1
|
Shi Y, Wang M, Liu H, Zhao F, Li A, Chen X. MIF: Multi-Shot Interactive Fusion Model for Cancer Survival Prediction Using Pathological Image and Genomic Data. IEEE J Biomed Health Inform 2025; 29:3247-3258. [PMID: 38324434 DOI: 10.1109/jbhi.2024.3363161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Accurate cancer survival prediction is crucial for oncologists to determine therapeutic plan, which directly influences the treatment efficacy and survival outcome of patient. Recently, multimodal fusion-based prognostic methods have demonstrated effectiveness for survival prediction by fusing diverse cancer-related data from different medical modalities, e.g., pathological images and genomic data. However, these works still face significant challenges. First, most approaches attempt multimodal fusion by simple one-shot fusion strategy, which is insufficient to explore complex interactions underlying in highly disparate multimodal data. Second, current methods for investigating multimodal interactions face the capability-efficiency dilemma, which is the difficult balance between powerful modeling capability and applicable computational efficiency, thus impeding effective multimodal fusion. In this study, to encounter these challenges, we propose an innovative multi-shot interactive fusion method named MIF for precise survival prediction by utilizing pathological and genomic data. Particularly, a novel multi-shot fusion framework is introduced to promote multimodal fusion by decomposing it into successive fusing stages, thus delicately integrating modalities in a progressive way. Moreover, to address the capacity-efficiency dilemma, various affinity-based interactive modules are introduced to synergize the multi-shot framework. Specifically, by harnessing comprehensive affinity information as guidance for mining interactions, the proposed interactive modules can efficiently generate low-dimensional discriminative multimodal representations. Extensive experiments on different cancer datasets unravel that our method not only successfully achieves state-of-the-art performance by performing effective multimodal fusion, but also possesses high computational efficiency compared to existing survival prediction methods.
Collapse
|
2
|
Wen G, Li L. MMOSurv: meta-learning for few-shot survival analysis with multi-omics data. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 41:btae684. [PMID: 39563482 DOI: 10.1093/bioinformatics/btae684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/14/2024] [Accepted: 11/16/2024] [Indexed: 11/21/2024]
Abstract
MOTIVATION High-throughput techniques have produced a large amount of high-dimensional multi-omics data, which makes it promising to predict patient survival outcomes more accurately. Recent work has showed the superiority of multi-omics data in survival analysis. However, it remains challenging to integrate multi-omics data to solve few-shot survival prediction problem, with only a few available training samples, especially for rare cancers. RESULTS In this work, we propose a meta-learning framework for multi-omics few-shot survival analysis, namely MMOSurv, which enables to learn an effective multi-omics survival prediction model from a very few training samples of a specific cancer type, with the meta-knowledge across tasks from relevant cancer types. By assuming a deep Cox survival model with multiple omics, MMOSurv first learns an adaptable parameter initialization for the multi-omics survival model from abundant data of relevant cancers, and then adapts the parameters quickly and efficiently for the target cancer task with a very few training samples. Our experiments on eleven cancer types in The Cancer Genome Atlas datasets show that, compared to single-omics meta-learning methods, MMOSurv can better utilize the meta-information of similarities and relationships between different omics data from relevant cancer datasets to improve survival prediction of the target cancer with a very few multi-omics training samples. Furthermore, MMOSurv achieves better prediction performance than other state-of-the-art strategies such as multitask learning and pretraining. AVAILABILITY AND IMPLEMENTATION MMOSurv is freely available at https://github.com/LiminLi-xjtu/MMOSurv.
Collapse
Affiliation(s)
- Gang Wen
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Limin Li
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
3
|
Wang H, Han X, Niu S, Cheng H, Ren J, Duan Y. DFASGCNS: A prognostic model for ovarian cancer prediction based on dual fusion channels and stacked graph convolution. PLoS One 2024; 19:e0315924. [PMID: 39680618 DOI: 10.1371/journal.pone.0315924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Ovarian cancer is a malignant tumor with different clinicopathological and molecular characteristics. Due to its nonspecific early symptoms, the majority of patients are diagnosed with local or extensive metastasis, severely affecting treatment and prognosis. The occurrence of ovarian cancer is influenced by multiple complex mechanisms including genomics, transcriptomics, and proteomics. Integrating multiple types of omics data aids in predicting the survival rate of ovarian cancer patients. However, existing methods only fuse multi-omics data at the feature level, neglecting the shared and complementary neighborhood information among samples of multi-omics data, and failing to consider the potential interactions between different omics data at the molecular level. In this paper, we propose a prognostic model for ovarian cancer prediction named Dual Fusion Channels and Stacked Graph Convolutional Neural Network (DFASGCNS). The DFASGCNS utilizes dual fusion channels to learn feature representations of different omics data and the associations between samples. Stacked graph convolutional network is used to comprehensively learn the deep and intricate correlation networks present in multi-omics data, enhancing the model's ability to represent multi-omics data. An attention mechanism is introduced to allocate different weights to important features of different omics data, optimizing the feature representation of multi-omics data. Experimental results demonstrate that compared to existing methods, the DFASGCNS model exhibits significant advantages in ovarian cancer prognosis prediction and survival analysis. Kaplan-Meier curve analysis results indicate significant differences in the survival subgroups predicted by the DFASGCNS model, contributing to a deeper understanding of the pathogenesis of ovarian cancer and providing more reliable auxiliary diagnostic information for the prognosis assessment of ovarian cancer patients.
Collapse
Affiliation(s)
- Huiqing Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Xiao Han
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Shuaijun Niu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Hao Cheng
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Jianxue Ren
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Yimeng Duan
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
4
|
Yang P, Chen W, Qiu H. MMGCN: Multi-modal multi-view graph convolutional networks for cancer prognosis prediction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108400. [PMID: 39270533 DOI: 10.1016/j.cmpb.2024.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/14/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND AND OBJECTIVE Accurate prognosis prediction for cancer patients plays a significant role in the formulation of treatment strategies, considerably impacting personalized medicine. Recent advancements in this field indicate that integrating information from various modalities, such as genetic and clinical data, and developing multi-modal deep learning models can enhance prediction accuracy. However, most existing multi-modal deep learning methods either overlook patient similarities that benefit prognosis prediction or fail to effectively capture diverse information due to measuring patient similarities from a single perspective. To address these issues, a novel framework called multi-modal multi-view graph convolutional networks (MMGCN) is proposed for cancer prognosis prediction. METHODS Initially, we utilize the similarity network fusion (SNF) algorithm to merge patient similarity networks (PSNs), individually constructed using gene expression, copy number alteration, and clinical data, into a fused PSN for integrating multi-modal information. To capture diverse perspectives of patient similarities, we treat the fused PSN as a multi-view graph by considering each single-edge-type subgraph as a view graph, and propose multi-view graph convolutional networks (GCNs) with a view-level attention mechanism. Moreover, an edge homophily prediction module is designed to alleviate the adverse effects of heterophilic edges on the representation power of GCNs. Finally, comprehensive representations of patient nodes are obtained to predict cancer prognosis. RESULTS Experimental results demonstrate that MMGCN outperforms state-of-the-art baselines on four public datasets, including METABRIC, TCGA-BRCA, TCGA-LGG, and TCGA-LUSC, with the area under the receiver operating characteristic curve achieving 0.827 ± 0.005, 0.805 ± 0.014, 0.925 ± 0.007, and 0.746 ± 0.013, respectively. CONCLUSIONS Our study reveals the effectiveness of the proposed MMGCN, which deeply explores patient similarities related to different modalities from a broad perspective, in enhancing the performance of multi-modal cancer prognosis prediction. The source code is publicly available at https://github.com/ping-y/MMGCN.
Collapse
Affiliation(s)
- Ping Yang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Wengxiang Chen
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Hang Qiu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
| |
Collapse
|
5
|
Gou F, Liu J, Xiao C, Wu J. Research on Artificial-Intelligence-Assisted Medicine: A Survey on Medical Artificial Intelligence. Diagnostics (Basel) 2024; 14:1472. [PMID: 39061610 PMCID: PMC11275417 DOI: 10.3390/diagnostics14141472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
With the improvement of economic conditions and the increase in living standards, people's attention in regard to health is also continuously increasing. They are beginning to place their hopes on machines, expecting artificial intelligence (AI) to provide a more humanized medical environment and personalized services, thus greatly expanding the supply and bridging the gap between resource supply and demand. With the development of IoT technology, the arrival of the 5G and 6G communication era, and the enhancement of computing capabilities in particular, the development and application of AI-assisted healthcare have been further promoted. Currently, research on and the application of artificial intelligence in the field of medical assistance are continuously deepening and expanding. AI holds immense economic value and has many potential applications in regard to medical institutions, patients, and healthcare professionals. It has the ability to enhance medical efficiency, reduce healthcare costs, improve the quality of healthcare services, and provide a more intelligent and humanized service experience for healthcare professionals and patients. This study elaborates on AI development history and development timelines in the medical field, types of AI technologies in healthcare informatics, the application of AI in the medical field, and opportunities and challenges of AI in the field of medicine. The combination of healthcare and artificial intelligence has a profound impact on human life, improving human health levels and quality of life and changing human lifestyles.
Collapse
Affiliation(s)
- Fangfang Gou
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Jun Liu
- The Second People's Hospital of Huaihua, Huaihua 418000, China
| | - Chunwen Xiao
- The Second People's Hospital of Huaihua, Huaihua 418000, China
| | - Jia Wu
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton, VIC 3800, Australia
| |
Collapse
|
6
|
Yang P, Qiu H, Yang X, Wang L, Wang X. SAGL: A self-attention-based graph learning framework for predicting survival of colorectal cancer patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 249:108159. [PMID: 38583291 DOI: 10.1016/j.cmpb.2024.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND AND OBJECTIVE Colorectal cancer (CRC) is one of the most commonly diagnosed cancers worldwide. The accurate survival prediction for CRC patients plays a significant role in the formulation of treatment strategies. Recently, machine learning and deep learning approaches have been increasingly applied in cancer survival prediction. However, most existing methods inadequately represent and leverage the dependencies among features and fail to sufficiently mine and utilize the comorbidity patterns of CRC. To address these issues, we propose a self-attention-based graph learning (SAGL) framework to improve the postoperative cancer-specific survival prediction for CRC patients. METHODS We present a novel method for constructing dependency graph (DG) to reflect two types of dependencies including comorbidity-comorbidity dependencies and the dependencies between features related to patient characteristics and cancer treatments. This graph is subsequently refined by a disease comorbidity network, which offers a holistic view of comorbidity patterns of CRC. A DG-guided self-attention mechanism is proposed to unearth novel dependencies beyond what DG offers, thus augmenting CRC survival prediction. Finally, each patient will be represented, and these representations will be used for survival prediction. RESULTS The experimental results show that SAGL outperforms state-of-the-art methods on a real-world dataset, with the receiver operating characteristic curve for 3- and 5-year survival prediction achieving 0.849±0.002 and 0.895±0.005, respectively. In addition, the comparison results with different graph neural network-based variants demonstrate the advantages of our DG-guided self-attention graph learning framework. CONCLUSIONS Our study reveals that the potential of the DG-guided self-attention in optimizing feature graph learning which can improve the performance of CRC survival prediction.
Collapse
Affiliation(s)
- Ping Yang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Hang Qiu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China; Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
| | - Xulin Yang
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Liya Wang
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Xiaodong Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
7
|
Ma W, Li M, Chu Z, Chen H. Smart Biosensor for Breast Cancer Survival Prediction Based on Multi-View Multi-Way Graph Learning. SENSORS (BASEL, SWITZERLAND) 2024; 24:3289. [PMID: 38894082 PMCID: PMC11174864 DOI: 10.3390/s24113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024]
Abstract
Biosensors play a crucial role in detecting cancer signals by orchestrating a series of intricate biological and physical transduction processes. Among various cancers, breast cancer stands out due to its genetic underpinnings, which trigger uncontrolled cell proliferation, predominantly impacting women, and resulting in significant mortality rates. The utilization of biosensors in predicting survival time becomes paramount in formulating an optimal treatment strategy. However, conventional biosensors employing traditional machine learning methods encounter challenges in preprocessing features for the learning task. Despite the potential of deep learning techniques to automatically extract useful features, they often struggle to effectively leverage the intricate relationships between features and instances. To address this challenge, our study proposes a novel smart biosensor architecture that integrates a multi-view multi-way graph learning (MVMWGL) approach for predicting breast cancer survival time. This innovative approach enables the assimilation of insights from gene interactions and biosensor similarities. By leveraging real-world data, we conducted comprehensive evaluations, and our experimental results unequivocally demonstrate the superiority of the MVMWGL approach over existing methods.
Collapse
Affiliation(s)
- Wenming Ma
- School of Computer and Control Engineering, Yantai University, Yantai 264005, China; (M.L.); (Z.C.); (H.C.)
| | | | | | | |
Collapse
|
8
|
Vollmer A, Hartmann S, Vollmer M, Shavlokhova V, Brands RC, Kübler A, Wollborn J, Hassel F, Couillard-Despres S, Lang G, Saravi B. Multimodal artificial intelligence-based pathogenomics improves survival prediction in oral squamous cell carcinoma. Sci Rep 2024; 14:5687. [PMID: 38453964 PMCID: PMC10920832 DOI: 10.1038/s41598-024-56172-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/03/2024] [Indexed: 03/09/2024] Open
Abstract
In this study, we aimed to develop a novel prognostic algorithm for oral squamous cell carcinoma (OSCC) using a combination of pathogenomics and AI-based techniques. We collected comprehensive clinical, genomic, and pathology data from a cohort of OSCC patients in the TCGA dataset and used machine learning and deep learning algorithms to identify relevant features that are predictive of survival outcomes. Our analyses included 406 OSCC patients. Initial analyses involved gene expression analyses, principal component analyses, gene enrichment analyses, and feature importance analyses. These insights were foundational for subsequent model development. Furthermore, we applied five machine learning/deep learning algorithms (Random Survival Forest, Gradient Boosting Survival Analysis, Cox PH, Fast Survival SVM, and DeepSurv) for survival prediction. Our initial analyses revealed relevant gene expression variations and biological pathways, laying the groundwork for robust feature selection in model building. The results showed that the multimodal model outperformed the unimodal models across all methods, with c-index values of 0.722 for RSF, 0.633 for GBSA, 0.625 for FastSVM, 0.633 for CoxPH, and 0.515 for DeepSurv. When considering only important features, the multimodal model continued to outperform the unimodal models, with c-index values of 0.834 for RSF, 0.747 for GBSA, 0.718 for FastSVM, 0.742 for CoxPH, and 0.635 for DeepSurv. Our results demonstrate the potential of pathogenomics and AI-based techniques in improving the accuracy of prognostic prediction in OSCC, which may ultimately aid in the development of personalized treatment strategies for patients with this devastating disease.
Collapse
Affiliation(s)
- Andreas Vollmer
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, 97070, Würzburg, Franconia, Germany.
| | - Stefan Hartmann
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, 97070, Würzburg, Franconia, Germany
| | - Michael Vollmer
- Department of Oral and Maxillofacial Surgery, Tuebingen University Hospital, Osianderstrasse 2-8, 72076, Tuebingen, Germany
| | - Veronika Shavlokhova
- Maxillofacial Surgery University Hospital Ruppin-Brandenburg, Fehrbelliner Straße 38, 16816, Neuruppin, Germany
| | - Roman C Brands
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, 97070, Würzburg, Franconia, Germany
| | - Alexander Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital of Würzburg, 97070, Würzburg, Franconia, Germany
| | - Jakob Wollborn
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Frank Hassel
- Department of Spine Surgery, Loretto Hospital, Freiburg, Germany
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020, Salzburg, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Gernot Lang
- Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Babak Saravi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Department of Spine Surgery, Loretto Hospital, Freiburg, Germany
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020, Salzburg, Austria
- Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Cai H, Liao Y, Zhu L, Wang Z, Song J. Improving Cancer Survival Prediction via Graph Convolutional Neural Network Learning on Protein-Protein Interaction Networks. IEEE J Biomed Health Inform 2024; 28:1134-1143. [PMID: 37963003 DOI: 10.1109/jbhi.2023.3332640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Cancer is one of the most challenging health problems worldwide. Accurate cancer survival prediction is vital for clinical decision making. Many deep learning methods have been proposed to understand the association between patients' genomic features and survival time. In most cases, the gene expression matrix is fed directly to the deep learning model. However, this approach completely ignores the interactions between biomolecules, and the resulting models can only learn the expression levels of genes to predict patient survival. In essence, the interaction between biomolecules is the key to determining the direction and function of biological processes. Proteins are the building blocks and principal undertakings of life activities, and as such, their complex interaction network is potentially informative for deep learning methods. Therefore, a more reliable approach is to have the neural network learn both gene expression data and protein interaction networks. We propose a new computational approach, termed CRESCENT, which is a protein-protein interaction (PPI) prior knowledge graph-based convolutional neural network (GCN) to improve cancer survival prediction. CRESCENT relies on the gene expression networks rather than gene expression levels to predict patient survival. The performance of CRESCENT is evaluated on a large-scale pan-cancer dataset consisting of 5991 patients from 16 different types of cancers. Extensive benchmarking experiments demonstrate that our proposed method is competitive in terms of the evaluation metric of the time-dependent concordance index( Ctd) when compared with several existing state-of-the-art approaches. Experiments also show that incorporating the network structure between genomic features effectively improves cancer survival prediction.
Collapse
|
10
|
Gogoshin G, Rodin AS. Graph Neural Networks in Cancer and Oncology Research: Emerging and Future Trends. Cancers (Basel) 2023; 15:5858. [PMID: 38136405 PMCID: PMC10742144 DOI: 10.3390/cancers15245858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Next-generation cancer and oncology research needs to take full advantage of the multimodal structured, or graph, information, with the graph data types ranging from molecular structures to spatially resolved imaging and digital pathology, biological networks, and knowledge graphs. Graph Neural Networks (GNNs) efficiently combine the graph structure representations with the high predictive performance of deep learning, especially on large multimodal datasets. In this review article, we survey the landscape of recent (2020-present) GNN applications in the context of cancer and oncology research, and delineate six currently predominant research areas. We then identify the most promising directions for future research. We compare GNNs with graphical models and "non-structured" deep learning, and devise guidelines for cancer and oncology researchers or physician-scientists, asking the question of whether they should adopt the GNN methodology in their research pipelines.
Collapse
Affiliation(s)
- Grigoriy Gogoshin
- Department of Computational and Quantitative Medicine, Beckman Research Institute, and Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Andrei S. Rodin
- Department of Computational and Quantitative Medicine, Beckman Research Institute, and Diabetes and Metabolism Research Institute, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Wen G, Li L. FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction. Bioinformatics 2023; 39:btad472. [PMID: 37522887 PMCID: PMC10412406 DOI: 10.1093/bioinformatics/btad472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/24/2023] [Accepted: 07/29/2023] [Indexed: 08/01/2023] Open
Abstract
MOTIVATION Survival analysis is an important tool for modeling time-to-event data, e.g. to predict the survival time of patient after a cancer diagnosis or a certain treatment. While deep neural networks work well in standard prediction tasks, it is still unclear how to best utilize these deep models in survival analysis due to the difficulty of modeling right censored data, especially for multi-omics data. Although existing methods have shown the advantage of multi-omics integration in survival prediction, it remains challenging to extract complementary information from different omics and improve the prediction accuracy. RESULTS In this work, we propose a novel multi-omics deep survival prediction approach by dually fused graph convolutional network (GCN) named FGCNSurv. Our FGCNSurv is a complete generative model from multi-omics data to survival outcome of patients, including feature fusion by a factorized bilinear model, graph fusion of multiple graphs, higher-level feature extraction by GCN and survival prediction by a Cox proportional hazard model. The factorized bilinear model enables to capture cross-omics features and quantify complex relations from multi-omics data. By fusing single-omics features and the cross-omics features, and simultaneously fusing multiple graphs from different omics, GCN with the generated dually fused graph could capture higher-level features for computing the survival loss in the Cox-PH model. Comprehensive experimental results on real-world datasets with gene expression and microRNA expression data show that the proposed FGCNSurv method outperforms existing survival prediction methods, and imply its ability to extract complementary information for survival prediction from multi-omics data. AVAILABILITY AND IMPLEMENTATION The codes are freely available at https://github.com/LiminLi-xjtu/FGCNSurv.
Collapse
Affiliation(s)
- Gang Wen
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Limin Li
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| |
Collapse
|
12
|
Chronological horse herd optimization-based gene selection with deep learning towards survival prediction using PAN-Cancer gene-expression data. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
13
|
Hao Y, Jing XY, Sun Q. Cancer survival prediction by learning comprehensive deep feature representation for multiple types of genetic data. BMC Bioinformatics 2023; 24:267. [PMID: 37380946 DOI: 10.1186/s12859-023-05392-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Cancer is one of the leading death causes around the world. Accurate prediction of its survival time is significant, which can help clinicians make appropriate therapeutic schemes. Cancer data can be characterized by varied molecular features, clinical behaviors and morphological appearances. However, the cancer heterogeneity problem usually makes patient samples with different risks (i.e., short and long survival time) inseparable, thereby causing unsatisfactory prediction results. Clinical studies have shown that genetic data tends to contain more molecular biomarkers associated with cancer, and hence integrating multi-type genetic data may be a feasible way to deal with cancer heterogeneity. Although multi-type gene data have been used in the existing work, how to learn more effective features for cancer survival prediction has not been well studied. RESULTS To this end, we propose a deep learning approach to reduce the negative impact of cancer heterogeneity and improve the cancer survival prediction effect. It represents each type of genetic data as the shared and specific features, which can capture the consensus and complementary information among all types of data. We collect mRNA expression, DNA methylation and microRNA expression data for four cancers to conduct experiments. CONCLUSIONS Experimental results demonstrate that our approach substantially outperforms established integrative methods and is effective for cancer survival prediction. AVAILABILITY AND IMPLEMENTATION https://github.com/githyr/ComprehensiveSurvival .
Collapse
Affiliation(s)
- Yaru Hao
- School of Computer Science, Wuhan University, Wuhan, China.
| | - Xiao-Yuan Jing
- School of Computer Science, Wuhan University, Wuhan, China.
- School of Computer, Guangdong University of Petrochemical Technology, Maoming, China.
- State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China.
| | - Qixing Sun
- School of Computer Science, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Lu H, Uddin S. Disease Prediction Using Graph Machine Learning Based on Electronic Health Data: A Review of Approaches and Trends. Healthcare (Basel) 2023; 11:healthcare11071031. [PMID: 37046958 PMCID: PMC10094099 DOI: 10.3390/healthcare11071031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/11/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
Graph machine-learning (ML) methods have recently attracted great attention and have made significant progress in graph applications. To date, most graph ML approaches have been evaluated on social networks, but they have not been comprehensively reviewed in the health informatics domain. Herein, a review of graph ML methods and their applications in the disease prediction domain based on electronic health data is presented in this study from two levels: node classification and link prediction. Commonly used graph ML approaches for these two levels are shallow embedding and graph neural networks (GNN). This study performs comprehensive research to identify articles that applied or proposed graph ML models on disease prediction using electronic health data. We considered journals and conferences from four digital library databases (i.e., PubMed, Scopus, ACM digital library, and IEEEXplore). Based on the identified articles, we review the present status of and trends in graph ML approaches for disease prediction using electronic health data. Even though GNN-based models have achieved outstanding results compared with the traditional ML methods in a wide range of disease prediction tasks, they still confront interpretability and dynamic graph challenges. Though the disease prediction field using ML techniques is still emerging, GNN-based models have the potential to be an excellent approach for disease prediction, which can be used in medical diagnosis, treatment, and the prognosis of diseases.
Collapse
Affiliation(s)
- Haohui Lu
- School of Project Management, Faculty of Engineering, The University of Sydney, Forest Lodge, Sydney, NSW 2037, Australia
| | - Shahadat Uddin
- School of Project Management, Faculty of Engineering, The University of Sydney, Forest Lodge, Sydney, NSW 2037, Australia
| |
Collapse
|
15
|
Urrata V, Trapani M, Franza M, Moschella F, Di Stefano AB, Toia F. Analysis of MSCs' secretome and EVs cargo: Evaluation of functions and applications. Life Sci 2022; 308:120990. [PMID: 36155182 DOI: 10.1016/j.lfs.2022.120990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Valentina Urrata
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marco Trapani
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy
| | - Mara Franza
- Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Francesco Moschella
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Anna Barbara Di Stefano
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Francesca Toia
- BIOPLAST-Laboratory of BIOlogy and Regenerative Medicine-PLASTic Surgery, Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Oncology, Azienda Ospedaliera Universitaria Policlinico "Paolo Giaccone", 90127 Palermo, Italy; Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
16
|
Han J, Xiao N, Yang W, Luo S, Zhao J, Qiang Y, Chaudhary S, Zhao J. MS-ResNet: disease-specific survival prediction using longitudinal CT images and clinical data. Int J Comput Assist Radiol Surg 2022; 17:1049-1057. [PMID: 35445285 PMCID: PMC9020752 DOI: 10.1007/s11548-022-02625-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Medical imaging data of lung cancer in different stages contain a large amount of time information related to its evolution (emergence, development, or extinction). We try to explore the evolution process of lung images in time dimension to improve the prediction of lung cancer survival by using longitudinal CT images and clinical data jointly. METHODS In this paper, we propose an innovative multi-branch spatiotemporal residual network (MS-ResNet) for disease-specific survival (DSS) prediction by integrating the longitudinal computed tomography (CT) images at different times and clinical data. Specifically, we first extract the deep features from the multi-period CT images by an improved residual network. Then, the feature selection algorithm is used to select the most relevant feature subset from the clinical data. Finally, we integrate the deep features and feature subsets to take full advantage of the complementarity between the two types of data to generate the final prediction results. RESULTS The experimental results demonstrate that our MS-ResNet model is superior to other methods, achieving a promising 86.78% accuracy in the classification of short-survivor, med-survivor, and long-survivor. CONCLUSION In computer-aided prognostic analysis of cancer, the time dimension features of the course of disease and the integration of patient clinical data and CT data can effectively improve the prediction accuracy.
Collapse
Affiliation(s)
- Jiahao Han
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Ning Xiao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Wanting Yang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Shichao Luo
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jun Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yan Qiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Suman Chaudhary
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Juanjuan Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China.
| |
Collapse
|
17
|
Kaur I, Doja M, Ahmad T. Data Mining and Machine Learning in Cancer Survival Research: An Overview and Future Recommendations. J Biomed Inform 2022; 128:104026. [DOI: 10.1016/j.jbi.2022.104026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/29/2022]
|
18
|
Li R, Wu X, Li A, Wang M. OUP accepted manuscript. Bioinformatics 2022; 38:2587-2594. [PMID: 35188177 PMCID: PMC9048674 DOI: 10.1093/bioinformatics/btac113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
Motivation Cancer survival prediction can greatly assist clinicians in planning patient treatments and improving their life quality. Recent evidence suggests the fusion of multimodal data, such as genomic data and pathological images, is crucial for understanding cancer heterogeneity and enhancing survival prediction. As a powerful multimodal fusion technique, Kronecker product has shown its superiority in predicting survival. However, this technique introduces a large number of parameters that may lead to high computational cost and a risk of overfitting, thus limiting its applicability and improvement in performance. Another limitation of existing approaches using Kronecker product is that they only mine relations for one single time to learn multimodal representation and therefore face significant challenges in deeply mining rich information from multimodal data for accurate survival prediction. Results To address the above limitations, we present a novel hierarchical multimodal fusion approach named HFBSurv by employing factorized bilinear model to fuse genomic and image features step by step. Specifically, with a multiple fusion strategy HFBSurv decomposes the fusion problem into different levels and each of them integrates and passes information progressively from the low level to the high level, thus leading to the more specialized fusion procedure and expressive multimodal representation. In this hierarchical framework, both modality-specific and cross-modality attentional factorized bilinear modules are designed to not only capture and quantify complex relations from multimodal data, but also dramatically reduce computational complexity. Extensive experiments demonstrate that our method performs an effective hierarchical fusion of multimodal data and achieves consistently better performance than other methods for survival prediction. Availability and implementation HFBSurv is freely available at https://github.com/Liruiqing-ustc/HFBSurv. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ruiqing Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei AH230027, China
| | - Xingqi Wu
- School of Information Science and Technology, University of Science and Technology of China, Hefei AH230027, China
| | - Ao Li
- School of Information Science and Technology, University of Science and Technology of China, Hefei AH230027, China
| | | |
Collapse
|
19
|
Malik V, Kalakoti Y, Sundar D. Deep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer. BMC Genomics 2021; 22:214. [PMID: 33761889 PMCID: PMC7992339 DOI: 10.1186/s12864-021-07524-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Background Survival and drug response are two highly emphasized clinical outcomes in cancer research that directs the prognosis of a cancer patient. Here, we have proposed a late multi omics integrative framework that robustly quantifies survival and drug response for breast cancer patients with a focus on the relative predictive ability of available omics datatypes. Neighborhood component analysis (NCA), a supervised feature selection algorithm selected relevant features from multi-omics datasets retrieved from The Cancer Genome Atlas (TCGA) and Genomics of Drug Sensitivity in Cancer (GDSC) databases. A Neural network framework, fed with NCA selected features, was used to develop survival and drug response prediction models for breast cancer patients. The drug response framework used regression and unsupervised clustering (K-means) to segregate samples into responders and non-responders based on their predicted IC50 values (Z-score). Results The survival prediction framework was highly effective in categorizing patients into risk subtypes with an accuracy of 94%. Compared to single-omics and early integration approaches, our drug response prediction models performed significantly better and were able to predict IC50 values (Z-score) with a mean square error (MSE) of 1.154 and an overall regression value of 0.92, showing a linear relationship between predicted and actual IC50 values. Conclusion The proposed omics integration strategy provides an effective way of extracting critical information from diverse omics data types enabling estimation of prognostic indicators. Such integrative models with high predictive power would have a significant impact and utility in precision oncology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07524-2.
Collapse
Affiliation(s)
- Vidhi Malik
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, India
| | - Yogesh Kalakoti
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, India
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, India.
| |
Collapse
|
20
|
Gated Graph Attention Network for Cancer Prediction. SENSORS 2021; 21:s21061938. [PMID: 33801894 PMCID: PMC7998488 DOI: 10.3390/s21061938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 01/17/2023]
Abstract
With its increasing incidence, cancer has become one of the main causes of worldwide mortality. In this work, we mainly propose a novel attention-based neural network model named Gated Graph ATtention network (GGAT) for cancer prediction, where a gating mechanism (GM) is introduced to work with the attention mechanism (AM), to break through the previous work's limitation of 1-hop neighbourhood reasoning. In this way, our GGAT is capable of fully mining the potential correlation between related samples, helping for improving the cancer prediction accuracy. Additionally, to simplify the datasets, we propose a hybrid feature selection algorithm to strictly select gene features, which significantly reduces training time without affecting prediction accuracy. To the best of our knowledge, our proposed GGAT achieves the state-of-the-art results in cancer prediction task on LIHC, LUAD, KIRC compared to other traditional machine learning methods and neural network models, and improves the accuracy by 1% to 2% on Cora dataset, compared to the state-of-the-art graph neural network methods.
Collapse
|