1
|
Ma L, Wu B, Yao Y, Teng Y. Entropy-Regularized Iterative Weighted Shrinkage-Thresholding Algorithm (ERIWSTA) for inverse problems in imaging. PLoS One 2024; 19:e0311227. [PMID: 39729470 DOI: 10.1371/journal.pone.0311227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/16/2024] [Indexed: 12/29/2024] Open
Abstract
The iterative shrinkage-thresholding algorithm (ISTA) is a classic optimization algorithm for solving ill-posed linear inverse problems. Recently, this algorithm has continued to improve, and the iterative weighted shrinkage-thresholding algorithm (IWSTA) is one of the improved versions with a more evident advantage over the ISTA. It processes features with different weights, making different features have different contributions. However, the weights of the existing IWSTA do not conform to the usual definition of weights: their sum is not 1, and they are distributed over an extensive range. These problems may make it challenging to interpret and analyze the weights, leading to inaccurate solution results. Therefore, this paper proposes a new IWSTA, namely, the entropy-regularized IWSTA (ERIWSTA), with weights that are easy to calculate and interpret. The weights automatically fall within the range of [0, 1] and are guaranteed to sum to 1. At this point, considering the weights as the probabilities of the contributions of different attributes to the model can enhance the interpretation ability of the algorithm. Specifically, we add an entropy regularization term to the objective function of the problem model and then use the Lagrange multiplier method to solve the weights. Experimental results of a computed tomography (CT) image reconstruction task show that the ERIWSTA outperforms the existing methods in terms of convergence speed and recovery accuracy.
Collapse
Affiliation(s)
- Limin Ma
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning Province, China
| | - Bingxue Wu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning Province, China
| | - Yudong Yao
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, United States of America
| | - Yueyang Teng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning Province, China
- Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Shenyang, Liaoning Province, China
| |
Collapse
|
2
|
Huang J, Vong CM, Chen CLP, Zhou Y. Accurate and Efficient Large-Scale Multi-Label Learning With Reduced Feature Broad Learning System Using Label Correlation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:10240-10253. [PMID: 35436203 DOI: 10.1109/tnnls.2022.3165299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multi-label learning for large-scale data is a grand challenge because of a large number of labels with a complex data structure. Hence, the existing large-scale multi-label methods either have unsatisfactory classification performance or are extremely time-consuming for training utilizing a massive amount of data. A broad learning system (BLS), a flat network with the advantages of succinct structures, is appropriate for addressing large-scale tasks. However, existing BLS models are not directly applicable for large-scale multi-label learning due to the large and complex label space. In this work, a novel multi-label classifier based on BLS (called BLS-MLL) is proposed with two new mechanisms: kernel-based feature reduction module and correlation-based label thresholding. The kernel-based feature reduction module contains three layers, namely, the feature mapping layer, enhancement nodes layer, and feature reduction layer. The feature mapping layer employs elastic network regularization to solve the randomness of features in order to improve performance. In the enhancement nodes layer, the kernel method is applied for high-dimensional nonlinear conversion to achieve high efficiency. The newly constructed feature reduction layer is used to further significantly improve both the training efficiency and accuracy when facing high-dimensionality with abundant or noisy information embedded in large-scale data. The correlation-based label thresholding enables BLS-MLL to generate a label-thresholding function for effective conversion of the final decision values to logical outputs, thus, improving the classification performance. Finally, experimental comparisons among six state-of-the-art multi-label classifiers on ten datasets demonstrate the effectiveness of the proposed BLS-MLL. The results of the classification performance show that BLS-MLL outperforms the compared algorithms in 86% of cases with better training efficiency in 90% of cases.
Collapse
|
3
|
Han S, Zhu K, Zhou M, Liu X. Evolutionary Weighted Broad Learning and Its Application to Fault Diagnosis in Self-Organizing Cellular Networks. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:3035-3047. [PMID: 35113791 DOI: 10.1109/tcyb.2021.3126711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a novel neural network-based learning framework, a broad learning system (BLS) has attracted much attention due to its excellent performance on regression and balanced classification problems. However, it is found to be unsuitable for imbalanced data classification problems because it treats each class in an imbalanced dataset equally. To address this issue, this work proposes a weighted BLS (WBLS) in which the weight assigned to each class depends on the number of samples in it. In order to further boost its classification performance, an improved differential evolution algorithm is proposed to automatically optimize its parameters, including the ones in BLS and newly generated weights. We first optimize the parameters with a training dataset, and then apply them to WBLS on a test dataset. The experiments on 20 imbalanced classification problems have shown that our proposed method can achieve higher classification accuracy than the other methods in terms of several widely used performance metrics. Finally, it is applied to fault diagnosis in self-organizing cellular networks to further show its applicability to industrial application problems.
Collapse
|
4
|
Tartaglione E, Bragagnolo A, Odierna F, Fiandrotti A, Grangetto M. SeReNe: Sensitivity-Based Regularization of Neurons for Structured Sparsity in Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:7237-7250. [PMID: 34129503 DOI: 10.1109/tnnls.2021.3084527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Deep neural networks include millions of learnable parameters, making their deployment over resource-constrained devices problematic. Sensitivity-based regularization of neurons (SeReNe) is a method for learning sparse topologies with a structure, exploiting neural sensitivity as a regularizer. We define the sensitivity of a neuron as the variation of the network output with respect to the variation of the activity of the neuron. The lower the sensitivity of a neuron, the less the network output is perturbed if the neuron output changes. By including the neuron sensitivity in the cost function as a regularization term, we are able to prune neurons with low sensitivity. As entire neurons are pruned rather than single parameters, practical network footprint reduction becomes possible. Our experimental results on multiple network architectures and datasets yield competitive compression ratios with respect to state-of-the-art references.
Collapse
|
5
|
Chen X, Wang H, Chu J, Hai B, Wang Z. Hybrid neighborhood and global replacement strategies for multi objective evolutionary algorithm based on decomposition. EVOLUTIONARY INTELLIGENCE 2022. [DOI: 10.1007/s12065-021-00582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Yang S, Tian Y, He C, Zhang X, Tan KC, Jin Y. A Gradient-Guided Evolutionary Approach to Training Deep Neural Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:4861-4875. [PMID: 33661739 DOI: 10.1109/tnnls.2021.3061630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It has been widely recognized that the efficient training of neural networks (NNs) is crucial to classification performance. While a series of gradient-based approaches have been extensively developed, they are criticized for the ease of trapping into local optima and sensitivity to hyperparameters. Due to the high robustness and wide applicability, evolutionary algorithms (EAs) have been regarded as a promising alternative for training NNs in recent years. However, EAs suffer from the curse of dimensionality and are inefficient in training deep NNs (DNNs). By inheriting the advantages of both the gradient-based approaches and EAs, this article proposes a gradient-guided evolutionary approach to train DNNs. The proposed approach suggests a novel genetic operator to optimize the weights in the search space, where the search direction is determined by the gradient of weights. Moreover, the network sparsity is considered in the proposed approach, which highly reduces the network complexity and alleviates overfitting. Experimental results on single-layer NNs, deep-layer NNs, recurrent NNs, and convolutional NNs (CNNs) demonstrate the effectiveness of the proposed approach. In short, this work not only introduces a novel approach for training DNNs but also enhances the performance of EAs in solving large-scale optimization problems.
Collapse
|
7
|
Quan D, Wang S, Huyan N, Chanussot J, Wang R, Liang X, Hou B, Jiao L. Element-Wise Feature Relation Learning Network for Cross-Spectral Image Patch Matching. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:3372-3386. [PMID: 33544676 DOI: 10.1109/tnnls.2021.3052756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, the majority of successful matching approaches are based on convolutional neural networks, which focus on learning the invariant and discriminative features for individual image patches based on image content. However, the image patch matching task is essentially to predict the matching relationship of patch pairs, that is, matching (similar) or non-matching (dissimilar). Therefore, we consider that the feature relation (FR) learning is more important than individual feature learning for image patch matching problem. Motivated by this, we propose an element-wise FR learning network for image patch matching, which transforms the image patch matching task into an image relationship-based pattern classification problem and dramatically improves generalization performances on image matching. Meanwhile, the proposed element-wise learning methods encourage full interaction between feature information and can naturally learn FR. Moreover, we propose to aggregate FR from multilevels, which integrates the multiscale FR for more precise matching. Experimental results demonstrate that our proposal achieves superior performances on cross-spectral image patch matching and single spectral image patch matching, and good generalization on image patch retrieval.
Collapse
|
8
|
Ma X, Yin J, Zhu A, Li X, Yu Y, Wang L, Qi Y, Zhu Z. Enhanced Multifactorial Evolutionary Algorithm With Meme Helper-Tasks. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:7837-7851. [PMID: 33566783 DOI: 10.1109/tcyb.2021.3050516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Evolutionary multitasking (EMT) is an emerging research direction in the field of evolutionary computation. EMT solves multiple optimization tasks simultaneously using evolutionary algorithms with the aim to improve the solution for each task via intertask knowledge transfer. The effectiveness of intertask knowledge transfer is the key to the success of EMT. The multifactorial evolutionary algorithm (MFEA) represents one of the most widely used implementation paradigms of EMT. However, it tends to suffer from noneffective or even negative knowledge transfer. To address this issue and improve the performance of MFEA, we incorporate a prior-knowledge-based multiobjectivization via decomposition (MVD) into MFEA to construct strongly related meme helper-tasks. In the proposed method, MVD creates a related multiobjective optimization problem for each component task based on the corresponding problem structure or decision variable grouping to enhance positive intertask knowledge transfer. MVD can reduce the number of local optima and increase population diversity. Comparative experiments on the widely used test problems demonstrate that the constructed meme helper-tasks can utilize the prior knowledge of the target problems to improve the performance of MFEA.
Collapse
|
9
|
Road Segmentation and Environment Labeling for Autonomous Vehicles. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
In autonomous vehicles (AVs), LiDAR point cloud data are an important source to identify various obstacles present in the environment. The labeling techniques that are currently available are based on pixel-wise segmentation and bounding boxes to detect each object on the road. However, the Avs’ decision on motion control and trajectory path planning depends on the interaction among the objects on the road. The ability of the Avs to understand the moving and non-moving objects is the key to scene understanding. This paper presents a novel labeling method to combine moving and non-moving objects. This labeling technique is named relational labeling. Autoencoders are used to reduce the dimensionality of the data. A K-means model provides pseudo labels by clustering the data in the latent space. Each pseudo label is then converted into unary and binary relational labels. These relational labels are used in the supervised learning methods for labeling and segmenting the LiDAR point cloud data. A backpropagation network (BPN), along with traditional gradient descent-based learning methods, are used for labeling the data. Our study evaluated the labeling accuracy of two as well as three layers of BPN. The accuracy of the two-layer BPN model was found to be better than the three-layer BPN model. According to the experiments, our model showed competitive accuracy of 75% compared to the weakly supervised techniques in a similar area of study, i.e., the accuracy for S3DIS (Area 5) is 48.0%.
Collapse
|
10
|
Torres LC, Castro CL, Rocha HP, Almeida GM, Braga AP. Multi-objective neural network model selection with a graph-based large margin approach. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Parallel Bookkeeping Path of Accounting in Government Accounting System Based on Deep Neural Network. JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING 2022. [DOI: 10.1155/2022/2616449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
“Parallel bookkeeping” is a key technical arrangement to achieve the goal of moderately separating and connecting the financial accounting system and budget accounting system established by the government accounting system. It is still a new thing for the majority of financial personnel in the government accounting subject. A deep neural network is the basis of deep learning. Up to now, the neural network has been applied in many fields, and its application in the financial field is more in-depth. The neural network is of great help to financial accounting. Integrating it into parallel bookkeeping in accounting can improve the work efficiency and accuracy of financial personnel. Through experimental analysis, it is found that its efficiency and accuracy are improved by 45% and 21.34% compared with the previous parallel bookkeeping path. The accounting parallel bookkeeping path based on the deep neural network studied in this paper not only has great practical significance for the work of financial personnel but also has far-reaching significance for the research of accounting paths in the future.
Collapse
|
12
|
Damage Detection in Wind Turbine Blades Based on an Improved Broad Learning System Model. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The research on damage detection in wind turbine blades plays an important role in reducing the risk of shut down in wind turbines. Rapid and accurate damage identification by using efficient detection models is the focus of the current research on damage detection in wind turbine blades. To solve the problems of the complex structure of the model and high time consumption in deep learning models, an improved broad learning system (BLS) model using the algorithm of chunking based on non-local means (NLMs) was proposed, which was called the CBNLM-BLS. The chunked, in-parallel accelerated integral image approach was used to optimize the NLM to speed up the BLS. Experiment results showed that the proposed model achieved a classification accuracy of 99.716%, taking 28.662 s to detect damage in the wind turbine blades. Compared with deep neural network models, such as ResNet, AlexNet and VGG-19, the proposed CBNLM-BLS had higher classification accuracy, shorter training time and less complex model construction and parameters. Compared with traditional BLSs, the CBNLM-BLS had less time complexity. It is of great significance to identify damage in wind turbine blades more efficiently.
Collapse
|
13
|
Liu J, Gong M, Xiao L, Zhang W, Liu F. Evolving Connections in Group of Neurons for Robust Learning. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:3069-3082. [PMID: 33027024 DOI: 10.1109/tcyb.2020.3022673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Artificial neural networks inspired from the learning mechanism of the brain have achieved great successes in machine learning, especially those with deep layers. The commonly used neural networks follow the hierarchical multilayer architecture with no connections between nodes in the same layer. In this article, we propose a new group architectures for neural-network learning. In the new architecture, the neurons are assigned irregularly in a group and a neuron may connect to any neurons in the group. The connections are assigned automatically by optimizing a novel connecting structure learning probabilistic model which is established based on the principle that more relevant input and output nodes deserve a denser connection between them. In order to efficiently evolve the connections, we propose to directly model the architecture without involving weights and biases which significantly reduce the computational complexity of the objective function. The model is optimized via an improved particle swarm optimization algorithm. After the architecture is optimized, the connecting weights and biases are then determined and we find the architecture is robust to corruptions. From experiments, the proposed architecture significantly outperforms existing popular architectures on noise-corrupted images when trained only by pure images.
Collapse
|
14
|
Cheng H, Wang Z, Wei Z, Ma L, Liu X. On Adaptive Learning Framework for Deep Weighted Sparse Autoencoder: A Multiobjective Evolutionary Algorithm. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:3221-3231. [PMID: 32780708 DOI: 10.1109/tcyb.2020.3009582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, an adaptive learning framework is established for a deep weighted sparse autoencoder (AE) by resorting to the multiobjective evolutionary algorithm (MOEA). The weighted sparsity is introduced to facilitate the design of the varying degrees of the sparsity constraints imposed on the hidden units of the AE. The MOEA is exploited to adaptively seek appropriate hyperparameters, where the divide-and-conquer strategy is implemented to enhance the MOEA's performance in the context of deep neural networks. Moreover, a sharing scheme is proposed to further reduce the time complexity of the learning process at the slight expense of the learning precision. It is shown via extensive experiments that the established adaptive learning framework is effective, where different sparse models are utilized to demonstrate the generality of the proposed results. Then, the generality of the proposed framework is examined on the convolutional AE and VGG-16 network. Finally, the developed framework is applied to the blind image quantity assessment that illustrates the applicability of the established algorithms.
Collapse
|
15
|
|
16
|
DF classification algorithm for constructing a small sample size of data-oriented DF regression model. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06809-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Huang S, Liu Z, Jin W, Mu Y. Broad learning system with manifold regularized sparse features for semi-supervised classification. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.08.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Chen J, Xu Y, Sun W, Huang L. Joint sparse neural network compression via multi-application multi-objective optimization. APPL INTELL 2021. [DOI: 10.1007/s10489-021-02243-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
|
20
|
A Stacking Ensemble Deep Learning Model for Building Extraction from Remote Sensing Images. REMOTE SENSING 2021. [DOI: 10.3390/rs13193898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Automatically extracting buildings from remote sensing images with deep learning is of great significance to urban planning, disaster prevention, change detection, and other applications. Various deep learning models have been proposed to extract building information, showing both strengths and weaknesses in capturing the complex spectral and spatial characteristics of buildings in remote sensing images. To integrate the strengths of individual models and obtain fine-scale spatial and spectral building information, this study proposed a stacking ensemble deep learning model. First, an optimization method for the prediction results of the basic model is proposed based on fully connected conditional random fields (CRFs). On this basis, a stacking ensemble model (SENet) based on a sparse autoencoder integrating U-NET, SegNet, and FCN-8s models is proposed to combine the features of the optimized basic model prediction results. Utilizing several cities in Hebei Province, China as a case study, a building dataset containing attribute labels is established to assess the performance of the proposed model. The proposed SENet is compared with three individual models (U-NET, SegNet and FCN-8s), and the results show that the accuracy of SENet is 0.954, approximately 6.7%, 6.1%, and 9.8% higher than U-NET, SegNet, and FCN-8s models, respectively. The identification of building features, including colors, sizes, shapes, and shadows, is also evaluated, showing that the accuracy, recall, F1 score, and intersection over union (IoU) of the SENet model are higher than those of the three individual models. This suggests that the proposed ensemble model can effectively depict the different features of buildings and provides an alternative approach to building extraction with higher accuracy.
Collapse
|
21
|
Wu T, Shi J, Zhou D, Zheng X, Li N. Evolutionary Multi-Objective One-Shot Filter Pruning for Designing Lightweight Convolutional Neural Network. SENSORS (BASEL, SWITZERLAND) 2021; 21:5901. [PMID: 34502792 PMCID: PMC8434480 DOI: 10.3390/s21175901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 11/28/2022]
Abstract
Deep neural networks have achieved significant development and wide applications for their amazing performance. However, their complex structure, high computation and storage resource limit their applications in mobile or embedding devices such as sensor platforms. Neural network pruning is an efficient way to design a lightweight model from a well-trained complex deep neural network. In this paper, we propose an evolutionary multi-objective one-shot filter pruning method for designing a lightweight convolutional neural network. Firstly, unlike some famous iterative pruning methods, a one-shot pruning framework only needs to perform filter pruning and model fine-tuning once. Moreover, we built a constraint multi-objective filter pruning problem in which two objectives represent the filter pruning ratio and the accuracy of the pruned convolutional neural network, respectively. A non-dominated sorting-based evolutionary multi-objective algorithm was used to solve the filter pruning problem, and it provides a set of Pareto solutions which consists of a series of different trade-off pruned models. Finally, some models are uniformly selected from the set of Pareto solutions to be fine-tuned as the output of our method. The effectiveness of our method was demonstrated in experimental studies on four designed models, LeNet and AlexNet. Our method can prune over 85%, 82%, 75%, 65%, 91% and 68% filters with little accuracy loss on four designed models, LeNet and AlexNet, respectively.
Collapse
Affiliation(s)
| | - Jiao Shi
- School of Electronics and Information, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (T.W.); (D.Z.); (X.Z.); (N.L.)
| | | | | | | |
Collapse
|
22
|
Zhang X, Huang Z, Wang N, Xiang S, Pan C. You Only Search Once: Single Shot Neural Architecture Search via Direct Sparse Optimization. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2021; 43:2891-2904. [PMID: 32866093 DOI: 10.1109/tpami.2020.3020300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently neural architecture search (NAS) has raised great interest in both academia and industry. However, it remains challenging because of its huge and non-continuous search space. Instead of applying evolutionary algorithm or reinforcement learning as previous works, this paper proposes a direct sparse optimization NAS (DSO-NAS) method. The motivation behind DSO-NAS is to address the task in the view of model pruning. To achieve this goal, we start from a completely connected block, and then introduce scaling factors to scale the information flow between operations. Next, sparse regularizations are imposed to prune useless connections in the architecture. Lastly, an efficient and theoretically sound optimization method is derived to solve it. Our method enjoys both advantages of differentiability and efficiency, therefore it can be directly applied to large datasets like ImageNet and tasks beyond classification. Particularly, on the CIFAR-10 dataset, DSO-NAS achieves an average test error 2.74 percent, while on the ImageNet dataset DSO-NAS achieves 25.4 percent test error under 600M FLOPs with 8 GPUs in 18 hours. As for semantic segmentation task, DSO-NAS also achieve competitive result compared with manually designed architectures on the PASCAL VOC dataset. Code is available at https://github.com/XinbangZhang/DSO-NAS.
Collapse
|
23
|
Yuan X, Ou C, Wang Y, Yang C, Gui W. A Layer-Wise Data Augmentation Strategy for Deep Learning Networks and Its Soft Sensor Application in an Industrial Hydrocracking Process. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3296-3305. [PMID: 31841424 DOI: 10.1109/tnnls.2019.2951708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In industrial processes, inferential sensors have been extensively applied for prediction of quality variables that are difficult to measure online directly by hard sensors. Deep learning is a recently developed technique for feature representation of complex data, which has great potentials in soft sensor modeling. However, it often needs a large number of representative data to train and obtain a good deep network. Moreover, layer-wise pretraining often causes information loss and generalization degradation of high hidden layers. This greatly limits the implementation and application of deep learning networks in industrial processes. In this article, a layer-wise data augmentation (LWDA) strategy is proposed for the pretraining of deep learning networks and soft sensor modeling. In particular, the LWDA-based stacked autoencoder (LWDA-SAE) is developed in detail. Finally, the proposed LWDA-SAE model is applied to predict the 10% and 50% boiling points of the aviation kerosene in an industrial hydrocracking process. The results show that the LWDA-SAE-based soft sensor is superior to multilayer perceptron, traditional SAE, and the SAE with data augmentation only for its input layer (IDA-SAE). Moreover, LWDA-SAE can converge at a faster speed with a lower learning error than the other methods.
Collapse
|
24
|
Liu Z, Luo X, Wang Z. Convergence Analysis of Single Latent Factor-Dependent, Nonnegative, and Multiplicative Update-Based Nonnegative Latent Factor Models. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:1737-1749. [PMID: 32396106 DOI: 10.1109/tnnls.2020.2990990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A single latent factor (LF)-dependent, nonnegative, and multiplicative update (SLF-NMU) learning algorithm is highly efficient in building a nonnegative LF (NLF) model defined on a high-dimensional and sparse (HiDS) matrix. However, convergence characteristics of such NLF models are never justified in theory. To address this issue, this study conducts rigorous convergence analysis for an SLF-NMU-based NLF model. The main idea is twofold: 1) proving that its learning objective keeps nonincreasing with its SLF-NMU-based learning rules via constructing specific auxiliary functions; and 2) proving that it converges to a stable equilibrium point with its SLF-NMU-based learning rules via analyzing the Karush-Kuhn-Tucker (KKT) conditions of its learning objective. Experimental results on ten HiDS matrices from real applications provide numerical evidence that indicates the correctness of the achieved proof.
Collapse
|
25
|
|
26
|
Huang J, Sun W, Huang L. Joint Structure and Parameter Optimization of Multiobjective Sparse Neural Network. Neural Comput 2021; 33:1113-1143. [PMID: 33513329 DOI: 10.1162/neco_a_01368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/06/2020] [Indexed: 11/04/2022]
Abstract
This work addresses the problem of network pruning and proposes a novel joint training method based on a multiobjective optimization model. Most of the state-of-the-art pruning methods rely on user experience for selecting the sparsity ratio of the weight matrices or tensors, and thus suffer from severe performance reduction with inappropriate user-defined parameters. Moreover, networks might be inferior due to the inefficient connecting architecture search, especially when it is highly sparse. It is revealed in this work that the network model might maintain sparse characteristic in the early stage of the backpropagation (BP) training process, and evolutionary computation-based algorithms can accurately discover the connecting architecture with satisfying network performance. In particular, we establish a multiobjective sparse model for network pruning and propose an efficient approach that combines BP training and two modified multiobjective evolutionary algorithms (MOEAs). The BP algorithm converges quickly, and the two MOEAs can search for the optimal sparse structure and refine the weights, respectively. Experiments are also included to prove the benefits of the proposed algorithm. We show that the proposed method can obtain a desired Pareto front (PF), leading to a better pruning result comparing to the state-of-the-art methods, especially when the network structure is highly sparse.
Collapse
Affiliation(s)
- Junhao Huang
- Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China,
| | - Weize Sun
- Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China,
| | - Lei Huang
- Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China,
| |
Collapse
|
27
|
A PSO-based deep learning approach to classifying patients from emergency departments. INT J MACH LEARN CYB 2021. [DOI: 10.1007/s13042-021-01285-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Gong M, Liu J, Qin AK, Zhao K, Tan KC. Evolving Deep Neural Networks via Cooperative Coevolution With Backpropagation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:420-434. [PMID: 32217489 DOI: 10.1109/tnnls.2020.2978857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deep neural networks (DNNs), characterized by sophisticated architectures capable of learning a hierarchy of feature representations, have achieved remarkable successes in various applications. Learning DNN's parameters is a crucial but challenging task that is commonly resolved by using gradient-based backpropagation (BP) methods. However, BP-based methods suffer from severe initialization sensitivity and proneness to getting trapped into inferior local optima. To address these issues, we propose a DNN learning framework that hybridizes CC-based optimization with BP-based gradient descent, called BPCC, and implement it by devising a computationally efficient CC-based optimization technique dedicated to DNN parameter learning. In BPCC, BP will intermittently execute for multiple training epochs. Whenever the execution of BP in a training epoch cannot sufficiently decrease the training objective function value, CC will kick in to execute by using the parameter values derived by BP as the starting point. The best parameter values obtained by CC will act as the starting point of BP in its next training epoch. In CC-based optimization, the overall parameter learning task is decomposed into many subtasks of learning a small portion of parameters. These subtasks are individually addressed in a cooperative manner. In this article, we treat neurons as basic decomposition units. Furthermore, to reduce the computational cost, we devise a maturity-based subtask selection strategy to selectively solve some subtasks of higher priority. Experimental results demonstrate the superiority of the proposed method over common-practice DNN parameter learning techniques.
Collapse
|
29
|
Jiang L, Zhu W. Iterative Weighted Group Thresholding Method for Group Sparse Recovery. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:63-76. [PMID: 32149658 DOI: 10.1109/tnnls.2020.2975302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This article proposes a novel iterative weighted group thresholding method for group sparse recovery of signals from underdetermined linear systems. Based on an equivalent weighted group minimization problem with lpp -norm ( ), we derive closed-form solutions for a subproblem with respect to some specific values of p when using the proximal gradient method. Then, we design the corresponding algorithmic framework, including stopping criterion and the method of nonmonotone line search, and prove that the solution sequence generated by the proposed algorithm converges under some mild conditions. Moreover, based on the proposed algorithm, we develop a homotopy algorithm with an adaptively updated group threshold. Extensive computational experiments on the simulated and real data show that our approach is competitive with state-of-the-art methods in terms of exact group selection, estimation accuracy, and computation time.
Collapse
|
30
|
Li Y, Fang S, Bai X, Jiao L, Marturi N. Parallel design of sparse deep belief network with multi-objective optimization. Inf Sci (N Y) 2020. [DOI: 10.1016/j.ins.2020.03.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Zhou Y, Kang J, Guo H. Many-objective optimization of feature selection based on two-level particle cooperation. Inf Sci (N Y) 2020. [DOI: 10.1016/j.ins.2020.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Chu F, Liang T, Chen CLP, Wang X, Ma X. Weighted Broad Learning System and Its Application in Nonlinear Industrial Process Modeling. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:3017-3031. [PMID: 31514158 DOI: 10.1109/tnnls.2019.2935033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Broad learning system (BLS) is a novel neural network with effective and efficient learning ability. BLS has attracted increasing attention from many scholars owing to its excellent performance. This article proposes a weighted BLS (WBLS) based on BLS to tackle the noise and outliers in an industrial process. WBLS provides a unified framework for easily using different methods of calculating the weighted penalty factor. Using the weighted penalty factor to constrain the contribution of each sample to modeling, the normal and abnormal samples were allocated higher and lower weights to increase and decrease their contributions, respectively. Hence, the WBLS can eliminate the bad effect of noise and outliers on the modeling. The weighted ridge regression algorithm is used to compute the algorithm solution. Weighted incremental learning algorithms are also developed using the weighted penalty factor to tackle the noise and outliers in the additional samples and quickly increase nodes or samples without retraining. The proposed weighted incremental learning algorithms provide a unified framework for using different methods of computing weights. We test the feasibility of the proposed algorithms on some public data sets and a real-world application. Experiment results show that our method has better generalization and robustness.
Collapse
|
33
|
Ahn E, Kumar A, Fulham M, Feng D, Kim J. Unsupervised Domain Adaptation to Classify Medical Images Using Zero-Bias Convolutional Auto-Encoders and Context-Based Feature Augmentation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:2385-2394. [PMID: 32012005 DOI: 10.1109/tmi.2020.2971258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The accuracy and robustness of image classification with supervised deep learning are dependent on the availability of large-scale labelled training data. In medical imaging, these large labelled datasets are sparse, mainly related to the complexity in manual annotation. Deep convolutional neural networks (CNNs), with transferable knowledge, have been employed as a solution to limited annotated data through: 1) fine-tuning generic knowledge with a relatively smaller amount of labelled medical imaging data, and 2) learning image representation that is invariant to different domains. These approaches, however, are still reliant on labelled medical image data. Our aim is to use a new hierarchical unsupervised feature extractor to reduce reliance on annotated training data. Our unsupervised approach uses a multi-layer zero-bias convolutional auto-encoder that constrains the transformation of generic features from a pre-trained CNN (for natural images) to non-redundant and locally relevant features for the medical image data. We also propose a context-based feature augmentation scheme to improve the discriminative power of the feature representation. We evaluated our approach on 3 public medical image datasets and compared it to other state-of-the-art supervised CNNs. Our unsupervised approach achieved better accuracy when compared to other conventional unsupervised methods and baseline fine-tuned CNNs.
Collapse
|
34
|
Abstract
The icing problem of wind turbine blades in northern China has a serious impact on the normal and safe operation of the unit. In order to effectively predict the icing conditions of wind turbine blades, a deep fully connected neural network optimized by machine learning (ML) algorithms based on big data from the wind farm is proposed to diagnose the icing conditions of wind turbine blades. This study first uses the random forest model to reduce the features of the supervisory control and data acquisition (SCADA) data that affect blade icing, and then uses the K-nearest neighbor (KNN) algorithm to enhance the active power feature. The features after the random forest reduction and the active power mean square error (MSE) feature enhanced by the KNN algorithm are combined and used as the input of the fully connected neural network (FCNN) to perform and an empirical analysis for the diagnosis of blade icing. The simulation results show that the proposed model has better diagnostic accuracy than the ordinary back propagation (BP) neural network and other methods.
Collapse
|
35
|
|
36
|
Xie R, Wang S. Downsizing and enhancing broad learning systems by feature augmentation and residuals boosting. COMPLEX INTELL SYST 2020. [DOI: 10.1007/s40747-020-00139-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractRecently, a broad learning system (BLS) has been theoretically and experimentally confirmed to be an efficient incremental learning system. To get rid of deep architecture, BLS shares the same architecture and learning mechanism of the well-known functional link neural networks (FLNN), but works in broad learning way on both the randomly mapped features of original features of data and their randomly generated enhancement nodes. As such, BLS often requires a huge heap of hidden nodes to achieve the prescribed or satisfactory performance, which may inevitably cause both overwhelming storage requirement and overfitting phenomenon. In this study, a stacked architecture of broad learning systems called D&BLS is proposed to achieve enhanced performance and simultaneously downsize the system architecture. By boosting the residuals between previous and current layers and simultaneously augmenting the original input space with the outputs of the previous layer as the inputs of current layer, D&BLS stacks several lightweight BLS sub-systems to guarantee stronger feature representation capability and better classification/regression performance. Three fast incremental learning algorithms of D&BLS are also developed, without the need for the whole re-training. Experimental results on some popular datasets demonstrate the effectiveness of D&BLS in the sense of both enhanced performance and reduced system architecture.
Collapse
|
37
|
Huang J, Sun W, Huang L. Deep neural networks compression learning based on multiobjective evolutionary algorithms. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.10.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Fernández JC, Carbonero M, Gutiérrez PA, Hervás-Martínez C. Multi-objective evolutionary optimization using the relationship between F1 and accuracy metrics in classification tasks. APPL INTELL 2019. [DOI: 10.1007/s10489-019-01447-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Sun Y, Xue B, Zhang M, Yen GG. A Particle Swarm Optimization-Based Flexible Convolutional Autoencoder for Image Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:2295-2309. [PMID: 30530340 DOI: 10.1109/tnnls.2018.2881143] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Convolutional autoencoders (CAEs) have shown their remarkable performance in stacking to deep convolutional neural networks (CNNs) for classifying image data during the past several years. However, they are unable to construct the state-of-the-art CNNs due to their intrinsic architectures. In this regard, we propose a flexible CAE (FCAE) by eliminating the constraints on the numbers of convolutional layers and pooling layers from the traditional CAE. We also design an architecture discovery method by exploiting particle swarm optimization, which is capable of automatically searching for the optimal architectures of the proposed FCAE with much less computational resource and without any manual intervention. We test the proposed approach on four extensively used image classification data sets. Experimental results show that our proposed approach in this paper significantly outperforms the peer competitors including the state-of-the-art algorithms.
Collapse
|
40
|
Darwish A, Hassanien AE, Das S. A survey of swarm and evolutionary computing approaches for deep learning. Artif Intell Rev 2019. [DOI: 10.1007/s10462-019-09719-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
Jin L, Li K, Li Z, Xiao F, Qi GJ, Tang J. Deep Semantic-Preserving Ordinal Hashing for Cross-Modal Similarity Search. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:1429-1440. [PMID: 30281496 DOI: 10.1109/tnnls.2018.2869601] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cross-modal hashing has attracted increasing research attention due to its efficiency for large-scale multimedia retrieval. With simultaneous feature representation and hash function learning, deep cross-modal hashing (DCMH) methods have shown superior performance. However, most existing methods on DCMH adopt binary quantization functions (e.g., [Formula: see text]) to generate hash codes, which limit the retrieval performance since binary quantization functions are sensitive to the variations of numeric values. Toward this end, we propose a novel end-to-end ranking-based hashing framework, in this paper, termed as deep semantic-preserving ordinal hashing (DSPOH), to learn hash functions with deep neural networks by exploring the ranking structure of feature dimensions. In DSPOH, the ordinal representation, which encodes the relative rank ordering of feature dimensions, is explored to generate hash codes. Such ordinal embedding benefits from the numeric stability of rank correlation measures. To make the hash codes discriminative, the ordinal representation is expected to well predict the class labels so that the ranking-based hash function learning is optimally compatible with the label predicting. Meanwhile, the intermodality similarity is preserved to guarantee that the hash codes of different modalities are consistent. Importantly, DSPOH can be effectively integrated with different types of network architectures, which demonstrates the flexibility and scalability of our proposed hashing framework. Extensive experiments on three widely used multimodal data sets show that DSPOH outperforms state of the art for cross-modal retrieval tasks.
Collapse
|
42
|
Song T, Pan L, Wu T, Zheng P, Wong MLD, Rodriguez-Paton A. Spiking Neural P Systems With Learning Functions. IEEE Trans Nanobioscience 2019; 18:176-190. [DOI: 10.1109/tnb.2019.2896981] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Han F, Jiang J, Ling QH, Su BY. A survey on metaheuristic optimization for random single-hidden layer feedforward neural network. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.07.080] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Liu J, Gong M, He H. Deep associative neural network for associative memory based on unsupervised representation learning. Neural Netw 2019; 113:41-53. [PMID: 30780044 DOI: 10.1016/j.neunet.2019.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/31/2018] [Accepted: 01/20/2019] [Indexed: 01/04/2023]
Abstract
This paper presents a deep associative neural network (DANN) based on unsupervised representation learning for associative memory. In brain, the knowledge is learnt by associating different types of sensory data, such as image and voice. The associative memory models which imitate such a learning process have been studied for decades but with simpler architectures they fail to deal with large scale complex data as compared with deep neural networks. Therefore, we define a deep architecture consisting of a perception layer and hierarchical propagation layers. To learn the network parameters, we define a probabilistic model for the whole network inspired from unsupervised representation learning models. The model is optimized by a modified contrastive divergence algorithm with a novel iterated sampling process. After training, given a new data or corrupted data, the correct label or corrupted part is associated by the network. The DANN is able to achieve many machine learning problems, including not only classification, but also depicting the data given a label and recovering corrupted images. Experiments on MNIST digits and CIFAR-10 datasets demonstrate the learning capability of the proposed DANN.
Collapse
Affiliation(s)
- Jia Liu
- School of Electronic Engineering, Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, Shaanxi Province 710071, China
| | - Maoguo Gong
- School of Electronic Engineering, Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, Xidian University, Xi'an, Shaanxi Province 710071, China
| | - Haibo He
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
45
|
Wu Y, Zhang Y, Liu X, Cai Z, Cai Y. A multiobjective optimization-based sparse extreme learning machine algorithm. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.07.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
|
47
|
Hossain D, Capi G. Multiobjective evolution of deep learning parameters for robot manipulator object recognition and grasping. Adv Robot 2018. [DOI: 10.1080/01691864.2018.1529620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Delowar Hossain
- Assistive Robotics Laboratory, Department of Mechanical Engineering, Faculty of Science and Engineering, HOSEI University, Tokyo, Japan
| | - Genci Capi
- Assistive Robotics Laboratory, Department of Mechanical Engineering, Faculty of Science and Engineering, HOSEI University, Tokyo, Japan
| |
Collapse
|
48
|
Xing F, Xie Y, Su H, Liu F, Yang L. Deep Learning in Microscopy Image Analysis: A Survey. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:4550-4568. [PMID: 29989994 DOI: 10.1109/tnnls.2017.2766168] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Computerized microscopy image analysis plays an important role in computer aided diagnosis and prognosis. Machine learning techniques have powered many aspects of medical investigation and clinical practice. Recently, deep learning is emerging as a leading machine learning tool in computer vision and has attracted considerable attention in biomedical image analysis. In this paper, we provide a snapshot of this fast-growing field, specifically for microscopy image analysis. We briefly introduce the popular deep neural networks and summarize current deep learning achievements in various tasks, such as detection, segmentation, and classification in microscopy image analysis. In particular, we explain the architectures and the principles of convolutional neural networks, fully convolutional networks, recurrent neural networks, stacked autoencoders, and deep belief networks, and interpret their formulations or modelings for specific tasks on various microscopy images. In addition, we discuss the open challenges and the potential trends of future research in microscopy image analysis using deep learning.
Collapse
|
49
|
Zhang C, Cheng J, Li C, Tian Q. Image-Specific Classification With Local and Global Discriminations. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:4479-4486. [PMID: 28961130 DOI: 10.1109/tnnls.2017.2748952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Most image classification methods try to learn classifiers for each class using training images alone. Due to the interclass and intraclass variations, it would be more effective to take the testing images into consideration for classifier learning. In this brief, we propose a novel image-specific classification method by combing the local and global discriminations of training images. We adaptively train classifier for each testing image instead of generating classifiers for each class with training images alone. For each testing image, we first select its ${k}$ nearest neighbors in the training set with the corresponding labels for local classifier training. This helps to model the distinctive characters of each testing image. Besides, we also use all the training images for global discrimination modeling. The local and global discriminations are combined for final classification. In this way, we could not only model the specific character of each testing image but also avoid the local optimum by jointly considering all the training images. To evaluate the usefulness of the proposed image-specific classification with local and global discrimination (ISC-LG) method, we conduct image classification experiments on several public image data sets. The superior performances over other baseline methods prove the effectiveness of the proposed ISC-LG method.
Collapse
|
50
|
Oyedotun OK, Khashman A. Prototype-Incorporated Emotional Neural Network. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:3560-3572. [PMID: 28816677 DOI: 10.1109/tnnls.2017.2730179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Artificial neural networks (ANNs) aim to simulate the biological neural activities. Interestingly, many "engineering" prospects in ANN have relied on motivations from cognition and psychology studies. So far, two important learning theories that have been subject of active research are the prototype and adaptive learning theories. The learning rules employed for ANNs can be related to adaptive learning theory, where several examples of the different classes in a task are supplied to the network for adjusting internal parameters. Conversely, the prototype-learning theory uses prototypes (representative examples); usually, one prototype per class of the different classes contained in the task. These prototypes are supplied for systematic matching with new examples so that class association can be achieved. In this paper, we propose and implement a novel neural network algorithm based on modifying the emotional neural network (EmNN) model to unify the prototype- and adaptive-learning theories. We refer to our new model as "prototype-incorporated EmNN". Furthermore, we apply the proposed model to two real-life challenging tasks, namely, static hand-gesture recognition and face recognition, and compare the result to those obtained using the popular back-propagation neural network (BPNN), emotional BPNN (EmNN), deep networks, an exemplar classification model, and k-nearest neighbor.
Collapse
|