1
|
Stereo Matching in Address-Event-Representation (AER) Bio-Inspired Binocular Systems in a Field-Programmable Gate Array (FPGA). ELECTRONICS 2019. [DOI: 10.3390/electronics8040410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In stereo-vision processing, the image-matching step is essential for results, although it involves a very high computational cost. Moreover, the more information is processed, the more time is spent by the matching algorithm, and the more inefficient it is. Spike-based processing is a relatively new approach that implements processing methods by manipulating spikes one by one at the time they are transmitted, like a human brain. The mammal nervous system can solve much more complex problems, such as visual recognition by manipulating neuron spikes. The spike-based philosophy for visual information processing based on the neuro-inspired address-event-representation (AER) is currently achieving very high performance. The aim of this work was to study the viability of a matching mechanism in stereo-vision systems, using AER codification and its implementation in a field-programmable gate array (FPGA). Some studies have been done before in an AER system with monitored data using a computer; however, this kind of mechanism has not been implemented directly on hardware. To this end, an epipolar geometry basis applied to AER systems was studied and implemented, with other restrictions, in order to achieve good results in a real-time scenario. The results and conclusions are shown, and the viability of its implementation is proven.
Collapse
|
2
|
Tapiador-Morales R, Linares-Barranco A, Jimenez-Fernandez A, Jimenez-Moreno G. Neuromorphic LIF Row-by-Row Multiconvolution Processor for FPGA. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2019; 13:159-169. [PMID: 30418884 DOI: 10.1109/tbcas.2018.2880012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Deep Learning algorithms have become state-of-the-art methods for multiple fields, including computer vision, speech recognition, natural language processing, and audio recognition, among others. In image vision, convolutional neural networks (CNN) stand out. This kind of network is expensive in terms of computational resources due to the large number of operations required to process a frame. In recent years, several frame-based chip solutions to deploy CNN for real time have been developed. Despite the good results in power and accuracy given by these solutions, the number of operations is still high, due the complexity of the current network models. However, it is possible to reduce the number of operations using different computer vision techniques other than frame-based, e.g., neuromorphic event-based techniques. There exist several neuromorphic vision sensors whose pixels detect changes in luminosity. Inspired in the leaky integrate-and-fire (LIF) neuron, we propose in this manuscript an event-based field-programmable gate array (FPGA) multiconvolution system. Its main novelty is the combination of a memory arbiter for efficient memory access to allow row-by-row kernel processing. This system is able to convolve 64 filters across multiple kernel sizes, from 1 × 1 to 7 × 7, with latencies of 1.3 μs and 9.01 μs, respectively, generating a continuous flow of output events. The proposed architecture will easily fit spike-based CNNs.
Collapse
|
3
|
Rast AD, Adams SV, Davidson S, Davies S, Hopkins M, Rowley A, Stokes AB, Wennekers T, Furber S, Cangelosi A. Behavioral Learning in a Cognitive Neuromorphic Robot: An Integrative Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:6132-6144. [PMID: 29994007 DOI: 10.1109/tnnls.2018.2816518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present here a learning system using the iCub humanoid robot and the SpiNNaker neuromorphic chip to solve the real-world task of object-specific attention. Integrating spiking neural networks with robots introduces considerable complexity for questionable benefit if the objective is simply task performance. But, we suggest, in a cognitive robotics context, where the goal is understanding how to compute, such an approach may yield useful insights to neural architecture as well as learned behavior, especially if dedicated neural hardware is available. Recent advances in cognitive robotics and neuromorphic processing now make such systems possible. Using a scalable, structured, modular approach, we build a spiking neural network where the effects and impact of learning can be predicted and tested, and the network can be scaled or extended to new tasks automatically. We introduce several enhancements to a basic network and show how they can be used to direct performance toward behaviorally relevant goals. Results show that using a simple classical spike-timing-dependent plasticity (STDP) rule on selected connections, we can get the robot (and network) to progress from poor task-specific performance to good performance. Behaviorally relevant STDP appears to contribute strongly to positive learning: "do this" but less to negative learning: "don't do that." In addition, we observe that the effect of structural enhancements tends to be cumulative. The overall system suggests that it is by being able to exploit combinations of effects, rather than any one effect or property in isolation, that spiking networks can achieve compelling, task-relevant behavior.
Collapse
|
4
|
Dominguez-Morales JP, Jimenez-Fernandez A, Dominguez-Morales M, Jimenez-Moreno G. NAVIS: Neuromorphic Auditory VISualizer Tool. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.12.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Jimenez-Fernandez A, Cerezuela-Escudero E, Miro-Amarante L, Dominguez-Moralse MJ, de Asis Gomez-Rodriguez F, Linares-Barranco A, Jimenez-Moreno G. A Binaural Neuromorphic Auditory Sensor for FPGA: A Spike Signal Processing Approach. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2017; 28:804-818. [PMID: 27479979 DOI: 10.1109/tnnls.2016.2583223] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper presents a new architecture, design flow, and field-programmable gate array (FPGA) implementation analysis of a neuromorphic binaural auditory sensor, designed completely in the spike domain. Unlike digital cochleae that decompose audio signals using classical digital signal processing techniques, the model presented in this paper processes information directly encoded as spikes using pulse frequency modulation and provides a set of frequency-decomposed audio information using an address-event representation interface. In this case, a systematic approach to design led to a generic process for building, tuning, and implementing audio frequency decomposers with different features, facilitating synthesis with custom features. This allows researchers to implement their own parameterized neuromorphic auditory systems in a low-cost FPGA in order to study the audio processing and learning activity that takes place in the brain. In this paper, we present a 64-channel binaural neuromorphic auditory system implemented in a Virtex-5 FPGA using a commercial development board. The system was excited with a diverse set of audio signals in order to analyze its response and characterize its features. The neuromorphic auditory system response times and frequencies are reported. The experimental results of the proposed system implementation with 64-channel stereo are: a frequency range between 9.6 Hz and 14.6 kHz (adjustable), a maximum output event rate of 2.19 Mevents/s, a power consumption of 29.7 mW, the slices requirements of 11141, and a system clock frequency of 27 MHz.
Collapse
|
6
|
Wang H, Xu J, Gao Z, Lu C, Yao S, Ma J. An Event-Based Neurobiological Recognition System with Orientation Detector for Objects in Multiple Orientations. Front Neurosci 2016; 10:498. [PMID: 27867346 PMCID: PMC5095131 DOI: 10.3389/fnins.2016.00498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/19/2016] [Indexed: 11/24/2022] Open
Abstract
A new multiple orientation event-based neurobiological recognition system is proposed by integrating recognition and tracking function in this paper, which is used for asynchronous address-event representation (AER) image sensors. The characteristic of this system has been enriched to recognize the objects in multiple orientations with only training samples moving in a single orientation. The system extracts multi-scale and multi-orientation line features inspired by models of the primate visual cortex. An orientation detector based on modified Gaussian blob tracking algorithm is introduced for object tracking and orientation detection. The orientation detector and feature extraction block work in simultaneous mode, without any increase in categorization time. An addresses lookup table (addresses LUT) is also presented to adjust the feature maps by addresses mapping and reordering, and they are categorized in the trained spiking neural network. This recognition system is evaluated with the MNIST dataset which have played important roles in the development of computer vision, and the accuracy is increased owing to the use of both ON and OFF events. AER data acquired by a dynamic vision senses (DVS) are also tested on the system, such as moving digits, pokers, and vehicles. The experimental results show that the proposed system can realize event-based multi-orientation recognition. The work presented in this paper makes a number of contributions to the event-based vision processing system for multi-orientation object recognition. It develops a new tracking-recognition architecture to feedforward categorization system and an address reorder approach to classify multi-orientation objects using event-based data. It provides a new way to recognize multiple orientation objects with only samples in single orientation.
Collapse
Affiliation(s)
- Hanyu Wang
- School of Electronic Information Engineering, Tianjin University Tianjin, China
| | - Jiangtao Xu
- School of Electronic Information Engineering, Tianjin University Tianjin, China
| | - Zhiyuan Gao
- School of Electronic Information Engineering, Tianjin University Tianjin, China
| | - Chengye Lu
- School of Electronic Information Engineering, Tianjin University Tianjin, China
| | - Suying Yao
- School of Electronic Information Engineering, Tianjin University Tianjin, China
| | - Jianguo Ma
- School of Electronic Information Engineering, Tianjin University Tianjin, China
| |
Collapse
|
7
|
Zhao B, Ding R, Chen S, Linares-Barranco B, Tang H. Feedforward Categorization on AER Motion Events Using Cortex-Like Features in a Spiking Neural Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015; 26:1963-1978. [PMID: 25347889 DOI: 10.1109/tnnls.2014.2362542] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper introduces an event-driven feedforward categorization system, which takes data from a temporal contrast address event representation (AER) sensor. The proposed system extracts bio-inspired cortex-like features and discriminates different patterns using an AER based tempotron classifier (a network of leaky integrate-and-fire spiking neurons). One of the system's most appealing characteristics is its event-driven processing, with both input and features taking the form of address events (spikes). The system was evaluated on an AER posture dataset and compared with two recently developed bio-inspired models. Experimental results have shown that it consumes much less simulation time while still maintaining comparable performance. In addition, experiments on the Mixed National Institute of Standards and Technology (MNIST) image dataset have demonstrated that the proposed system can work not only on raw AER data but also on images (with a preprocessing step to convert images into AER events) and that it can maintain competitive accuracy even when noise is added. The system was further evaluated on the MNIST dynamic vision sensor dataset (in which data is recorded using an AER dynamic vision sensor), with testing accuracy of 88.14%.
Collapse
|
8
|
Yu T, Park J, Joshi S, Maier C, Cauwenberghs G. Event-driven neural integration and synchronicity in analog VLSI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:775-8. [PMID: 23366007 DOI: 10.1109/embc.2012.6346046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Synchrony and temporal coding in the central nervous system, as the source of local field potentials and complex neural dynamics, arises from precise timing relationships between spike action population events across neuronal assemblies. Recently it has been shown that coincidence detection based on spike event timing also presents a robust neural code invariant to additive incoherent noise from desynchronized and unrelated inputs. We present spike-based coincidence detection using integrate-and-fire neural membrane dynamics along with pooled conductance-based synaptic dynamics in a hierarchical address-event architecture. Within this architecture, we encode each synaptic event with parameters that govern synaptic connectivity, synaptic strength, and axonal delay with additional global configurable parameters that govern neural and synaptic temporal dynamics. Spike-based coincidence detection is observed and analyzed in measurements on a log-domain analog VLSI implementation of the integrate-and-fire neuron and conductance-based synapse dynamics.
Collapse
Affiliation(s)
- Theodore Yu
- Silicon Valley Labs of Texas Instruments, Santa Clara, CA 95051, USA.
| | | | | | | | | |
Collapse
|
9
|
Zamarreno-Ramos C, Linares-Barranco A, Serrano-Gotarredona T, Linares-Barranco B. Multicasting mesh AER: a scalable assembly approach for reconfigurable neuromorphic structured AER systems. Application to ConvNets. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2013; 7:82-102. [PMID: 23853282 DOI: 10.1109/tbcas.2012.2195725] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper presents a modular, scalable approach to assembling hierarchically structured neuromorphic Address Event Representation (AER) systems. The method consists of arranging modules in a 2D mesh, each communicating bidirectionally with all four neighbors. Address events include a module label. Each module includes an AER router which decides how to route address events. Two routing approaches have been proposed, analyzed and tested, using either destination or source module labels. Our analyses reveal that depending on traffic conditions and network topologies either one or the other approach may result in better performance. Experimental results are given after testing the approach using high-end Virtex-6 FPGAs. The approach is proposed for both single and multiple FPGAs, in which case a special bidirectional parallel-serial AER link with flow control is exploited, using the FPGA Rocket-I/O interfaces. Extensive test results are provided exploiting convolution modules of 64 × 64 pixels with kernels with sizes up to 11 × 11, which process real sensory data from a Dynamic Vision Sensor (DVS) retina. One single Virtex-6 FPGA can hold up to 64 of these convolution modules, which is equivalent to a neural network with 262 × 10(3) neurons and almost 32 million synapses.
Collapse
|
10
|
Palm G. Neural associative memories and sparse coding. Neural Netw 2013; 37:165-71. [DOI: 10.1016/j.neunet.2012.08.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/17/2012] [Accepted: 08/22/2012] [Indexed: 11/16/2022]
|
11
|
Selective change driven imaging: a biomimetic visual sensing strategy. SENSORS 2011; 11:11000-20. [PMID: 22346684 PMCID: PMC3274326 DOI: 10.3390/s111111000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 11/15/2011] [Accepted: 11/18/2011] [Indexed: 12/02/2022]
Abstract
Selective Change Driven (SCD) Vision is a biologically inspired strategy for acquiring, transmitting and processing images that significantly speeds up image sensing. SCD vision is based on a new CMOS image sensor which delivers, ordered by the absolute magnitude of its change, the pixels that have changed after the last time they were read out. Moreover, the traditional full frame processing hardware and programming methodology has to be changed, as a part of this biomimetic approach, to a new processing paradigm based on pixel processing in a data flow manner, instead of full frame image processing.
Collapse
|
12
|
Abstract
We investigate architectures for time encoding and time decoding of visual stimuli such as natural and synthetic video streams (movies, animation). The architecture for time encoding is akin to models of the early visual system. It consists of a bank of filters in cascade with single-input multi-output neural circuits. Neuron firing is based on either a threshold-and-fire or an integrate-and-fire spiking mechanism with feedback. We show that analog information is represented by the neural circuits as projections on a set of band-limited functions determined by the spike sequence. Under Nyquist-type and frame conditions, the encoded signal can be recovered from these projections with arbitrary precision. For the video time encoding machine architecture, we demonstrate that band-limited video streams of finite energy can be faithfully recovered from the spike trains and provide a stable algorithm for perfect recovery. The key condition for recovery calls for the number of neurons in the population to be above a threshold value.
Collapse
Affiliation(s)
- Aurel A Lazar
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
13
|
Yu T, Cauwenberghs G. Analog VLSI Biophysical Neurons and Synapses With Programmable Membrane Channel Kinetics. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2010; 4:139-148. [PMID: 23853338 DOI: 10.1109/tbcas.2010.2048566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present and characterize an analog VLSI network of 4 spiking neurons and 12 conductance-based synapses, implementing a silicon model of biophysical membrane dynamics and detailed channel kinetics in 384 digitally programmable parameters. Each neuron in the analog VLSI chip (NeuroDyn) implements generalized Hodgkin-Huxley neural dynamics in 3 channel variables, each with 16 parameters defining channel conductance, reversal potential, and voltage-dependence profile of the channel kinetics. Likewise, 12 synaptic channel variables implement a rate-based first-order kinetic model of neurotransmitter and receptor dynamics, accounting for NMDA and non-NMDA type chemical synapses. The biophysical origin of all 384 parameters in 24 channel variables supports direct interpretation of the results of adapting/tuning the parameters in terms of neurobiology. We present experimental results from the chip characterizing single neuron dynamics, single synapse dynamics, and multi-neuron network dynamics showing phase-locking behavior as a function of synaptic coupling strength. Uniform temporal scaling of the dynamics of membrane and gating variables is demonstrated by tuning a single current parameter, yielding variable speed output exceeding real time. The 0.5 CMOS chip measures 3 mm 3 mm, and consumes 1.29 mW.
Collapse
|
14
|
Perez-Carrasco JA, Acha B, Serrano C, Camunas-Mesa L, Serrano-Gotarredona T, Linares-Barranco B. Fast vision through frameless event-based sensing and convolutional processing: application to texture recognition. ACTA ACUST UNITED AC 2010; 21:609-20. [PMID: 20181543 DOI: 10.1109/tnn.2009.2039943] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Address-event representation (AER) is an emergent hardware technology which shows a high potential for providing in the near future a solid technological substrate for emulating brain-like processing structures. When used for vision, AER sensors and processors are not restricted to capturing and processing still image frames, as in commercial frame-based video technology, but sense and process visual information in a pixel-level event-based frameless manner. As a result, vision processing is practically simultaneous to vision sensing, since there is no need to wait for sensing full frames. Also, only meaningful information is sensed, communicated, and processed. Of special interest for brain-like vision processing are some already reported AER convolutional chips, which have revealed a very high computational throughput as well as the possibility of assembling large convolutional neural networks in a modular fashion. It is expected that in a near future we may witness the appearance of large scale convolutional neural networks with hundreds or thousands of individual modules. In the meantime, some research is needed to investigate how to assemble and configure such large scale convolutional networks for specific applications. In this paper, we analyze AER spiking convolutional neural networks for texture recognition hardware applications. Based on the performance figures of already available individual AER convolution chips, we emulate large scale networks using a custom made event-based behavioral simulator. We have developed a new event-based processing architecture that emulates with AER hardware Manjunath's frame-based feature recognition software algorithm, and have analyzed its performance using our behavioral simulator. Recognition rate performance is not degraded. However, regarding speed, we show that recognition can be achieved before an equivalent frame is fully sensed and transmitted.
Collapse
|
15
|
Lazar AA, Pnevmatikakis EA. Consistent recovery of sensory stimuli encoded with MIMO neural circuits. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2010; 2010:469658. [PMID: 19809513 PMCID: PMC2754078 DOI: 10.1155/2010/469658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 06/24/2009] [Indexed: 11/17/2022]
Abstract
We consider the problem of reconstructing finite energy stimuli encoded with a population of spiking leaky integrate-and-fire neurons. The reconstructed signal satisfies a consistency condition: when passed through the same neuron, it triggers the same spike train as the original stimulus. The recovered stimulus has to also minimize a quadratic smoothness optimality criterion. We formulate the reconstruction as a spline interpolation problem for scalar as well as vector valued stimuli and show that the recovery has a unique solution. We provide explicit reconstruction algorithms for stimuli encoded with single as well as a population of integrate-and-fire neurons. We demonstrate how our reconstruction algorithms can be applied to stimuli encoded with ON-OFF neural circuits with feedback. Finally, we extend the formalism to multi-input multi-output neural circuits and demonstrate that vector-valued finite energy signals can be efficiently encoded by a neural population provided that its size is beyond a threshold value. Examples are given that demonstrate the potential applications of our methodology to systems neuroscience and neuromorphic engineering.
Collapse
Affiliation(s)
- Aurel A Lazar
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
| | | |
Collapse
|
16
|
Serrano-Gotarredona R, Oster M, Lichtsteiner P, Linares-Barranco A, Paz-Vicente R, Gomez-Rodriguez F, Camunas-Mesa L, Berner R, Rivas-Perez M, Delbruck T, Liu SC, Douglas R, Hafliger P, Jimenez-Moreno G, Civit Ballcels A, Serrano-Gotarredona T, Acosta-Jimenez AJ, Linares-Barranco B. CAVIAR: A 45k Neuron, 5M Synapse, 12G Connects/s AER Hardware Sensory–Processing– Learning–Actuating System for High-Speed Visual Object Recognition and Tracking. ACTA ACUST UNITED AC 2009; 20:1417-38. [PMID: 19635693 DOI: 10.1109/tnn.2009.2023653] [Citation(s) in RCA: 265] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|