• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4697233)   Today's Articles (10803)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Intelligent IoT-BOTNET Attack Detection Model with optimized Hybrid Classification Model. Comput Secur 2022. [DOI: 10.1016/j.cose.2022.103064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
2
Extended analysis on the global Mittag-Leffler synchronization problem for fractional-order octonion-valued BAM neural networks. Neural Netw 2022;154:491-507. [DOI: 10.1016/j.neunet.2022.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/16/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
3
Deng K, Zhu S, Dai W, Yang C, Wen S. New Criteria on Stability of Dynamic Memristor Delayed Cellular Neural Networks. IEEE TRANSACTIONS ON CYBERNETICS 2022;52:5367-5379. [PMID: 33175692 DOI: 10.1109/tcyb.2020.3031309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
4
Spatial-temporal dynamics of a non-monotone reaction-diffusion Hopfield’s neural network model with delays. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
5
Xiao J, Li Y, Wen S. Mittag-Leffler synchronization and stability analysis for neural networks in the fractional-order multi-dimension field. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
6
Shen Y, Zhu S, Liu X, Wen S. Multistability and associative memory of neural networks with Morita-like activation functions. Neural Netw 2021;142:162-170. [PMID: 34000563 DOI: 10.1016/j.neunet.2021.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/11/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022]
7
Xiao J, Zhong S, Wen S. Improved approach to the problem of the global Mittag-Leffler synchronization for fractional-order multidimension-valued BAM neural networks based on new inequalities. Neural Netw 2020;133:87-100. [PMID: 33152567 DOI: 10.1016/j.neunet.2020.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/13/2020] [Accepted: 10/15/2020] [Indexed: 11/17/2022]
8
Arik S. New Criteria for Stability of Neutral-Type Neural Networks With Multiple Time Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:1504-1513. [PMID: 31265413 DOI: 10.1109/tnnls.2019.2920672] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
9
Xiao J, Wen S, Yang X, Zhong S. New approach to global Mittag-Leffler synchronization problem of fractional-order quaternion-valued BAM neural networks based on a new inequality. Neural Netw 2020;122:320-337. [DOI: 10.1016/j.neunet.2019.10.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/10/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022]
10
Xiao J, Zhong S. Synchronization and stability of delayed fractional-order memristive quaternion-valued neural networks with parameter uncertainties. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.06.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
11
Bianchi FM, Livi L, Alippi C. Investigating Echo-State Networks Dynamics by Means of Recurrence Analysis. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018;29:427-439. [PMID: 28114039 DOI: 10.1109/tnnls.2016.2630802] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
12
New results for exponential stability of complex-valued memristive neural networks with variable delays. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.08.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
13
Sheng Y, Shen Y, Zhu M. Delay-Dependent Global Exponential Stability for Delayed Recurrent Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017;28:2974-2984. [PMID: 27705864 DOI: 10.1109/tnnls.2016.2608879] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
14
Sheng Y, Zhang H, Zeng Z. Synchronization of Reaction-Diffusion Neural Networks With Dirichlet Boundary Conditions and Infinite Delays. IEEE TRANSACTIONS ON CYBERNETICS 2017;47:3005-3017. [PMID: 28436913 DOI: 10.1109/tcyb.2017.2691733] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
15
Ding L, He Y, Liao Y, Wu M. New result for generalized neural networks with additive time-varying delays using free-matrix-based integral inequality method. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.01.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
16
Zhang H, Shan Q, Wang Z. Stability Analysis of Neural Networks With Two Delay Components Based on Dynamic Delay Interval Method. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017;28:259-267. [PMID: 26685269 DOI: 10.1109/tnnls.2015.2503749] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
17
Zhang W, Li C, Huang T. Exponential stability and periodicity of memristor-based recurrent neural networks with time-varying delays. INT J BIOMATH 2017. [DOI: 10.1142/s1793524517500279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
18
Zhang J, Zhao X, Huang J. Synchronization Control of Neural Networks With State-Dependent Coefficient Matrices. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016;27:2440-2447. [PMID: 26340786 DOI: 10.1109/tnnls.2015.2465136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
19
Wang L, Shen Y, Zhang G. Synchronization of a Class of Switched Neural Networks with Time-Varying Delays via Nonlinear Feedback Control. IEEE TRANSACTIONS ON CYBERNETICS 2016;46:2300-2310. [PMID: 26390507 DOI: 10.1109/tcyb.2015.2475277] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
20
Li Z, Liu L, Zhu Q. Mean-square exponential input-to-state stability of delayed Cohen-Grossberg neural networks with Markovian switching based on vector Lyapunov functions. Neural Netw 2016;84:39-46. [PMID: 27639722 DOI: 10.1016/j.neunet.2016.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/11/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
21
Robust adaptive lag synchronization of uncertain fuzzy memristive neural networks with time-varying delays. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2016.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
22
Noise further expresses exponential decay for globally exponentially stable time-varying delayed neural networks. Neural Netw 2016;77:7-13. [DOI: 10.1016/j.neunet.2016.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/14/2015] [Accepted: 01/27/2016] [Indexed: 11/24/2022]
23
Shen W, Zeng Z, Wen S. Synchronization of complex dynamical network with piecewise constant argument of generalized type. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
24
Wang L, Shen Y. Finite-Time Stabilizability and Instabilizability of Delayed Memristive Neural Networks With Nonlinear Discontinuous Controller. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015;26:2914-2924. [PMID: 26277003 DOI: 10.1109/tnnls.2015.2460239] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
25
Wu H, Zhang X, Li R, Yao R. Adaptive anti-synchronization and H∞ anti-synchronization for memristive neural networks with mixed time delays and reaction–diffusion terms. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.05.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
26
Rakkiyappan R, Chandrasekar A, Cao J. Passivity and Passification of Memristor-Based Recurrent Neural Networks With Additive Time-Varying Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015;26:2043-2057. [PMID: 25415991 DOI: 10.1109/tnnls.2014.2365059] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
27
Sun J, Shen Y. Quasi-Ideal Memory System. IEEE TRANSACTIONS ON CYBERNETICS 2015;45:1353-1362. [PMID: 25204007 DOI: 10.1109/tcyb.2014.2350977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
28
Finite-time synchronization control of a class of memristor-based recurrent neural networks. Neural Netw 2015;63:133-40. [DOI: 10.1016/j.neunet.2014.11.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/26/2014] [Accepted: 11/14/2014] [Indexed: 11/24/2022]
29
Xie K, He Z, Cichocki A. Convergence analysis of the FOCUSS algorithm. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015;26:601-613. [PMID: 25720013 DOI: 10.1109/tnnls.2014.2323985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
30
Lian J, Wang J. Passivity of switched recurrent neural networks with time-varying delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015;26:357-366. [PMID: 25576577 DOI: 10.1109/tnnls.2014.2379920] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
31
Liu D, Du Y. New results of stability analysis for a class of neutral-type neural network with mixed time delays. INT J MACH LEARN CYB 2014. [DOI: 10.1007/s13042-014-0302-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
32
Li J, Hu M, Guo L. Exponential stability of stochastic memristor-based recurrent neural networks with time-varying delays. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2014.02.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
33
Mean square input-to-state stability of a general class of stochastic recurrent neural networks with Markovian switching. Neural Comput Appl 2014. [DOI: 10.1007/s00521-014-1649-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
34
A systematic method for analyzing robust stability of interval neural networks with time-delays based on stability criteria. Neural Netw 2014;54:112-22. [DOI: 10.1016/j.neunet.2014.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 11/21/2022]
35
Zhang W, Li C, Huang T. Global robust stability of complex-valued recurrent neural networks with time-delays and uncertainties. INT J BIOMATH 2014. [DOI: 10.1142/s1793524514500168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
36
Luo W, Zhong K, Zhu S, Shen Y. Further results on robustness analysis of global exponential stability of recurrent neural networks with time delays and random disturbances. Neural Netw 2014;53:127-33. [PMID: 24613807 DOI: 10.1016/j.neunet.2014.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/08/2014] [Accepted: 02/16/2014] [Indexed: 10/25/2022]
37
Zhu S, Luo W, Li J, Shen Y. Robustness of globally exponential stability of delayed neural networks in the presence of random disturbances. Neural Comput Appl 2014. [DOI: 10.1007/s00521-014-1547-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
38
Wen S, Bao G, Zeng Z, Chen Y, Huang T. Global exponential synchronization of memristor-based recurrent neural networks with time-varying delays. Neural Netw 2013;48:195-203. [DOI: 10.1016/j.neunet.2013.10.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/02/2013] [Accepted: 10/06/2013] [Indexed: 10/26/2022]
39
Zhu S, Shen Y. Robustness analysis for connection weight matrices of global exponential stable time varying delayed recurrent neural networks. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2013.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
40
Global exponential periodicity and stability of a class of memristor-based recurrent neural networks with multiple delays. Inf Sci (N Y) 2013. [DOI: 10.1016/j.ins.2012.11.023] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
41
Robustness analysis for connection weight matrix of global exponential stability recurrent neural networks. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2012.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
42
Zhu S, Shen Y. Robustness analysis for connection weight matrices of global exponential stability of stochastic recurrent neural networks. Neural Netw 2012. [PMID: 23201555 DOI: 10.1016/j.neunet.2012.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
43
Zhang G, Shen Y, Sun J. Global exponential stability of a class of memristor-based recurrent neural networks with time-varying delays. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2012.05.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
44
Wen S, Zeng Z, Huang T. Exponential stability analysis of memristor-based recurrent neural networks with time-varying delays. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2012.06.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
45
Distributed Interference Alignment Algorithm for Multiple-Input Multiple-Output Networks with Uncoordinated Interference. Cognit Comput 2012. [DOI: 10.1007/s12559-012-9195-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
46
Zhu S, Shen Y. Robustness analysis of global exponential stability of neural networks with Markovian switching in the presence of time-varying delays or noises. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-1105-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
47
Wen S, Zeng Z, Huang T. Dynamic behaviors of memristor-based delayed recurrent networks. Neural Comput Appl 2012. [DOI: 10.1007/s00521-012-0998-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
48
Liao CW, Lu CY. Design of delay-dependent state estimator for discrete-time recurrent neural networks with interval discrete and infinite-distributed time-varying delays. Cogn Neurodyn 2012;5:133-43. [PMID: 22654986 DOI: 10.1007/s11571-010-9135-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 08/17/2010] [Accepted: 08/27/2010] [Indexed: 10/19/2022]  Open
49
Yang Y, He Q, Hu X. A compact neural network for training support vector machines. Neurocomputing 2012. [DOI: 10.1016/j.neucom.2012.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
50
Hu J, Wang J. Global stability of complex-valued recurrent neural networks with time-delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2012;23:853-865. [PMID: 24806758 DOI: 10.1109/tnnls.2012.2195028] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
PrevPage 1 of 2 12Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA