1
|
Hu L, Duan L. Fixed-/preassigned-time synchronization for delayed complex-valued neural networks with discontinuous activations. Cogn Neurodyn 2024; 18:2963-2973. [PMID: 39555284 PMCID: PMC11564493 DOI: 10.1007/s11571-024-10129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 11/19/2024] Open
Abstract
Finite-time synchronization is a crucial phenomenon observed in nonlinear complex systems, the settling time in such a dynamic phenomenon is heavily depends on the initial states which may be unaccessible beforehand in the real world. Eliminating the dependence of the settling time on initial states leads to major advantage and convenience in practical applications. This paper is concerned with the fixed-/preassigned-time synchronization of delayed complex-valued neural networks(CVNNs) with discontinuous activations. By designing novel state feedback controllers, and with the help of Filippov regularization and inequality techniques, some new criteria for achieving fixed-/preassigned-time synchronization are established. The obtained theoretical results cover and supplement existing ones of the CVNNs with continuous activations. In addition, the upper-bound of the settling time is explicitly estimated. Finally, the validity of the theoretical results is supported by numerical simulations.
Collapse
Affiliation(s)
- Leping Hu
- School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, 232001 Anhui People’s Republic of China
| | - Lian Duan
- School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, 232001 Anhui People’s Republic of China
| |
Collapse
|
2
|
Akca H, Aouiti C, Touati F, Xu C. Finite-time passivity of neutral-type complex-valued neural networks with time-varying delays. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6097-6122. [PMID: 38872571 DOI: 10.3934/mbe.2024268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
In this work, we investigated the finite-time passivity problem of neutral-type complex-valued neural networks with time-varying delays. On the basis of the Lyapunov functional, Wirtinger-type inequality technique, and linear matrix inequalities (LMIs) approach, new sufficient conditions were derived to ensure the finite-time boundedness (FTB) and finite-time passivity (FTP) of the concerned network model. At last, two numerical examples with simulations were presented to demonstrate the validity of our criteria.
Collapse
Affiliation(s)
- Haydar Akca
- Abu Dhabi University, College of Arts and Sciences, Department of Applied Sciences and Mathematics, Abu Dhabi, UAE
| | - Chaouki Aouiti
- University Carthage, Faculty of Sciences of Bizerta, Department of Mathematics, GAMA Laboratory LR21ES10, BP W, 7021 Zarzouna, Bizerta, Tunisia
| | - Farid Touati
- University Carthage, Faculty of Sciences of Bizerta, Department of Mathematics, GAMA Laboratory LR21ES10, BP W, 7021 Zarzouna, Bizerta, Tunisia
| | - Changjin Xu
- Guizhou Key Laboratory of Economics System Simulation, Guizhou University of Finance and Economics, Guiyang 550004, China
| |
Collapse
|
3
|
Zhang Z, Wei X, Wang S, Lin C, Chen J. Fixed-Time Pinning Common Synchronization and Adaptive Synchronization for Delayed Quaternion-Valued Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:2276-2289. [PMID: 35830401 DOI: 10.1109/tnnls.2022.3189625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article focuses on the fixed-time pinning common synchronization and adaptive synchronization for quaternion-valued neural networks with time-varying delays. First, to reduce transmission burdens and limit convergence time, a pinning controller which only controls partial nodes directly rather than the entire nodes is proposed based on fixed-time control theory. Then, by Lyapunov function approach and some inequalities techniques, fixed-time common synchronization criterion is established. Second, further to realize the self-regulation function of pinning controller, an adaptive pinning controller which can adjust automatically the control gains is developed, the desired fixed-time adaptive synchronization is achieved for the considered system, and the corresponding criterion is also derived. Finally, the availability of these results is tested by simulation example.
Collapse
|
4
|
Hong W, Tao G, Wang H, Wang C. Traffic Signal Control With Adaptive Online-Learning Scheme Using Multiple-Model Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:7838-7850. [PMID: 35139028 DOI: 10.1109/tnnls.2022.3146811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article proposes a new traffic signal control algorithm to deal with unknown-traffic-system uncertainties and reduce delays in vehicle travel time. Unknown-traffic-system dynamics are approximated using a recurrent neural network (NN). To accurately identify the traffic system model, an online-learning scheme is developed to switch among a set of candidate NNs (i.e., multiple-model NNs) based on their estimation errors. Then, a bank of optimal signal-timing controllers is designed based on the online identification of the traffic system. Simulation studies have been carried out for the obtained control strategies using multiple-model NNs, and the desired results have been obtained. Moreover, compared with the widely used actuated traffic signal control schemes, it is shown that the proposed method can reduce vehicle travel delays and improve traffic system robustness.
Collapse
|
5
|
Liu Y, Shen B, Sun J. Stability and synchronization for complex-valued neural networks with stochastic parameters and mixed time delays. Cogn Neurodyn 2023; 17:1213-1227. [PMID: 37786660 PMCID: PMC10542069 DOI: 10.1007/s11571-022-09823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/04/2022] [Accepted: 05/15/2022] [Indexed: 11/29/2022] Open
Abstract
In this paper, a class of complex-valued neural networks (CVNNs) with stochastic parameters and mixed time delays are proposed. The random fluctuation of system parameters is considered in order to describe the implementation of CVNNs more practically. Mixed time delays including distributed delays and time-varying delays are also taken into account in order to reflect the influence of network loads and communication constraints. Firstly, the stability problem is investigated for the CVNNs. In virtue of Lyapunov stability theory, a sufficient condition is deduced to ensure that CVNNs are asymptotically stable in the mean square. Then, for an array of coupled identical CVNNs with stochastic parameters and mixed time delays, synchronization issue is investigated. A set of matrix inequalities are obtained by using Lyapunov stability theory and Kronecker product and if these matrix inequalities are feasible, the addressed CVNNs are synchronized. Finally, the effectiveness of the obtained theoretical results is demonstrated by two numerical examples.
Collapse
Affiliation(s)
- Yufei Liu
- College of Information Science and Technology, Donghua University, Shanghai, 201620 China
- Engineering Research Center of Digitalized Textile and Fashion Technology, Ministry of Education, Shanghai, 201620 China
| | - Bo Shen
- College of Information Science and Technology, Donghua University, Shanghai, 201620 China
- Engineering Research Center of Digitalized Textile and Fashion Technology, Ministry of Education, Shanghai, 201620 China
| | - Jie Sun
- College of Information Science and Technology, Donghua University, Shanghai, 201620 China
- Engineering Research Center of Digitalized Textile and Fashion Technology, Ministry of Education, Shanghai, 201620 China
| |
Collapse
|
6
|
Cao J, Udhayakumar K, Rakkiyappan R, Li X, Lu J. A Comprehensive Review of Continuous-/Discontinuous-Time Fractional-Order Multidimensional Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:5476-5496. [PMID: 34962883 DOI: 10.1109/tnnls.2021.3129829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dynamical study of continuous-/discontinuous-time fractional-order neural networks (FONNs) has been thoroughly explored, and several publications have been made available. This study is designed to give an exhaustive review of the dynamical studies of multidimensional FONNs in continuous/discontinuous time, including Hopfield NNs (HNNs), Cohen-Grossberg NNs, and bidirectional associative memory NNs, and similar models are considered in real ( [Formula: see text]), complex ( [Formula: see text]), quaternion ( [Formula: see text]), and octonion ( [Formula: see text]) fields. Since, in practice, delays are unavoidable, theoretical findings from multidimensional FONNs with various types of delays are thoroughly evaluated. Some required and adequate stability and synchronization requirements are also mentioned for fractional-order NNs without delays.
Collapse
|
7
|
Shen Y, Zhu S, Liu X, Wen S. Multiple Mittag-Leffler Stability of Fractional-Order Complex-Valued Memristive Neural Networks With Delays. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:5815-5825. [PMID: 35976827 DOI: 10.1109/tcyb.2022.3194059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article discusses the coexistence and dynamical behaviors of multiple equilibrium points (Eps) for fractional-order complex-valued memristive neural networks (FCVMNNs) with delays. First, based on the state space partition method, some sufficient conditions are proposed to guarantee that there are multiple Eps in one FCVMNN. Then, the Mittag-Leffler stability of those multiple Eps is proved by using the Lyapunov function. Simultaneously, the enlarged attraction basins are obtained to improve and extend the existing theoretical results in the previous literature. In addition, some existing stability results in the literature are special cases of a new result herein. Finally, two illustrative examples with computer simulations are presented to verify the effectiveness of theoretical analysis.
Collapse
|
8
|
Sheng Y, Gong H, Zeng Z. Global synchronization of complex-valued neural networks with unbounded time-varying delays. Neural Netw 2023; 162:309-317. [PMID: 36934692 DOI: 10.1016/j.neunet.2023.02.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
This paper investigates global synchronization of complex-valued neural networks (CVNNs) with unbounded time-varying delays. By applying analytical method and inequality techniques, an algebraic criterion is established to ensure global synchronization of the CVNNs via a devised feedback controller, which generalizes some existing outcomes. Finally, two numerical simulations and one application in image encryption are provided to verify the effectiveness of the theoretical results.
Collapse
Affiliation(s)
- Yin Sheng
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| | - Haoyu Gong
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| | - Zhigang Zeng
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
| |
Collapse
|
9
|
Quasi-Projective and Mittag-Leffler Synchronization of Discrete-Time Fractional-Order Complex-Valued Fuzzy Neural Networks. Neural Process Lett 2023. [DOI: 10.1007/s11063-023-11153-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Yu T, Cao J, Rutkowski L, Luo YP. Finite-Time Synchronization of Complex-Valued Memristive-Based Neural Networks via Hybrid Control. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:3938-3947. [PMID: 33566775 DOI: 10.1109/tnnls.2021.3054967] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The finite-time synchronization problem is investigated for the master-slave complex-valued memristive neural networks in this article. A novel Lyapunov-function based finite-time stability criterion with impulsive effects is proposed and utilized to design the decentralized finite-time synchronization controller. Not only the settling time but also the attractive domain with respect to the impulsive gain and average impulsive interval, as well as initial values is derived according to the sufficient synchronization condition. Two examples are outlined to illustrate the validity of our hybrid control strategy.
Collapse
|
11
|
Multistability analysis of delayed recurrent neural networks with a class of piecewise nonlinear activation functions. Neural Netw 2022; 152:80-89. [DOI: 10.1016/j.neunet.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022]
|
12
|
Chouhan SS, kumar R, Sarkar S, Das S. Multistability Analysis of Octonion-Valued Neural Networks with Time-Varying Delays. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.07.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Xiao Q, Huang T, Zeng Z. On Exponential Stability of Delayed Discrete-Time Complex-Valued Inertial Neural Networks. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:3483-3494. [PMID: 32749994 DOI: 10.1109/tcyb.2020.3009761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article tackles the global exponential stability for a class of delayed complex-valued inertial neural networks in a discrete-time form. It is assumed that the activation function can be separated explicitly into the real part and imaginary part. Two methods are employed to deal with the stability issue. One is based on the reduced-order method. Two exponential stability criteria are obtained for the equivalent reduced-order network with the generalized matrix-measure concept. The other is directly based on the original second-order system. The main theoretical results complement each other. Some comparisons with the existing works show that the results in this article are less conservative. Two numerical examples are given to illustrate the validity of the main results.
Collapse
|
14
|
Design and Analysis of Anti-Noise Parameter-Variable Zeroing Neural Network for Dynamic Complex Matrix Inversion and Manipulator Trajectory Tracking. ELECTRONICS 2022. [DOI: 10.3390/electronics11050824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Dynamic complex matrix inversion (DCMI) problems frequently arise in the territories of mathematics and engineering, and various recurrent neural network (RNN) models have been reported to effectively find the solutions of the DCMI problems. However, most of the reported works concentrated on solving DCMI problems in ideal no noise environment, and the inevitable noises in reality are not considered. To enhance the robustness of the existing models, an anti-noise parameter-variable zeroing neural network (ANPVZNN) is proposed by introducing a novel activation function (NAF). Both of mathematical analysis and numerical simulation results demonstrate that the proposed ANPVZNN model possesses fixed-time convergence and robustness for solving DCMI problems. Besides, a successful ANPVZNN-based manipulator trajectory tracking example further verifies its robustness and effectiveness in practical applications.
Collapse
|
15
|
Stabilization of complex-valued stochastic coupled systems with multiple time delays and regime-switching jump diffusion via periodically intermittent control. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2021.10.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Udhayakumar K, Rakkiyappan R, Rihan FA, Banerjee S. Projective Multi-Synchronization of Fractional-order Complex-valued Coupled Multi-stable Neural Networks with Impulsive Control. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Cao Y, Ramajayam S, Sriraman R, Samidurai R. Leakage delay on stabilization of finite-time complex-valued BAM neural network: Decomposition approach. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.08.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Li H, Kao Y. Global Mittag-Leffler stability and existence of the solution for fractional-order complex-valued NNs with asynchronous time delays. CHAOS (WOODBURY, N.Y.) 2021; 31:113110. [PMID: 34881590 DOI: 10.1063/5.0059887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
This paper is dedicated to exploring the global Mittag-Leffler stability of fractional-order complex-valued (CV) neural networks (NNs) with asynchronous time delays, which generates exponential stability of integer-order (IO) CVNNs. Here, asynchronous time delays mean that there are different time delays in different nodes. Two new inequalities concerning the product of two Mittag-Leffler functions and one novel lemma on a fractional derivative of the product of two functions are given with a rigorous theoretical proof. By utilizing three norms, several novel conditions are concluded to guarantee the global Mittag-Leffler stability and the existence and uniqueness of an equilibrium point. Considering the symbols of the matrix elements, the properties of an M-matrix are extended to the general cases, which introduces the excitatory and inhibitory impacts on neurons. Compared with IOCVNNs, exponential stability is the special case of our results, which means that our model and results are general. At last, two numerical experiments are carried out to explain the theoretical analysis.
Collapse
Affiliation(s)
- Hui Li
- Department of Mathematics, Harbin Institute of Technology, Weihai, Shangdong 264209, People's Republic of China
| | - YongGui Kao
- Department of Mathematics, Harbin Institute of Technology, Weihai, Shangdong 264209, People's Republic of China
| |
Collapse
|
19
|
Novel global polynomial stability criteria of impulsive complex-valued neural networks with multi-proportional delays. Neural Comput Appl 2021. [DOI: 10.1007/s00521-021-06555-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Yang B, Bao W, Zhang W, Wang H, Song C, Chen Y, Jiang X. Reverse engineering gene regulatory network based on complex-valued ordinary differential equation model. BMC Bioinformatics 2021; 22:448. [PMID: 34544363 PMCID: PMC8451084 DOI: 10.1186/s12859-021-04367-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The growing researches of molecular biology reveal that complex life phenomena have the ability to demonstrating various types of interactions in the level of genomics. To establish the interactions between genes or proteins and understand the intrinsic mechanisms of biological systems have become an urgent need and study hotspot. RESULTS In order to forecast gene expression data and identify more accurate gene regulatory network, complex-valued version of ordinary differential equation (CVODE) is proposed in this paper. In order to optimize CVODE model, a complex-valued hybrid evolutionary method based on Grammar-guided genetic programming and complex-valued firefly algorithm is presented. CONCLUSIONS When tested on three real gene expression datasets from E. coli and Human Cell, the experiment results suggest that CVODE model could improve 20-50% prediction accuracy of gene expression data, which could also infer more true-positive regulatory relationships and less false-positive regulations than ordinary differential equation.
Collapse
Affiliation(s)
- Bin Yang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Wenzheng Bao
- School of Information and Electrical Engineering, Xuzhou University of Technology, Xuzhou, 221018, China.
| | - Wei Zhang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Haifeng Wang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Chuandong Song
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Yuehui Chen
- School of Information Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Xiuying Jiang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277160, China
| |
Collapse
|
21
|
Shen Q, Shi P, Agarwal RK, Shi Y. Adaptive Neural Network-Based Filter Design for Nonlinear Systems With Multiple Constraints. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3256-3261. [PMID: 32721902 DOI: 10.1109/tnnls.2020.3009391] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Filter design for nonlinear systems, especially time delayed nonlinear systems, has always been an important and challenging problem. This brief investigates the filter design problem of nonlinear systems with multiple constraints: time delay, actuator, and sensor faults, and a new adaptive neural network-based filter design method is proposed. Comparing with the existing works where there is a shortcoming that the designed filters contain unknown time delay(s), the design method proposed in this brief overcomes the shortcoming and only the estimation of the unknown time delay exists in the filter. Furthermore, not only the system states can be estimated, but also the unknown time delay with actuator and sensor faults can be estimated in this brief. Finally, simulation results are given to show the effectiveness of the proposed new design method.
Collapse
|
22
|
Feng L, Yu J, Hu C, Yang C, Jiang H. Nonseparation Method-Based Finite/Fixed-Time Synchronization of Fully Complex-Valued Discontinuous Neural Networks. IEEE TRANSACTIONS ON CYBERNETICS 2021; 51:3212-3223. [PMID: 32275633 DOI: 10.1109/tcyb.2020.2980684] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article mainly focuses on the problem of synchronization in finite and fixed time for fully complex-variable delayed neural networks involving discontinuous activations and time-varying delays without dividing the original complex-variable neural networks into two subsystems in the real domain. To avoid the separation method, a complex-valued sign function is proposed and its properties are established. By means of the introduced sign function, two discontinuous control strategies are developed under the quadratic norm and a new norm based on absolute values of real and imaginary parts. By applying nonsmooth analysis and some novel inequality techniques in the complex field, several synchronization criteria and the estimates of the settling time are derived. In particular, under the new norm framework, a unified control strategy is designed and it is revealed that a parameter value in the controller completely decides the networks are synchronized whether in finite time or in fixed time. Finally, some numerical results for an example are provided to support the established theoretical results.
Collapse
|
23
|
Global exponential stability of delayed complex-valued neural networks with discontinuous activation functions. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Finite-time synchronization of complex-valued neural networks with finite-time distributed delays. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.01.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Ganesan S, Gnaneswaran N. State-Feedback Filtering for Delayed Discrete-Time Complex-Valued Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:4726-4736. [PMID: 31905153 DOI: 10.1109/tnnls.2019.2957304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article explores a new filtering problem for the class of delayed discrete-time complex-valued neural networks (CVNNs) via state-feedback control design. The novelty of this article comes from the consideration of the newly developed complex-valued reciprocal convex matrix inequality as well as the complex-valued Jensen-based summation inequalities (JSIs). By employing an appropriate Lyapunov-Krasovskii functional (LKF) and by using newly proposed complex-valued inequalities, attention is concentrated on the design of a state-feedback filter such that the associated filtering error system is asymptotically stable with prescribed filter and control gain matrices. The proposed theoretical results are presented in terms of complex-valued linear matrix inequalities (LMIs) that can be solved numerically by using the YALMIP toolbox in MATLAB software. Additionally, one numerical example is given to confirm the validity of the resulting sufficient conditions with the availability of the suitable control and filter design.
Collapse
|
26
|
Wang S, Ji W, Jiang Y, Liu D. Relaxed Stability Criteria for Neural Networks With Time-Varying Delay Using Extended Secondary Delay Partitioning and Equivalent Reciprocal Convex Combination Techniques. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:4157-4169. [PMID: 31869803 DOI: 10.1109/tnnls.2019.2952410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article investigates global asymptotic stability for neural networks (NNs) with time-varying delay, which is differentiable and uniformly bounded, and the delay derivative exists and is upper-bounded. First, we propose the extended secondary delay partitioning technique to construct the novel Lyapunov-Krasovskii functional, where both single-integral and double-integral state variables are considered, while the single-integral ones are only solved by the traditional secondary delay partitioning. Second, a novel free-weight matrix equality (FWME) is presented to resolve the reciprocal convex combination problem equivalently and directly without Schur complement, which eliminates the need of positive definite matrices, and is less conservative and restrictive compared with various improved reciprocal convex inequalities. Furthermore, by the present extended secondary delay partitioning, equivalent reciprocal convex combination technique, and Bessel-Legendre inequality, two different relaxed sufficient conditions ensuring global asymptotic stability for NNs are obtained, for time-varying delays, respectively, with unknown and known lower bounds of the delay derivative. Finally, two examples are given to illustrate the superiority and effectiveness of the presented method.
Collapse
|
27
|
Finite Time Anti-synchronization of Quaternion-Valued Neural Networks with Asynchronous Time-Varying Delays. Neural Process Lett 2020. [DOI: 10.1007/s11063-020-10348-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Bao G, Peng Y, Zhou X, Gong S. Region Stability and Stabilization of Recurrent Neural Network with Parameter Disturbances. Neural Process Lett 2020. [DOI: 10.1007/s11063-020-10344-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Exponential synchronization of complex-valued memristor-based delayed neural networks via quantized intermittent control. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.04.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Zhu S, Liu D, Yang C, Fu J. Synchronization of Memristive Complex-Valued Neural Networks With Time Delays via Pinning Control Method. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:3806-3815. [PMID: 31689227 DOI: 10.1109/tcyb.2019.2946703] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article concentrates on the synchronization problem of memristive complex-valued neural networks (CVNNs) with time delays via the pinning control method. Different from general control schemes, the pinning control is beneficial to reduce the control cost by pinning the fractional nodes instead of all ones. By separating the complex-valued system into two equivalent real-valued systems and employing the Lyapunov functional as well as some inequality techniques, the asymptotic synchronization criterion is given to guarantee the realization of synchronization of memristive CVNNs. Meanwhile, sufficient conditions for exponential synchronization of the considered systems is also proposed. Finally, the validity of our proposed results is verified by a numerical example.
Collapse
|
31
|
Improved Stabilization Results for Markovian Switching CVNNs with Partly Unknown Transition Rates. Neural Process Lett 2020. [DOI: 10.1007/s11063-020-10299-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Xiao X, Jiang C, Lu H, Jin L, Liu D, Huang H, Pan Y. A parallel computing method based on zeroing neural networks for time-varying complex-valued matrix Moore-Penrose inversion. Inf Sci (N Y) 2020. [DOI: 10.1016/j.ins.2020.03.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Finite time anti-synchronization of complex-valued neural networks with bounded asynchronous time-varying delays. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.01.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Li L, Chen W. Exponential stability analysis of quaternion-valued neural networks with proportional delays and linear threshold neurons: Continuous-time and discrete-time cases. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.09.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Zhang XM, Han QL, Ge X, Zhang BL. Passivity Analysis of Delayed Neural Networks Based on Lyapunov-Krasovskii Functionals With Delay-Dependent Matrices. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:946-956. [PMID: 30346302 DOI: 10.1109/tcyb.2018.2874273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper is concerned with passivity of a class of delayed neural networks. In order to derive less conservative passivity criteria, two Lyapunov-Krasovskii functionals (LKFs) with delay-dependent matrices are introduced by taking into consideration a second-order Bessel-Legendre inequality. In one LKF, the system state vector is coupled with those vectors inherited from the second-order Bessel-Legendre inequality through delay-dependent matrices, while no such coupling of them exists in the other LKF. These two LKFs are referred to as the coupled LKF and the noncoupled LKF, respectively. A number of delay-dependent passivity criteria are derived by employing a convex approach and a nonconvex approach to deal with the square of the time-varying delay appearing in the derivative of the LKF. Through numerical simulation, it is found that: 1) the coupled LKF is more beneficial than the noncoupled LKF for reducing the conservatism of the obtained passivity criteria and 2) the passivity criteria using the convex approach can deliver larger delay upper bounds than those using the nonconvex approach.
Collapse
|
36
|
Global µ-stability of neutral-type impulsive complex-valued BAM neural networks with leakage delay and unbounded time-varying delays. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Wang X, Wang Z, Song Q, Shen H, Huang X. A waiting-time-based event-triggered scheme for stabilization of complex-valued neural networks. Neural Netw 2020; 121:329-338. [DOI: 10.1016/j.neunet.2019.09.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022]
|
38
|
Wang P, Zou W, Su H, Feng J. Exponential synchronization of complex-valued delayed coupled systems on networks with aperiodically on-off coupling. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.08.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Gunasekaran N, Zhai G. Stability analysis for uncertain switched delayed complex-valued neural networks. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.08.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
|
41
|
Synchronization of impulsive coupled complex-valued neural networks with delay: The matrix measure method. Neural Netw 2019; 117:285-294. [DOI: 10.1016/j.neunet.2019.05.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 05/09/2019] [Accepted: 05/24/2019] [Indexed: 11/21/2022]
|
42
|
Wang Z, Cao J, Cai Z, Huang L. Periodicity and finite-time periodic synchronization of discontinuous complex-valued neural networks. Neural Netw 2019; 119:249-260. [PMID: 31472291 DOI: 10.1016/j.neunet.2019.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 06/28/2019] [Accepted: 08/19/2019] [Indexed: 11/18/2022]
Abstract
This paper discusses the issue of periodicity and finite-time periodic synchronization of discontinuous complex-valued neural networks (CVNNs). Based on a modified version of Kakutani's fixed point theorem, general conditions are obtained to guarantee the periodicity of discontinuous CVNNs. Next, several criteria for finite-time periodic synchronization (FTPS) are given by using a new proposed finite-time convergence theorem. Different from the traditional convergence lemma, the estimated upper bound of the derivative of the Lyapunov function (LF) is allowed to be indefinite or even positive. In order to achieve FTPS, novel discontinuous control algorithms, including state-feedback control algorithm and generalized pinning control algorithm, are designed. In the generalized pinning control algorithm, a guideline is proposed to select neurons to pin the designed controller. Finally, two simulations are given to substantiate the main results.
Collapse
Affiliation(s)
- Zengyun Wang
- Department of Mathematics, Hunan First Normal University, Changsha 410205, China; School of Mathematics, Southeast University, Nanjing, 210096, China; The Jiangsu Provincial Key Laboratory of Networked Collective Intelligence, Southeast University, Nanjing 210096, China; Changsha University of Science and Technology, Changsha, 410114, China
| | - Jinde Cao
- School of Mathematics, Southeast University, Nanjing, 210096, China; The Jiangsu Provincial Key Laboratory of Networked Collective Intelligence, Southeast University, Nanjing 210096, China.
| | - Zuowei Cai
- Department of Technology, Hunan Women's University, Changsha, Hunan 410002, China; Changsha University of Science and Technology, Changsha, 410114, China.
| | - Lihong Huang
- Changsha University of Science and Technology, Changsha, 410114, China
| |
Collapse
|
43
|
Finite Time Stability Analysis of Fractional-Order Complex-Valued Memristive Neural Networks with Proportional Delays. Neural Process Lett 2019. [DOI: 10.1007/s11063-019-10097-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Liu J, Jian J. Global dissipativity of a class of quaternion-valued BAM neural networks with time delay. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Liu D, Zhu S, Sun K. Global Anti-Synchronization of Complex-Valued Memristive Neural Networks With Time Delays. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:1735-1747. [PMID: 29993825 DOI: 10.1109/tcyb.2018.2812708] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper formulates a class of complex-valued memristive neural networks as well as investigates the problem of anti-synchronization for complex-valued memristive neural networks. Under the concept of drive-response, several sufficient conditions for guaranteeing the anti-synchronization are given by employing suitable Lyapunov functional and some inequality techniques. The proposed results of this paper are less conservative than existing literatures due to the characteristics of memristive complex-valued neural networks. Moreover, the proposed results are easy to be validated with the parameters of system itself. Finally, two examples with numerical simulations are showed to demonstrate the efficiency of our theoretical results.
Collapse
|
46
|
Synchronization of Coupled Complex-Valued Impulsive Neural Networks with Time Delays. Neural Process Lett 2019. [DOI: 10.1007/s11063-019-10028-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Duan L, Shi M, Wang Z, Huang L. Global Exponential Synchronization of Delayed Complex-Valued Recurrent Neural Networks with Discontinuous Activations. Neural Process Lett 2019. [DOI: 10.1007/s11063-018-09970-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Zhang W, Zhang H, Cao J, Alsaadi FE, Chen D. Synchronization in uncertain fractional-order memristive complex-valued neural networks with multiple time delays. Neural Netw 2019; 110:186-198. [DOI: 10.1016/j.neunet.2018.12.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/13/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022]
|
49
|
Hou P, Hu J, Gao J, Zhu P. Stability Analysis for Memristor-Based Complex-Valued Neural Networks with Time Delays. ENTROPY (BASEL, SWITZERLAND) 2019; 21:e21020120. [PMID: 33266836 PMCID: PMC7514603 DOI: 10.3390/e21020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 06/12/2023]
Abstract
In this paper, the problem of stability analysis for memristor-based complex-valued neural networks (MCVNNs) with time-varying delays is investigated extensively. This paper focuses on the exponential stability of the MCVNNs with time-varying delays. By means of the Brouwer's fixed-point theorem and M-matrix, the existence, uniqueness, and exponential stability of the equilibrium point for MCVNNs are studied, and several sufficient conditions are obtained. In particular, these results can be applied to general MCVNNs whether the activation functions could be explicitly described by dividing into two parts of the real parts and imaginary parts or not. Two numerical simulation examples are provided to illustrate the effectiveness of the theoretical results.
Collapse
Affiliation(s)
- Ping Hou
- School of Management, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jun Hu
- School of Management Science and Engineering, Central University of Finance and Economics, Beijing 100080, China
| | - Jie Gao
- School of Sciences, Southwest Petroleum University, Chengdu 610500, China
| | - Peican Zhu
- School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
50
|
On extreme learning machines in sequential and time series prediction: A non-iterative and approximate training algorithm for recurrent neural networks. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|