers, concentration, size, and shape of the antibacterial activity are thoroughly discussed. Graphene-based materials could damage the bacteria physically by directly contacting the cell membrane or wrapping the bacterial cell. It can also chemically react to bacteria through oxidative stress and charge transfer mechanisms. This review explains such mechanisms thoroughly and summarizes the antibacterial applications (wound bandages, coatings, food packaging, etc.) of graphene and its hybrid materials.
Collapse
|
11
|
Graphene, Graphene-Derivatives and Composites: Fundamentals, Synthesis Approaches to Applications. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5070181] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Graphene has accomplished huge notoriety and interest from the universe of science considering its exceptional mechanical physical and thermal properties. Graphene is an allotrope of carbon having one atom thick size and planar sheets thickly stuffed in a lattice structure resembling a honeycomb structure. Numerous methods to prepare graphene have been created throughout a limited span of time. Due to its fascinating properties, it has found some extensive applications to a wide variety of fields. So, we believe there is a necessity to produce a document of the outstanding methods and some of the novel applications of graphene. This article centres around the strategies to orchestrate graphene and its applications in an attempt to sum up the advancements that has taken place in the research of graphene.
Collapse
|
12
|
Bhaiyya M, Rewatkar P, Salve M, Pattnaik PK, Goel S. Miniaturized Electrochemiluminescence Platform With Laser-Induced Graphene Electrodes for Multiple Biosensing. IEEE Trans Nanobioscience 2020; 20:79-85. [PMID: 33166255 DOI: 10.1109/tnb.2020.3036642] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present work demonstrates a miniaturized 3D printed Electrochemiluminescence (ECL) sensing platform with Laser-Induced Graphene (LIG) based Open Bipolar Electrodes (OBEs). To fabricate OBEs, polyimide (PI) substrate has been used as it provides properties like low-cost fabrication, high selectivity, great stability, easy reproducibility, cost-effectiveness and rapid prototyping. Moreover, graphene can be created on PI in a single step during the ablation of the CO2 laser. Android smartphone was efficiently used to sense ECL signals as well as to drive the required voltage to the OBEs. With the optimized parameters, the imaging system was successfully used to detect Hydrogen Peroxide (H2 O2) with a linear range of 1 [Formula: see text] to [Formula: see text] and detection of limit (LOD) [Formula: see text] (R2 = 0.9449, n = 3). In addition, the detection of glucose has been carried out with a linear range of [Formula: see text] to [Formula: see text] and detection of limit (LOD) [Formula: see text] (R2 = 0.9875, n = 3). Further, real samples were tested to manifest the workability of the platform for random samples. Overall, the developed low-cost, rapidly realized and the miniaturized system can be used in many biomedical applications, environmental monitoring and point-of-care testings.
Collapse
|
13
|
Abstract
Carbon nanostructures (CNs), such as carbon nanotubes, fullerenes, carbon dots, nanodiamonds as well as graphene and its derivatives present a tremendous potential for various biomedical applications, ranging from sensing to drug delivery and gene therapy, biomedical imaging and tissue engineering. Since most of these applications encompass blood contact or intravenous injection, hemocompatibility is a critical aspect that must be carefully considered to take advantage of CN exceptional characteristics while allowing their safe use. This review discusses the hemocompatibility of different classes of CNs with the purpose of providing biomaterial scientists with a comprehensive vision of the interactions between CNs and blood components. The various complex mechanisms involved in blood compatibility, including coagulation, hemolysis, as well as the activation of complement, platelets, and leukocytes will be considered. Special attention will be paid to the role of CN size, structure, and surface properties in the formation of the protein corona and in the processes that drive blood response. The aim of this review is to emphasize the importance of hemocompatibility for CNs intended for biomedical applications and to provide some valuable insights for the development of new generation particles with improved performance and safety in the physiological environment.
Collapse
|
14
|
Pramanik S, Sundar Das D. Future prospects and commercial viability of two-dimensional nanostructures for biomedical technology. TWO-DIMENSIONAL NANOSTRUCTURES FOR BIOMEDICAL TECHNOLOGY 2020:281-302. [DOI: 10.1016/b978-0-12-817650-4.00009-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Abd-Wahab F, Abdul Guthoos HF, Wan Salim WWA. Solid-State rGO-PEDOT:PSS Transducing Material for Cost-Effective Enzymatic Sensing. BIOSENSORS 2019; 9:E36. [PMID: 30832254 PMCID: PMC6468658 DOI: 10.3390/bios9010036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 11/24/2022]
Abstract
Performance of a sensing device is dependent on its construction material, especially for components that are directly involved in transporting and translating signals across the device. Understanding the morphology and characteristics of the material components is therefore crucial in the development of any sensing device. This work examines the morphological and electrochemical characteristics of reduced graphene oxide interspersed with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (rGO-PEDOT:PSS) used as a transducer material deposited on a commercially available screen-printed carbon electrode (SPCE). Electron microscopy shows that PEDOT:PSS is interspersed between rGO layers. Raman and XRD analyses suggest that the graphene crystallinity in GO-PEDOT:PSS and rGO-PEDOT:PSS remains intact. Instead, PEDOT:PSS undergoes a change in structure to allow PEDOT to blend into the graphene structure and partake in the π-π interaction with the surface of the rGO layers. Incorporation of PEDOT:PSS also appears to improve the electrochemical behavior of the composite, leading to a higher peak current of 1.184 mA, as measured by cyclic voltammetry, compared to 0.522 mA when rGO is used alone. The rGO-PEDOT:PSS transducing material blended with glucose oxidase was tested for glucose detection. The sensitivity of glucose detection was shown to be 57.3 µA/(mM·cm²) with a detection limit of 86.8 µM.
Collapse
Affiliation(s)
- Firdaus Abd-Wahab
- Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak 50728, Kuala Lumpur, Malaysia.
| | - Habibah Farhana Abdul Guthoos
- Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak 50728, Kuala Lumpur, Malaysia.
| | - Wan Wardatul Amani Wan Salim
- Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Gombak 50728, Kuala Lumpur, Malaysia.
| |
Collapse
|
16
|
Thangamuthu M, Gabriel WE, Santschi C, Martin OJF. Electrochemical Sensor for Bilirubin Detection Using Screen Printed Electrodes Functionalized with Carbon Nanotubes and Graphene. SENSORS 2018. [PMID: 29518901 PMCID: PMC5876756 DOI: 10.3390/s18030800] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Practice oriented point-of-care diagnostics require easy-to-handle, miniaturized, and low-cost analytical tools. In a novel approach, screen printed carbon electrodes (SPEs), which were functionalized with nanomaterials, are employed for selective measurements of bilirubin, which is an important biomarker for jaundice. Multi-walled carbon nanotubes (MWCNT) and graphene separately deposited on SPEs provide the core of an electrochemical sensor for bilirubin. The electrocatalytic activity towards bilirubin oxidation (bilirubin to biliverdin) was observed at +0.25 V. In addition, a further peak corresponding to the electrochemical conversion of biliverdin into purpurin appeared at +0.48 V. When compared to MWCNT, the graphene type shows a 3-fold lower detection limit (0.3 ± 0.022 nM and 0.1 ± 0.018 nM, respectively), moreover, the graphene type exhibits a larger linear range (0.1-600 µM) than MWCNT (0.5-500 µM) with a two-fold better sensitivity, i.e., 30 nA µM-1 cm-2, and 15 nA µM-1 cm-2, respectively. The viability is validated through measurements of bilirubin in blood serum samples and the selectivity is ensured by inhibiting common interfering biological substrates using an ionic nafion membrane. The presented approach enables the design and implementation of low cost and miniaturized electrochemical sensors.
Collapse
Affiliation(s)
- Madasamy Thangamuthu
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Willimann Eric Gabriel
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Christian Santschi
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Olivier J F Martin
- Nanophotonics and Metrology Laboratory (NAM), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
17
|
Ngo YLT, Sui L, Ahn W, Chung JS, Hur SH. NiMn 2O 4 spinel binary nanostructure decorated on three-dimensional reduced graphene oxide hydrogel for bifunctional materials in non-enzymatic glucose sensor. NANOSCALE 2017; 9:19318-19327. [PMID: 29192924 DOI: 10.1039/c7nr07748c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nickel-manganese spinel oxide (NiMn2O4) was hybridized with reduced graphene oxide hydrogel (rGOH) via a facile solvothermal process and a highly porous three-dimensional (3D) structure was constructed. NiMn2O4/rGOH exhibited excellent electrochemical performance due to the high specific surface area, excellent electrocatalytic activity, and enhanced electrical conductivity due to the synergetic effects between the two components. The NiMn2O4/rGOH exhibited excellent glucose sensing performance with high sensitivity (1310.8 μA mM-1 cm-2), a wide linear range (2 μM-20 mM), rapid response time (<3.5 s), and anti-interference properties. Furthermore, it also showed excellent supercapacitor performance with a high capacitance (396.85 F g-1) and excellent energy and power density on account of the large surface area and pseudo-capacitor behavior of NiMn2O4. A self-powered glucose sensor can be fabricated with NiMn2O4/rGOH as both supercapacitor and glucose sensing electrodes.
Collapse
Affiliation(s)
- Yen-Linh Thi Ngo
- School of Chemical Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 44610, Republic of Korea.
| | | | | | | | | |
Collapse
|
18
|
Bohli N, Chammem H, Meilhac O, Mora L, Abdelghani A. Electrochemical Impedance Spectroscopy on Interdigitated Gold Microelectrodes for Glycosylated Human Serum Albumin Characterization. IEEE Trans Nanobioscience 2017; 16:676-681. [DOI: 10.1109/tnb.2017.2752693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Illescas BM, Rojo J, Delgado R, Martín N. Multivalent Glycosylated Nanostructures To Inhibit Ebola Virus Infection. J Am Chem Soc 2017; 139:6018-6025. [DOI: 10.1021/jacs.7b01683] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Beatriz M. Illescas
- Departamento
de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Javier Rojo
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC—Universidad de Sevilla, Av. Américo Vespucio 49, 41092 Seville, Spain
| | - Rafael Delgado
- Laboratorio
de Microbiología Molecular, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Nazario Martín
- Departamento
de Química Orgánica, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
20
|
Ghavami S, Lahouti F. Abnormality Detection in Correlated Gaussian Molecular Nano-Networks: Design and Analysis. IEEE Trans Nanobioscience 2017; 16:189-202. [PMID: 28278478 DOI: 10.1109/tnb.2017.2659678] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A nano-abnormality detection scheme (NADS) in molecular nano-networks is studied. This is motivated by the fact that early detection of diseases such as cancer plays a crucial role in their successful treatment. The proposed NADS is in fact a two-tier network of sensor nano-machines (SNMs) in the first tier and a data-gathering node (DGN) at the sink. The SNMs detect the presence of competitor cells (abnormality) by variations in input and/or parameters of a nano-communications channel. The noise of SNMs as their nature suggest is considered correlated in time and space and herein assumed additive Gaussian. In the second step, the SNMs transmit micro-scale messages over a noisy micro-communications channel (MCC) to the DGN, where a decision is made upon fusing the received signals. We find an optimum design of detectors for each of the NADS tiers based on the end-to-end NADS performance. The detection performance of each SNM is analyzed by setting up a generalized likelihood ratio test. Next, taking into account the effect of the MCC, the overall performance of the NADS is analyzed in terms of probabilities of misdetection and false alarm. In addition, computationally efficient expressions to quantify the NADS performance are derived by providing, respectively, an approximation and an upper bound for the probabilities of misdetection and false alarm. This in turn enables formulating a design problem, where the optimized concentration of SNMs in a sample is obtained for a high probability of detection and a limited probability of false alarm. The results indicate that otherwise ignoring the spatial and temporal correlation of SNM noise in the analysis, leads to an NADS that noticeably underperforms in operations.The results indicate how effective fusion of the noisy observations collected from a number of SNMs with limited capabilities could provide an acceptable detection performance.
Collapse
|