1
|
Muthu S. New delay-dependent uniform stability criteria for fractional-order BAM neural networks with discrete and distributed delays. NETWORK (BRISTOL, ENGLAND) 2025:1-25. [PMID: 40136055 DOI: 10.1080/0954898x.2024.2448534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/21/2024] [Indexed: 03/27/2025]
Abstract
Initially, a class of Caputo fractional-order bidirectional associative memory neural networks in two variables is developed, building upon the groundwork laid by delayed Caputo fractional system in one variable. Next, the Razumikhin-type uniform stability conditions, originally formulated for single-variable systems, are successfully extended to accommodate the complexities of delayed Caputo fractional systems in two variables. Leveraging this extension and employing a suitable Lyapunov function, the delay-dependent uniform stability criteria for the addressed fractional-order bidirectional associative memory neural networks are expressed in terms of linear matrix inequalities. Finally, the effectiveness and practicality of the theoretical findings are demonstrated through the application of two numerical examples, affirming the viability of the proposed approach.
Collapse
Affiliation(s)
- Shafiya Muthu
- Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
2
|
Wang X, Park JH, Liu Z, Yang H. Dynamic Event-Triggered Control for GSES of Memristive Neural Networks Under Multiple Cyber-Attacks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7602-7611. [PMID: 36342999 DOI: 10.1109/tnnls.2022.3217461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this article, the dynamic event-triggered control problem of memristive neural networks (MNNs) under multiple cyber-attacks is considered. A novel dynamic event-triggering scheme (DETS) and the corresponding event-triggered controller are proposed by taking into consideration both denial-of-service and deception attacks (DoS-DAs). Then, a key lemma is established to show that the dynamic event-triggered controller can be used to solve the globally stochastically exponential stability (GSES) issue of concerned MNN under multiple cyber-attacks. Meanwhile, a novel Lyapunov functional is proposed based on the actual sampling pattern. It is shown that under our proposed dynamic event-triggered controller and Lyapunov functional, the concerned MNN can achieve GSES in the presence of DoS-DAs. In addition, our results include relevant results on event-triggered control of MNN with static event-triggering scheme (SETS) or without cyber-attacks as special cases. The effectiveness of the proposed event-triggered controller under multiple cyber-attacks is illustrated by a simulation example.
Collapse
|
3
|
Qu F, Tian E, Zhao X. Chance-Constrained H ∞ State Estimation for Recursive Neural Networks Under Deception Attacks and Energy Constraints: The Finite-Horizon Case. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:6492-6503. [PMID: 34995198 DOI: 10.1109/tnnls.2021.3137426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this article, the chance-constrained H∞ state estimation problem is investigated for a class of time-varying neural networks subject to measurements degradation and randomly occurring deception attacks. A novel energy-constrained deception attack model is proposed, in which both the occurrence of the attack and the selection of released faked packet are random and the energy of the deception attack is introduced, calculated, and analyzed quantitatively. The main purpose of the addressed problem is to design an H∞ estimator such that the prefixed probabilistic constraints of the system error dynamics are satisfied and the H∞ performance is also ensured. Subsequently, the explicit expression of the estimator gains is derived by solving a minimization problem subjected to certain recursive inequality constraints. Finally, a numerical example and a practical three-tank system are utilized to demonstrate the correctness and effectiveness of the proposed estimation scheme.
Collapse
|
4
|
Fan Y, Huang X, Wang Z, Xia J, Shen H. Discontinuous Event-Triggered Control for Local Stabilization of Memristive Neural Networks With Actuator Saturation: Discrete- and Continuous-Time Lyapunov Methods. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:1988-2000. [PMID: 34464276 DOI: 10.1109/tnnls.2021.3105731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this article, the local stabilization problem is investigated for a class of memristive neural networks (MNNs) with communication bandwidth constraints and actuator saturation. To overcome these challenges, a discontinuous event-trigger (DET) scheme, consisting of the rest interval and work interval, is proposed to cut down the triggering times and save the limited communication resources. Then, a novel relaxed piecewise functional is constructed for closed-loop MNNs. The main advantage of the designed functional consists in that it is positive definite only in the work intervals and the sampling instants but not necessarily inside the rest intervals. With the aid of extended reciprocally convex combination lemma, generalized sector condition, and some inequality techniques, two local stabilization criteria are established on the basis of both the discrete- and continuous-time Lyapunov methods. The proposed analysis technique fully takes advantage of the looped-functional and the event-trigger mechanism. Moreover, two optimization schemes are, respectively, established to design the control gain and enlarge the estimates of the admissible initial conditions (AICs) and the upper bound of rest intervals. Finally, some comparison results are given to validate the superiority of the proposed method.
Collapse
|
5
|
Yan Z, Huang X, Liang J. Aperiodic Sampled-Data Control for Stabilization of Memristive Neural Networks With Actuator Saturation: A Dynamic Partitioning Method. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:1725-1737. [PMID: 34543215 DOI: 10.1109/tcyb.2021.3108805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article is concerned with the local stabilization of memristive neural networks subject to actuator saturation via aperiodic sampled-data control. A dynamic partitioning point is elegantly introduced, which is placed between the latest sampling instant and the present time to utilize more information of the inner sampling. To analyze the stability of the closed-loop system, a time-dependent two-side looped functional, which fully utilizes the state information on the entire sampling interval as well as at the dynamic partitioning point, is constructed. It relaxes the positive definiteness of traditional Lyapunov functional inside the sampling interval and therefore, provides the possibility to derive less conservative stability results. Besides, an auxiliary system is established to describe the dynamics at the partitioning point. On the basis of the constructed looped functional, the discrete-time Lyapunov theorem, and some estimation approaches, a linear matrix inequalities-based stability criterion is developed, and then, the sampled-data saturated controller is designed to ensure the local asymptotic stability of the closed-loop system. Thereafter, two optimization problems are developed to seek the desired feedback gain and to expand the estimation of the region of attraction or to enlarge the upper bound of the sampling interval. Eventually, a numerical example is given to demonstrate the effectiveness and the superiority of the proposed results.
Collapse
|
6
|
Lin A, Cheng J, Park JH, Yan H, Qi W. Fault Detection Filtering of Nonhomogeneous Markov Switching Memristive Neural Networks with Output Quantization. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2023.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
7
|
Chen Y, Zhang N, Yang J. A survey of recent advances on stability analysis, state estimation and synchronization control for neural networks. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Zhang P, Yuan Y, Liu H, Gao Z. Nash Equilibrium Seeking for Graphic Games With Dynamic Event-Triggered Mechanism. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:12604-12611. [PMID: 33961581 DOI: 10.1109/tcyb.2021.3071746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this article, a discrete-time Nash equilibrium (NE) seeking problem is studied for a class of graphic games. In order to reduce the signal transmission frequency between adjacent players, a dynamic event-triggered mechanism is designed. For the purpose of regulating the actions of players to the NE points, a discrete-time NE seeking strategy is designed by only using the local action information. Then, sufficient conditions are provided to ensure that the actions of all players converge to the NE point. Finally, a numerical example of a multisatellite communication coordination problem is given to verify the effectiveness of the proposed NE seeking method.
Collapse
|
9
|
Aperiodically Intermittent Control for Exponential Stabilization of Delayed Neural Networks Via Time-dependent Functional Method. Neural Process Lett 2022. [DOI: 10.1007/s11063-022-10943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Song J, Ho DWC, Niu Y. Model-Based Event-Triggered Sliding-Mode Control for Multi-Input Systems: Performance Analysis and Optimization. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:3902-3913. [PMID: 32966230 DOI: 10.1109/tcyb.2020.3020253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article is concerned with the model-based event-triggered sliding-mode control (SMC) issue for multi-input systems, which is motivated by some existing results in a single-input case. A model-based event-triggered SMC scheme is first designed. In particular, a triggered condition is co-designed with SMC to achieve the reachability condition of a specified sliding surface. Thus, it can effectively mitigate the burden of data communication, and also eliminate the effect of the matched external disturbance and the model uncertainties in both system and input. For ensuring the stability of the model dynamics and the resulting sliding-mode dynamics simultaneously, an auxiliary disturbance input is introduced to the nominal model by compensating the switching term of the designed SMC law. Furthermore, the positive lower bound for the minimum interevent time is analyzed to ensure the feasibility of the proposed approach. To illustrate the proposed model-based event-triggered SMC approach from a practical viewpoint, two design problems to maximize the system robustness and performance are proposed, respectively. The nontrivial optimization problems are then solved by a genetic algorithm (GA). Finally, jet transport aircraft is utilized to demonstrate the effectiveness of the proposed results and algorithm.
Collapse
|
11
|
Liu H, Wang Z, Fei W, Li J. Resilient H∞ State Estimation for Discrete-Time Stochastic Delayed Memristive Neural Networks: A Dynamic Event-Triggered Mechanism. IEEE TRANSACTIONS ON CYBERNETICS 2022; 52:3333-3341. [PMID: 33001819 DOI: 10.1109/tcyb.2020.3021556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, a resilient H∞ approach is put forward to deal with the state estimation problem for a type of discrete-time delayed memristive neural networks (MNNs) subject to stochastic disturbances (SDs) and dynamic event-triggered mechanism (ETM). The dynamic ETM is utilized to mitigate unnecessary resource consumption occurring in the sensor-to-estimator communication channel. To guarantee resilience against possible realization errors, the estimator gain is permitted to undergo some norm-bounded parameter drifts. For the delayed MNNs, our aim is to devise an event-based resilient H∞ estimator that not only resists gain variations and SDs but also ensures the exponential mean-square stability of the resulting estimation error system with a guaranteed disturbance attenuation level. By resorting to the stochastic analysis technique, sufficient conditions are acquired for the expected estimator and, subsequently, estimator gains are obtained via figuring out a convex optimization problem. The validity of the H∞ estimator is finally shown via a numerical example.
Collapse
|
12
|
Yao W, Yu F, Zhang J, Zhou L. Asymptotic Synchronization of Memristive Cohen-Grossberg Neural Networks with Time-Varying Delays via Event-Triggered Control Scheme. MICROMACHINES 2022; 13:mi13050726. [PMID: 35630193 PMCID: PMC9147740 DOI: 10.3390/mi13050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022]
Abstract
This paper investigates the asymptotic synchronization of memristive Cohen-Grossberg neural networks (MCGNNs) with time-varying delays under event-triggered control (ETC). First, based on the designed feedback controller, some ETC conditions are provided. It is demonstrated that ETC can significantly reduce the update times of the controller and decrease the computing cost. Next, some sufficient conditions are derived to ensure the asymptotic synchronization of MCGNNs with time-varying delays under the ETC method. Finally, a numerical example is provided to verify the correctness and effectiveness of the obtained results.
Collapse
Affiliation(s)
- Wei Yao
- School of Computer and Communication Engineering, Changsha University of Science & Technology, Changsha 410114, China; (W.Y.); (F.Y.)
| | - Fei Yu
- School of Computer and Communication Engineering, Changsha University of Science & Technology, Changsha 410114, China; (W.Y.); (F.Y.)
| | - Jin Zhang
- School of Computer and Communication Engineering, Changsha University of Science & Technology, Changsha 410114, China; (W.Y.); (F.Y.)
- Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (J.Z.); (L.Z.)
| | - Ling Zhou
- School of Intelligent Manufacturing, Hunan University of Science and Engineering, Yongzhou 425199, China
- Correspondence: (J.Z.); (L.Z.)
| |
Collapse
|
13
|
Kazemy A, Lam J, Zhang XM. Event-Triggered Output Feedback Synchronization of Master-Slave Neural Networks Under Deception Attacks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2022; 33:952-961. [PMID: 33108299 DOI: 10.1109/tnnls.2020.3030638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The problem of event-triggered synchronization of master-slave neural networks is investigated in this article. It is assumed that both communication channels from the sensor to controller and from controller to actuator are subject to stochastic deception attacks modeled by two independent Markov processes. Two discrete event-triggered mechanisms are introduced for both channels to reduce the number of data transmission through the communication channels. To comply with practical point of view, static output feedback is utilized. By employing the Lyapunov-Krasovskii functional method, some sufficient conditions on the synchronization of master-slave neural networks are derived in terms of linear matrix inequalities, which make it easy to design suitable output feedback controllers. Finally, a numerical example is presented to show the effectiveness of the proposed method.
Collapse
|
14
|
Qian W, Xing W, Fei S. H ∞ State Estimation for Neural Networks With General Activation Function and Mixed Time-Varying Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3909-3918. [PMID: 32822313 DOI: 10.1109/tnnls.2020.3016120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article deals with H∞ state estimation of neural networks with mixed delays. In order to make full use of delay information, novel delay-product Lyapunov-Krasovskii functional (LKF) by using parameterized delay interval is first constructed. Then, generalized free-weighting-matrix integral inequality is used to estimate the derivative of LKF to reduce the conservatism. Also, a more general activation function is further applied by combining with parameterized delay interval in order to obtain a more accurate estimator model. Finally, sufficient conditions are derived to confirm that the estimation error system is asymptotically stable with a prescribed H∞ performance. Numerical examples are simulated to show the benefits of our proposed method.
Collapse
|
15
|
Suo J, Li N, Li Q. Event-triggered H∞ state estimation for discrete-time delayed switched stochastic neural networks with persistent dwell-time switching regularities and sensor saturations. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.01.131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Wang Y, Lou J, Yan H, Lu J. Stability criteria for stochastic neural networks with unstable subnetworks under mixed switchings. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2019.10.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Sheng Y, Huang T, Zeng Z, Miao X. Global Exponential Stability of Memristive Neural Networks With Mixed Time-Varying Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3690-3699. [PMID: 32857700 DOI: 10.1109/tnnls.2020.3015944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This article investigates the Lagrange exponential stability and the Lyapunov exponential stability of memristive neural networks with discrete and distributed time-varying delays (DMNNs). By means of inequality techniques, theories of the M-matrix, and the comparison strategy, the Lagrange exponential stability of the underlying DMNNs is considered in the sense of Filippov, and the globally exponentially attractive set is estimated through employing the M-matrix and external input. Especially, when the external input is not concerned, the Lyapunov exponential stability of the corresponding DMNNs is developed immediately in the form of an M-matrix, which contains some published outcomes as special cases. Furthermore, by constructing an M-matrix-based differential system, the Lyapunov exponential stability of the DMNNs is studied, which is less conservative than some existing ones. Finally, three simulation examples are carried out to examine the validness of the theories.
Collapse
|
18
|
On finite-horizon H∞ state estimation for discrete-time delayed memristive neural networks under stochastic communication protocol. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2020.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Li Q, Liang J, Qu H. H ∞ estimation for stochastic semi-Markovian switching CVNNs with missing measurements and mode-dependent delays. Neural Netw 2021; 141:281-293. [PMID: 33933888 DOI: 10.1016/j.neunet.2021.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
This article is devoted to the H∞ estimation problem for stochastic semi-Markovian switching complex-valued neural networks subject to incomplete measurement outputs, where the time-varying delay also depends on another semi-Markov process. A sequence of random variables with known statistical property is introduced to depict the missing measurement phenomenon. Based on the generalized Itoˆ's formula in complex form concerning with the semi-Markovian systems, complex-valued reciprocal convex inequality as well as intensive stochastic analysis method, some mode-dependent sufficient conditions are presented guaranteeing the estimation error system to be exponentially mean-square stable with a prespecified H∞ disturbance attenuation level. In addition, the mode-dependent estimator gain matrices are appropriately designed according to the feasible solutions of certain complex matrix inequalities. In the end, one numerical example is provided to illustrate effectiveness of the theoretical results.
Collapse
Affiliation(s)
- Qiang Li
- School of Mathematics, Southeast University, Nanjing 210096, China.
| | - Jinling Liang
- School of Mathematics, Southeast University, Nanjing 210096, China.
| | - Hong Qu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
20
|
Liu S, Wang Z, Shen B, Wei G. Partial-neurons-based state estimation for delayed neural networks with state-dependent noises under redundant channels. Inf Sci (N Y) 2021. [DOI: 10.1016/j.ins.2020.08.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Sun S, Zhang H, Li W, Wang Y. Time-varying delay-dependent finite-time boundedness with H∞performance for Markovian jump neural networks with state and input constraints. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.10.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Nagamani G, Rajan GS, Zhu Q. Exponential State Estimation for Memristor-Based Discrete-Time BAM Neural Networks With Additive Delay Components. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:4281-4292. [PMID: 30908249 DOI: 10.1109/tcyb.2019.2902864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper focuses on the dynamical behavior for a class of memristor-based bidirectional associative memory neural networks (BAMNNs) with additive time-varying delays in discrete-time case. The necessity of the proposed problem is to design a proper state estimator such that the dynamics of the corresponding estimation error is exponentially stable with a prescribed decay rate. By constructing an appropriate Lyapunov-Krasovskii functional (LKF) and utilizing Cauchy-Schwartz-based summation inequality, the delay-dependent sufficient conditions for the existence of the desired estimator are derived in the absence of uncertainties which are further extended to available uncertain parameters of the prescribed memristor-based BAMNNs in terms of linear matrix inequalities (LMIs). By solving the proposed LMI conditions the estimation gain matrices are obtained. Finally, two numerical examples are presented to illustrate the effectiveness of the proposed results.
Collapse
|
23
|
Qu Y, Pang K. State estimation for a class of artificial neural networks subject to mixed attacks: A set-membership method. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Dong Z, Zhang X, Wang X. State estimation for discrete-time high-order neural networks with time-varying delays. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.06.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Liu H, Wang Z, Fei W, Li J. H ∞ and l 2-l ∞ state estimation for delayed memristive neural networks on finite horizon: The Round-Robin protocol. Neural Netw 2020; 132:121-130. [PMID: 32871337 DOI: 10.1016/j.neunet.2020.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/19/2020] [Accepted: 08/10/2020] [Indexed: 11/26/2022]
Abstract
In this paper, a protocol-based finite-horizon H∞ and l2-l∞ estimation approach is put forward to solve the state estimation problem for discrete-time memristive neural networks (MNNs) subject to time-varying delays and energy-bounded disturbances. The Round-Robin protocol is utilized to mitigate unnecessary network congestion occurring in the sensor-to-estimator communication channel. For the delayed MNNs, our aim is to devise an estimator that not only ensures a prescribed disturbance attenuation level over a finite time-horizon, but also keeps the peak value of the estimation error within a given range. By resorting to the Lyapunov-Krasovskii functional method, the delay-dependent criteria are formulated that guarantee the existence of the desired estimator. Subsequently, the estimator gains are obtained via figuring out a bank of convex optimization problems. The validity of our estimator is finally shown via a numerical example.
Collapse
Affiliation(s)
- Hongjian Liu
- Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education, Anhui Polytechnic University, Wuhu 241000, China; Artificial Intelligence Energy Research Institute, Northeast Petroleum University, Daqing 163318, China.
| | - Zidong Wang
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China; Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, United Kingdom.
| | - Weiyin Fei
- Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment, Ministry of Education, Anhui Polytechnic University, Wuhu 241000, China; School of Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000, China.
| | - Jiahui Li
- Artificial Intelligence Energy Research Institute, Northeast Petroleum University, Daqing 163318, China; Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control, Northeast Petroleum University, Daqing 163318, China.
| |
Collapse
|
26
|
Yao W, Wang C, Sun Y, Zhou C, Lin H. Synchronization of inertial memristive neural networks with time-varying delays via static or dynamic event-triggered control. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.04.099] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Chen X, Yuan P. Event-triggered generalized dissipative filtering for delayed neural networks under aperiodic DoS jamming attacks. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2019.03.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Wang M, Wang Z, Chen Y, Sheng W. Observer-Based Fuzzy Output-Feedback Control for Discrete-Time Strict-Feedback Nonlinear Systems With Stochastic Noises. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:3766-3777. [PMID: 30990202 DOI: 10.1109/tcyb.2019.2902520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper focuses on the observer-based output-feedback control (OBOFC) problem for a class of discrete-time strict-feedback nonlinear systems (DTSFNSs) with both multiplicative process noises and additive measurement noises. A state observer is first designed to estimate immeasurable system states, and then a novel observer-based backstepping control framework is proposed for DTSFNSs with known model information. To be specific, virtual control laws and the actual control law are derived using a variable substitution method that gets rid of the repeated accumulation of measurement noises in the recursive process. Furthermore, for technical derivation, the multiplicative noise is successively bounded by state estimation errors and controlled errors. Stability conditions are obtained to guarantee the exponential mean-square boundedness of the closed-loop system. Moreover, the nonlinear modeling uncertainties are taken into account to better reflect engineering practices. In virtue of the universal approximation property of fuzzy-logic systems, a fuzzy observer and the corresponding fuzzy output-feedback controller are simultaneously constructed to derive the stability criteria by using novel weight updated laws. Simulation studies are performed to test the validity of the proposed OBOFC scheme.
Collapse
|
29
|
Wang M, Wang Z, Chen Y, Sheng W. Adaptive Neural Event-Triggered Control for Discrete-Time Strict-Feedback Nonlinear Systems. IEEE TRANSACTIONS ON CYBERNETICS 2020; 50:2946-2958. [PMID: 31329140 DOI: 10.1109/tcyb.2019.2921733] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper proposes a novel event-triggered (ET) adaptive neural control scheme for a class of discrete-time nonlinear systems in a strict-feedback form. In the proposed scheme, the ideal control input is derived in a recursive design process, which relies on system states only and is unrelated to virtual control laws. In this case, the high-order neural networks (NNs) are used to approximate the ideal control input (but not the virtual control laws), and then the corresponding adaptive neural controller is developed under the ET mechanism. A modified NN weight updating law, nonperiodically tuned at triggering instants, is designed to guarantee the uniformly ultimate boundedness (UUB) of NN weight estimates for all sampling times. In virtue of the bounded NN weight estimates and a dead-zone operator, the ET condition together with an adaptive ET threshold coefficient is constructed to guarantee the UUB of the closed-loop networked control system through the Lyapunov stability theory, thereby largely easing the network communication load. The proposed ET condition is easy to implement because of the avoidance of: 1) the use of the intermediate ET conditions in the backstepping procedure; 2) the computation of virtual control laws; and 3) the redundant triggering of events when the system states converge to a desired region. The validity of the presented scheme is demonstrated by simulation results.
Collapse
|
30
|
Liu H, Ma L, Wang Z, Liu Y, Alsaadi FE. An overview of stability analysis and state estimation for memristive neural networks. Neurocomputing 2020. [DOI: 10.1016/j.neucom.2020.01.066] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Li XM, Zhang B, Li P, Zhou Q, Lu R. Finite-Horizon H ∞ State Estimation for Periodic Neural Networks Over Fading Channels. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:1450-1460. [PMID: 31265411 DOI: 10.1109/tnnls.2019.2920368] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The problem of finite-horizon H∞ state estimator design for periodic neural networks over multiple fading channels is studied in this paper. To characterize the measurement signals transmitted through different channels experiencing channel fading, a multiple fading channels model is considered. For investigating the situation of correlated fading channels, a set of correlated random variables is introduced. Specifically, the channel coefficients are described by white noise processes and are assumed to be correlated. Two sufficient criteria are provided, by utilizing a stochastic analysis approach, to guarantee that the estimation error system is stochastically stable and achieves the prescribed H∞ performance. Then, the parameters of the estimator are derived by solving recursive linear matrix inequalities. Finally, some simulation results are shown to illustrate the effectiveness of the proposed method.
Collapse
|
32
|
Liu Y, Shen B, Shu H. Finite-time resilient H∞ state estimation for discrete-time delayed neural networks under dynamic event-triggered mechanism. Neural Netw 2020; 121:356-365. [DOI: 10.1016/j.neunet.2019.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 10/25/2022]
|
33
|
Meng F, Li K, Zhao Z, Song Q, Liu Y, Alsaadi FE. Periodicity of impulsive Cohen–Grossberg-type fuzzy neural networks with hybrid delays. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.08.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Wei R, Cao J. Synchronization control of quaternion-valued memristive neural networks with and without event-triggered scheme. Cogn Neurodyn 2019; 13:489-502. [PMID: 31565093 DOI: 10.1007/s11571-019-09545-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 11/29/2022] Open
Abstract
In this paper, the real-valued memristive neural networks (MNNs) are extended to quaternion field, a new class of neural networks named quaternion-valued memristive neural networks (QVMNNs) is then established. The problem of master-slave synchronization of this type of networks is investigated in this paper. Two types of controllers are designed: the traditional feedback controller and the event-triggered controller. Corresponding synchronization criteria are then derived based on Lyapunov method. Moreover, it is demonstrated that Zeno behavior can be avoided in case of the event-triggered strategy proposed in this work. Finally, corresponding simulation examples are proposed to demonstrate the correctness of the proposed results derived in this work.
Collapse
Affiliation(s)
- Ruoyu Wei
- Research Center for Complex Systems and Network Sciences, and School of Mathematics, Southeast University, Nanjing, 210096 China
| | - Jinde Cao
- Research Center for Complex Systems and Network Sciences, and School of Mathematics, Southeast University, Nanjing, 210096 China
| |
Collapse
|
35
|
State estimation for neural networks with Markov-based nonuniform sampling: The partly unknown transition probability case. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2019.04.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Ali MS, Vadivel R, Alsaedi A, Ahmad B. Extended dissipativity and event-triggered synchronization for T–S fuzzy Markovian jumping delayed stochastic neural networks with leakage delays via fault-tolerant control. Soft comput 2019. [DOI: 10.1007/s00500-019-04136-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Shen H, Wang T, Cao J, Lu G, Song Y, Huang T. Nonfragile Dissipative Synchronization for Markovian Memristive Neural Networks: A Gain-Scheduled Control Scheme. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:1841-1853. [PMID: 30387746 DOI: 10.1109/tnnls.2018.2874035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, the dissipative synchronization control problem for Markovian jump memristive neural networks (MNNs) is addressed with fully considering the time-varying delays and the fragility problem in the process of implementing the gain-scheduled controller. A Markov jump model is introduced to describe the stochastic changing among the connection of MNNs and it makes the networks under consideration suitable for some actual circumstances. By utilizing some improved integral inequalities and constructing a proper Lyapunov-Krasovskii functional, several delay-dependent synchronization criteria with less conservatism are established to ensure the dynamic error system is strictly stochastically dissipative. Based on these criteria, the procedure of designing the desired nonfragile gain-scheduled controller is established, which can well handle the fragility problem in the process of implementing the controller. Finally, an illustrated example is employed to explain that the developed method is efficient and available.
Collapse
|
38
|
Fan Y, Huang X, Shen H, Cao J. Switching event-triggered control for global stabilization of delayed memristive neural networks: An exponential attenuation scheme. Neural Netw 2019; 117:216-224. [PMID: 31174049 DOI: 10.1016/j.neunet.2019.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/15/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
Abstract
In this paper, an exponential-attenuation-based switching event-trigger (EABSET) scheme is designed to achieve the global stabilization of delayed memristive neural networks (MNNs). The issue is proposed for two reasons: (1) the available methods may be complicated in dealing with the state-dependent memristive connection weights; (2) the existing event-trigger mechanisms may be conservative in decreasing the amount of triggering times. To overcome these difficulties, the stabilization problem is formulated within a framework of networked control first. Then, an exponential attenuation term is introduced into the prescribed threshold function. It can enlarge the time span between two neighboring triggered events and further reduce the frequency of data packets sending out. By utilizing the input delay approach, time-dependent and piecewise Lyapunov functionals, and matrix norm inequalities, some sufficient criteria are obtained to guarantee the global stabilization of delayed MNNs and to design both the controller and the trigger parameters. Finally, some comparison simulation results demonstrate that the novel event-trigger scheme has some advantages over some existing ones.
Collapse
Affiliation(s)
- Yingjie Fan
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xia Huang
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Hao Shen
- College of Electrical and Information Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Jinde Cao
- School of Mathematics, Southeast University, Nanjing 210096, China
| |
Collapse
|
39
|
|
40
|
|
41
|
Yuan Y, Song Q, Liu Y, Alsaadi FE. Synchronization of complex-valued neural networks with mixed two additive time-varying delays. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.12.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Gao Z, Shi Q, Fukuda T, Li C, Huang Q. An overview of biomimetic robots with animal behaviors. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.12.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Meng F, Li K, Song Q, Liu Y, Alsaadi FE. Periodicity of Cohen–Grossberg-type fuzzy neural networks with impulses and time-varying delays. Neurocomputing 2019. [DOI: 10.1016/j.neucom.2018.10.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Zhang XM, Han QL, Ge X, Ding D. An overview of recent developments in Lyapunov–Krasovskii functionals and stability criteria for recurrent neural networks with time-varying delays. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.06.038] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Xu L, Cao M, Song B, Zhang J, Liu Y, Alsaadi FE. Open-circuit fault diagnosis of power rectifier using sparse autoencoder based deep neural network. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.05.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Qin Z, Wang JL, Huang YL, Ren SY. Analysis and adaptive control for robust synchronization andH∞synchronization of complex dynamical networks with multiple time-delays. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.02.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
|
48
|
Zhou Y, Li C, Chen L, Huang T. Global exponential stability of memristive Cohen–Grossberg neural networks with mixed delays and impulse time window. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|