1
|
Ashraf A, Zhao Q, Bangyal WH, Raza M, Iqbal M. Female autism categorization using CNN based NeuroNet57 and ant colony optimization. Comput Biol Med 2025; 189:109926. [PMID: 40056838 DOI: 10.1016/j.compbiomed.2025.109926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/05/2025] [Accepted: 02/24/2025] [Indexed: 03/10/2025]
Abstract
Autism identification and classification using biomedical medical image analysis has advanced recently. Research shows autistic females have different phenotypic and age-related brain variations than males. Gender-specific hormones and genes affect autistic female brain circuitry, unfortunately, female phenotypic and genotypic data is quite deficient. Since physicians spend much time in assessing autistic females manually. Advanced large-scale deep learning algorithms are in dire need of accurate medical diagnosis. This research proposed a 57-layer CNN architecture called NeuroNet57 that can extract features from fMRI factually. After pre-training on the Brain Tumour dataset, the NeuroNet57 model extracts female phenotypic features from autism brain imagining data exchange (ABIDE)-I+II datasets using T1 modality fMRI scans, resulting in feature matrices of 14372 × 4096 for ABIDE_I and 16168 × 4096 for ABIDE_II. Our model uses ant colony optimization (ACO) to select feature subsets for dimensionality reduction. Further, nine machine learning classifiers are used to categorize females with autism spectrum disorder (ASD) from females with control behavior. The KNN-based fineKNN (FKNN) classifier had 92.21% accuracy on ABIDE-I and 93.49% on ABIDE-II. This proves the effectiveness of our proposed model.
Collapse
Affiliation(s)
- Adnan Ashraf
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Qingjie Zhao
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | | | - Mudassar Raza
- Dept. of Computer Science, Namal University, Mianwali, 42250, Pakistan.
| | - Mudassar Iqbal
- Renewable Energy Lab, College of Engineering, Prince Sultan University, Riyadh, 11586, Saudi Arabia.
| |
Collapse
|
2
|
Vidivelli S, Padmakumari P, Shanthi P. Multimodal autism detection: Deep hybrid model with improved feature level fusion. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108492. [PMID: 39700689 DOI: 10.1016/j.cmpb.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 09/02/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVE Social communication difficulties are a characteristic of autism spectrum disorder (ASD), a neurodevelopmental condition. The earlier method of diagnosing autism largely relied on error-prone behavioral observation of symptoms. More intelligence approaches are in progress to diagnose the disorder, which still demands improvement in prediction accuracy. Furthermore, computer-aided design systems based on machine learning algorithms are extremely time-consuming and difficult to design. This study used deep learning techniques to develop a novel autism detection model in order to overcome these problems. METHODS Preprocessing, Features extraction, Improved Feature level Fusion, and Detection are the phases of the suggested autism detection methodology. First, both input modalities will be preprocessed so they are ready for the next stages to be processed. In this case, the facial picture is preprocessed utilizing the Gabor filtering technique, while the input EEG data is preprocessed through Wiener filtering. Subsequently, features are extracted from the modalities, from the EEG signal data, features like Common Spatial Pattern (CSP), Improved Singular Spectrum Entropy, and correlation dimension, are extracted. From the face image, features like the Improved Active Appearance model, Gray-Level Co-occurrence matrix (GLCM) features and Proposed Shape Local Binary Texture (SLBT), as well are retrieved. Following extraction, enhanced feature-level fusion is performed to fuse the features. Ultimately, the combined features are fed into the hybrid model to complete the diagnosis. Models such as Convolutional Neural Networks (CNN) and Bidirectional Gated Recurrent Units (Bi-GRU) are part of the hybrid model. RESULTS The suggested MADDHM model achieved an accuracy of about 91.03 % regarding EEG and 91.67 % regarding face analysis meanwhile, SVM=87.49 %, DNN=88.59 %, Bi-GRU=90.02 %, LSTM=87.49 % and CNN=82.02 %. CONCLUSION As a result, the suggested methodology provides encouraging outcomes and opens up possibilities for early autism detection. The development of such models is not only a technical achievement but also a step forward in providing timely interventions for individuals with ASD.
Collapse
Affiliation(s)
- S Vidivelli
- Department of Computer Science and Engineering, School of Computing, SASTRA Deemed to be University, Thanjavur, Tamilnadu, 613402, India.
| | - P Padmakumari
- Department of Computer Science and Engineering, School of Computing, SASTRA Deemed to be University, Thanjavur, Tamilnadu, 613402, India
| | - P Shanthi
- Department of Computer Science and Engineering, School of Computing, SASTRA Deemed to be University, Thanjavur, Tamilnadu, 613402, India
| |
Collapse
|
3
|
P V, A P. Virtual Reality-Based Attention Prediction Model in Gaming for Autistic Children. Int J Dev Neurosci 2025; 85:e70000. [PMID: 39873320 DOI: 10.1002/jdn.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Nowadays, virtual reality (VR) has emerged as a successful new therapeutic strategy in a variety of sectors of the health profession, including rehabilitation, the promotion of inpatients' emotional wellness, diagnostics, surgeon training and mental health therapy. This study develops a new model VRAPMG for children with ASD with the following steps that consider 3D gaming. In this work, the face image is considered to evaluate the attention of the children. In the data acquisition, the input face image is converted into a noncoloured image called a greyscale image. The preprocessing phase is carried out with a median filter and Viola-Jones (VJ) algorithm-based face detection is carried out. Then, the improved active shape model (ASM), shape local binary texture (SLBT) and eye position localization-based features are extracted. In the detection phase, DMO and Bi-GRU models are combined to form the hybrid classification model. Then, improved SLF is done, and the output is detected. Depending on the detected emotions, it is determined whether the children are attentive or not via entropy-based attention prediction.
Collapse
Affiliation(s)
- Valarmathi P
- Department of Computer Science and Engineering, Vels Institute of Science & Technology & Advanced Studies, Chennai, Tamilnadu, India
| | - Packialatha A
- Department of Computer Science and Engineering, Vels Institute of Science & Technology & Advanced Studies, Chennai, Tamilnadu, India
| |
Collapse
|
4
|
Du J, Wang S, Chen R, Wang S. Improving fMRI-Based Autism Severity Identification via Brain Network Distance and Adaptive Label Distribution Learning. IEEE Trans Neural Syst Rehabil Eng 2025; 33:162-174. [PMID: 40030844 DOI: 10.1109/tnsre.2024.3516216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Machine learning methodologies have been profoundly researched in the realm of autism spectrum disorder (ASD) diagnosis. Nonetheless, owing to the ambiguity of ASD severity labels and individual differences in ASD severity, current fMRI-based methods for identifying ASD severity still do not achieve satisfactory performance. Besides, the potential association between brain functional networks(BFN) and ASD symptom severity remains under investigation. To address these problems, we propose a low&high-level BFN distance method and an adaptive multi-label distribution(HBFND-AMLD) technique for ASD severity identification. First, a low-level and high-level BFN distance(HBFND) is proposed to construct BFN that reflects differences in ASD severity. This method can measure the distance between the ASD and the health control(HC) on the low-order and high-order BFN respectively, which can distinguish the severity of ASD. After that, a multi-task network is proposed for ASD severity identification which considers the individual differences of ASD severity in communication and society, which considers the individual differences in language and social skills of ASD patients. Finally, a novel adaptive label distribution(ALD) technique is employed to train the ASD severity identification model, effectively preventing network overfitting by restricting label probability distribution. We evaluate the proposed framework on the public ABIDE I dataset. The promising results obtained by our framework outperform the state-of-the-art methods with an increase in identification performance, indicating that it has a potential clinical prospect for practical ASD severity diagnosis.
Collapse
|
5
|
Ranaut A, Khandnor P, Chand T. Identification of autism spectrum disorder using electroencephalography and machine learning: a review. J Neural Eng 2024; 21:061006. [PMID: 39580816 DOI: 10.1088/1741-2552/ad9681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by communication barriers, societal disengagement, and monotonous actions. Traditional diagnostic methods for ASD rely on clinical observations and behavioural assessments, which are time-consuming. In recent years, researchers have focused mainly on the early diagnosis of ASD due to the unavailability of recognised causes and the lack of permanent curative solutions. Electroencephalography (EEG) research in ASD offers insight into the neural dynamics of affected individuals. This comprehensive review examines the unique integration of EEG, machine learning, and statistical analysis for ASD identification, highlighting the promise of an interdisciplinary approach for enhancing diagnostic precision. The comparative analysis of publicly available EEG datasets for ASD, along with local data acquisition methods and their technicalities, is presented in this paper. This study also compares preprocessing techniques, and feature extraction methods, followed by classification models and statistical analysis which are discussed in detail. In addition, it briefly touches upon comparisons with other modalities to contextualize the extensiveness of ASD research. Moreover, by outlining research gaps and future directions, this work aims to catalyse further exploration in the field, with the main goal of facilitating more efficient and effective early identification methods that may be helpful to the lives of ASD individuals.
Collapse
Affiliation(s)
- Anamika Ranaut
- Department of Computer Science and Engineering, Punjab Engineering College, Chandigarh, India
| | - Padmavati Khandnor
- Department of Computer Science and Engineering, Punjab Engineering College, Chandigarh, India
| | - Trilok Chand
- Department of Computer Science and Engineering, Punjab Engineering College, Chandigarh, India
| |
Collapse
|
6
|
Lee J, Kang E, Heo DW, Suk HI. Site-Invariant Meta-Modulation Learning for Multisite Autism Spectrum Disorders Diagnosis. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:18062-18075. [PMID: 37708014 DOI: 10.1109/tnnls.2023.3311195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Large amounts of fMRI data are essential to building generalized predictive models for brain disease diagnosis. In order to conduct extensive data analysis, it is often necessary to gather data from multiple organizations. However, the site variation inherent in multisite resting-state functional magnetic resonance imaging (rs-fMRI) leads to unfavorable heterogeneity in data distribution, negatively impacting the identification of biomarkers and the diagnostic decision. Several existing methods have alleviated this shift of domain distribution (i.e., multisite problem). Statistical tuning schemes directly regress out site disparity factors from the data prior to model training. Such methods have a limitation in processing data each time through variance estimation according to the added site. In the model adjustment approaches, domain adaptation (DA) methods adjust the features or models of the source domain according to the target domain during model training. Thus, it is inevitable that it needs updating model parameters according to the samples of a target site, causing great limitations in practical applicability. Meanwhile, the approach of domain generalization (DG) aims to create a universal model that can be quickly adapted to multiple domains. In this study, we propose a novel framework for disease diagnosis that alleviates the multisite problem by adaptively calibrating site-specific features into site-invariant features. Specifically, it applies directly to samples from unseen sites without the need for fine-tuning. With a learning-to-learn strategy that learns how to calibrate the features under the various domain shift environments, our novel modulation mechanism extracts site-invariant features. In our experiments over the Autism Brain Imaging Data Exchange (ABIDE I and II) dataset, we validated the generalization ability of the proposed network by improving diagnostic accuracy in both seen and unseen multisite samples.
Collapse
|
7
|
Fang J, Zhang DF, Xie K, Xu L, Bi XA. Bilinear Perceptual Fusion Algorithm Based on Brain Functional and Structural Data for ASD Diagnosis and Regions of Interest Identification. Interdiscip Sci 2024; 16:936-950. [PMID: 39254805 DOI: 10.1007/s12539-024-00651-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
Autism spectrum disorder (ASD) is a serious mental disorder with a complex pathogenesis mechanism and variable presentation among individuals. Although many deep learning algorithms have been used to diagnose ASD, most of them focus on a single modality of data, resulting in limited information extraction and poor stability. In this paper, we propose a bilinear perceptual fusion (BPF) algorithm that leverages data from multiple modalities. In our algorithm, different schemes are used to extract features according to the characteristics of functional and structural data. Through bilinear operations, the associations between the functional and structural features of each region of interest (ROI) are captured. Then the associations are used to integrate the feature representation. Graph convolutional neural networks (GCNs) can effectively utilize topology and node features in brain network analysis. Therefore, we design a deep learning framework called BPF-GCN and conduct experiments on publicly available ASD dataset. The results show that the classification accuracy of BPF-GCN reached 82.35%, surpassing existing methods. This demonstrates the superiority of its classification performance, and the framework can extract ROIs related to ASD. Our work provides a valuable reference for the timely diagnosis and treatment of ASD.
Collapse
Affiliation(s)
- Jinxiong Fang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Da-Fang Zhang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.
| | - Kun Xie
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Luyun Xu
- College of Business, Hunan Normal University, Changsha, 410081, China
| | - Xia-An Bi
- College of Information Science and Engineering, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
8
|
Jha RR, Muralie A, Daroch M, Bhavsar A, Nigam A. Enhancing Autism Spectrum Disorder identification in multi-site MRI imaging: A multi-head cross-attention and multi-context approach for addressing variability in un-harmonized data. Artif Intell Med 2024; 157:102998. [PMID: 39442245 DOI: 10.1016/j.artmed.2024.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Multi-site MRI imaging poses a significant challenge due to the potential variations in images across different scanners at different sites. This variability can introduce ambiguity in further image analysis. Consequently, the image analysis techniques become site-dependent and scanner-dependent, implying that adjustments in the analysis methodologies are necessary for each scanner configuration. Further, implementing real-time modifications becomes intricate, particularly when incorporating a new type of scanner, as it requires adapting the analysis methods accordingly. Taking into account the aforementioned challenge, we have considered its implications for an Autism spectrum disorder (ASD) application. Our objective is to minimize the impact of site and scanner variability in the analysis, aiming to develop a model that remains effective across different scanners and sites. This entails devising a methodology that allows the same model to function seamlessly across multiple scanner configurations and sites. ASD, a behavioral disorder affecting child development, requires early detection. Clinical observation is time-consuming, prompting the use of fMRI with machine/deep learning for expedited diagnosis. Previous methods leverage fMRI's functional connectivity but often rely on less generalized feature extractors and classifiers. Hence, there is significant room for improvement in the generalizability of detection methods across multi-site data, which is acquired from multiple scanners with different settings. In this study, we propose a Cross-Combination Multi-Scale Multi-Context Framework (CCMSMCF) capable of performing neuroimaging-based diagnostic classification of mental disorders for a multi-site dataset. Thus, this framework attains a degree of internal data harmonization, rendering it to some extent site and scanner-agnostic. Our proposed network, CCMSMCF, is constructed by integrating two sub-modules: the Multi-Head Attention Cross-Scale Module (MHACSM) and the Residual Multi-Context Module (RMCN). We also employ multiple loss functions in a novel manner for training the model, which includes Binary Cross Entropy, Dice loss, and Embedding Coupling loss. The model is validated on the Autism Brain Imaging Data Exchange I (ABIDE-I) dataset, which includes data from multiple scanners across different sites, and achieves promising results.
Collapse
Affiliation(s)
- Ranjeet Ranjan Jha
- Mathematics Department, Indian Institute of Technology (IIT) Patna, India.
| | - Arvind Muralie
- Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Munish Daroch
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India
| | - Arnav Bhavsar
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India
| | - Aditya Nigam
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India
| |
Collapse
|
9
|
Yang Y, Ye C, Su G, Zhang Z, Chang Z, Chen H, Chan P, Yu Y, Ma T. BrainMass: Advancing Brain Network Analysis for Diagnosis With Large-Scale Self-Supervised Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:4004-4016. [PMID: 38875087 DOI: 10.1109/tmi.2024.3414476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Foundation models pretrained on large-scale datasets via self-supervised learning demonstrate exceptional versatility across various tasks. Due to the heterogeneity and hard-to-collect medical data, this approach is especially beneficial for medical image analysis and neuroscience research, as it streamlines broad downstream tasks without the need for numerous costly annotations. However, there has been limited investigation into brain network foundation models, limiting their adaptability and generalizability for broad neuroscience studies. In this study, we aim to bridge this gap. In particular, 1) we curated a comprehensive dataset by collating images from 30 datasets, which comprises 70,781 samples of 46,686 participants. Moreover, we introduce pseudo-functional connectivity (pFC) to further generates millions of augmented brain networks by randomly dropping certain timepoints of the BOLD signal; 2) we propose the BrainMass framework for brain network self-supervised learning via mask modeling and feature alignment. BrainMass employs Mask-ROI Modeling (MRM) to bolster intra-network dependencies and regional specificity. Furthermore, Latent Representation Alignment (LRA) module is utilized to regularize augmented brain networks of the same participant with similar topological properties to yield similar latent representations by aligning their latent embeddings. Extensive experiments on eight internal tasks and seven external brain disorder diagnosis tasks show BrainMass's superior performance, highlighting its significant generalizability and adaptability. Nonetheless, BrainMass demonstrates powerful few/zero-shot learning abilities and exhibits meaningful interpretation to various diseases, showcasing its potential use for clinical applications.
Collapse
|
10
|
Ma Y, Mu X, Zhang T, Zhao Y. MAFT-SO: A novel multi-atlas fusion template based on spatial overlap for ASD diagnosis. J Biomed Inform 2024; 157:104714. [PMID: 39187170 DOI: 10.1016/j.jbi.2024.104714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Autism spectrum disorder (ASD) is a common neurological condition. Early diagnosis and treatment are essential for enhancing the life quality of individuals with ASD. However, most existing studies either focus solely on the brain networks of subjects within a single atlas or merely employ simple matrix concatenation to represent the fusion of multi-atlas. These approaches neglected the natural spatial overlap that exists between brain regions across multi-atlas and did not fully capture the comprehensive information of brain regions under different atlases. To tackle this weakness, in this paper, we propose a novel multi-atlas fusion template based on spatial overlap degree of brain regions, which aims to obtain a comprehensive representation of brain networks. Specifically, we formally define a measurement of the spatial overlap among brain regions across different atlases, named spatial overlap degree. Then, we fuse the multi-atlas to obtain brain networks of each subject based on spatial overlap. Finally, the GCN is used to perform the final classification. The experimental results on Autism Brain Imaging Data Exchange (ABIDE) demonstrate that our proposed method achieved an accuracy of 0.757. Overall, our method outperforms SOTA methods in ASD/TC classification.
Collapse
Affiliation(s)
- Yuefeng Ma
- The School of Computer Science, Qufu Normal University, Rizhao, China.
| | - Xiaochen Mu
- The School of Computer Science, Qufu Normal University, Rizhao, China
| | - Tengfei Zhang
- The School of Computer Science, Qufu Normal University, Rizhao, China
| | - Yu Zhao
- The Logistics Department, Qufu Normal University, Rizhao, China
| |
Collapse
|
11
|
Schielen SJC, Pilmeyer J, Aldenkamp AP, Zinger S. The diagnosis of ASD with MRI: a systematic review and meta-analysis. Transl Psychiatry 2024; 14:318. [PMID: 39095368 PMCID: PMC11297045 DOI: 10.1038/s41398-024-03024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
While diagnosing autism spectrum disorder (ASD) based on an objective test is desired, the current diagnostic practice involves observation-based criteria. This study is a systematic review and meta-analysis of studies that aim to diagnose ASD using magnetic resonance imaging (MRI). The main objective is to describe the state of the art of diagnosing ASD using MRI in terms of performance metrics and interpretation. Furthermore, subgroups, including different MRI modalities and statistical heterogeneity, are analyzed. Studies that dichotomously diagnose individuals with ASD and healthy controls by analyses progressing from magnetic resonance imaging obtained in a resting state were systematically selected by two independent reviewers. Studies were sought on Web of Science and PubMed, which were last accessed on February 24, 2023. The included studies were assessed on quality and risk of bias using the revised Quality Assessment of Diagnostic Accuracy Studies tool. A bivariate random-effects model was used for syntheses. One hundred and thirty-four studies were included comprising 159 eligible experiments. Despite the overlap in the studied samples, an estimated 4982 unique participants consisting of 2439 individuals with ASD and 2543 healthy controls were included. The pooled summary estimates of diagnostic performance are 76.0% sensitivity (95% CI 74.1-77.8), 75.7% specificity (95% CI 74.0-77.4), and an area under curve of 0.823, but uncertainty in the study assessments limits confidence. The main limitations are heterogeneity and uncertainty about the generalization of diagnostic performance. Therefore, comparisons between subgroups were considered inappropriate. Despite the current limitations, methods progressing from MRI approach the diagnostic performance needed for clinical practice. The state of the art has obstacles but shows potential for future clinical application.
Collapse
Affiliation(s)
- Sjir J C Schielen
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Jesper Pilmeyer
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Albert P Aldenkamp
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
- Department of Behavioral Sciences, Epilepsy Center Kempenhaeghe, Heeze, the Netherlands
| | - Svitlana Zinger
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
12
|
Liu R, Huang ZA, Hu Y, Zhu Z, Wong KC, Tan KC. Spatial-Temporal Co-Attention Learning for Diagnosis of Mental Disorders From Resting-State fMRI Data. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:10591-10605. [PMID: 37027556 DOI: 10.1109/tnnls.2023.3243000] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neuroimaging techniques have been widely adopted to detect the neurological brain structures and functions of the nervous system. As an effective noninvasive neuroimaging technique, functional magnetic resonance imaging (fMRI) has been extensively used in computer-aided diagnosis (CAD) of mental disorders, e.g., autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). In this study, we propose a spatial-temporal co-attention learning (STCAL) model for diagnosing ASD and ADHD from fMRI data. In particular, a guided co-attention (GCA) module is developed to model the intermodal interactions of spatial and temporal signal patterns. A novel sliding cluster attention module is designed to address global feature dependency of self-attention mechanism in fMRI time series. Comprehensive experimental results demonstrate that our STCAL model can achieve competitive accuracies of 73.0 ± 4.5%, 72.0 ± 3.8%, and 72.5 ± 4.2% on the ABIDE I, ABIDE II, and ADHD-200 datasets, respectively. Moreover, the potential for feature pruning based on the co-attention scores is validated by the simulation experiment. The clinical interpretation analysis of STCAL can allow medical professionals to concentrate on the discriminative regions of interest and key time frames from fMRI data.
Collapse
|
13
|
Li S, Zhang R. A novel interactive deep cascade spectral graph convolutional network with multi-relational graphs for disease prediction. Neural Netw 2024; 175:106285. [PMID: 38593556 DOI: 10.1016/j.neunet.2024.106285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/16/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Graph neural networks (GNNs) have recently grown in popularity for disease prediction. Existing GNN-based methods primarily build the graph topological structure around a single modality and combine it with other modalities to acquire feature representations of acquisitions. The complicated relationship in each modality, however, may not be well highlighted due to its specificity. Further, relatively shallow networks restrict adequate extraction of high-level features, affecting disease prediction performance. Accordingly, this paper develops a new interactive deep cascade spectral graph convolutional network with multi-relational graphs (IDCGN) for disease prediction tasks. Its crucial points lie in constructing multiple relational graphs and dual cascade spectral graph convolution branches with interaction (DCSGBI). Specifically, the former designs a pairwise imaging-based edge generator and a pairwise non-imaging-based edge generator from different modalities by devising two learnable networks, which adaptively capture graph structures and provide various views of the same acquisition to aid in disease diagnosis. Again, DCSGBI is established to enrich high-level semantic information and low-level details of disease data. It devises a cascade spectral graph convolution operator for each branch and incorporates the interaction strategy between different branches into the network, successfully forming a deep model and capturing complementary information from diverse branches. In this manner, more favorable and sufficient features are learned for a reliable diagnosis. Experiments on several disease datasets reveal that IDCGN exceeds state-of-the-art models and achieves promising results.
Collapse
Affiliation(s)
- Sihui Li
- Medical Big data Research Center, School of Mathematics, Northwest University, Xi'an 710127, Shaanxi, China.
| | - Rui Zhang
- Medical Big data Research Center, School of Mathematics, Northwest University, Xi'an 710127, Shaanxi, China.
| |
Collapse
|
14
|
Zhang H, Chen J, Liao B, Wu FX, Bi XA. Deep Canonical Correlation Fusion Algorithm Based on Denoising Autoencoder for ASD Diagnosis and Pathogenic Brain Region Identification. Interdiscip Sci 2024; 16:455-468. [PMID: 38573456 DOI: 10.1007/s12539-024-00625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Autism Spectrum Disorder (ASD) is defined as a neurodevelopmental condition distinguished by unconventional neural activities. Early intervention is key to managing the progress of ASD, and current research primarily focuses on the use of structural magnetic resonance imaging (sMRI) or resting-state functional magnetic resonance imaging (rs-fMRI) for diagnosis. Moreover, the use of autoencoders for disease classification has not been sufficiently explored. In this study, we introduce a new framework based on autoencoder, the Deep Canonical Correlation Fusion algorithm based on Denoising Autoencoder (DCCF-DAE), which proves to be effective in handling high-dimensional data. This framework involves efficient feature extraction from different types of data with an advanced autoencoder, followed by the fusion of these features through the DCCF model. Then we utilize the fused features for disease classification. DCCF integrates functional and structural data to help accurately diagnose ASD and identify critical Regions of Interest (ROIs) in disease mechanisms. We compare the proposed framework with other methods by the Autism Brain Imaging Data Exchange (ABIDE) database and the results demonstrate its outstanding performance in ASD diagnosis. The superiority of DCCF-DAE highlights its potential as a crucial tool for early ASD diagnosis and monitoring.
Collapse
Affiliation(s)
- Huilian Zhang
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China
| | - Jie Chen
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China
| | - Bo Liao
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, S7N5A9, Canada
| | - Xia-An Bi
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China.
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China.
- College of Information Science and Engineering, Hunan Normal University, Changsha, Hunan, 410081, China.
| |
Collapse
|
15
|
Huang ZA, Liu R, Zhu Z, Tan KC. Multitask Learning for Joint Diagnosis of Multiple Mental Disorders in Resting-State fMRI. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:8161-8175. [PMID: 36459608 DOI: 10.1109/tnnls.2022.3225179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Facing the increasing worldwide prevalence of mental disorders, the symptom-based diagnostic criteria struggle to address the urgent public health concern due to the global shortfall in well-qualified professionals. Thanks to the recent advances in neuroimaging techniques, functional magnetic resonance imaging (fMRI) has surfaced as a new solution to characterize neuropathological biomarkers for detecting functional connectivity (FC) anomalies in mental disorders. However, the existing computer-aided diagnosis models for fMRI analysis suffer from unstable performance on large datasets. To address this issue, we propose an efficient multitask learning (MTL) framework for joint diagnosis of multiple mental disorders using resting-state fMRI data. A novel multiobjective evolutionary clustering algorithm is presented to group regions of interests (ROIs) into different clusters for FC pattern analysis. On the optimal clustering solution, the multicluster multigate mixture-of-expert model is used for the final classification by capturing the highly consistent feature patterns among related diagnostic tasks. Extensive simulation experiments demonstrate that the performance of the proposed framework is superior to that of the other state-of-the-art methods. Moreover, the potential for practical application of the framework is also validated in terms of limited computational resources, real-time analysis, and insufficient training data. The proposed model can identify the remarkable interpretative biomarkers associated with specific mental disorders for clinical interpretation analysis.
Collapse
|
16
|
Xu Y, Yu Z, Li Y, Liu Y, Li Y, Wang Y. Autism spectrum disorder diagnosis with EEG signals using time series maps of brain functional connectivity and a combined CNN-LSTM model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108196. [PMID: 38678958 DOI: 10.1016/j.cmpb.2024.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/30/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND AND OBJECTIVE People with autism spectrum disorder (ASD) often have cognitive impairments. Effective connectivity between different areas of the brain is essential for normal cognition. Electroencephalography (EEG) has been widely used in the detection of neurological diseases. Previous studies on detecting ASD with EEG data have focused on frequency-related features. Most of these studies have augmented data by splitting the dataset into time slices or sliding windows. However, such approaches to data augmentation may cause the testing data to be contaminated by the training data. To solve this problem, this study developed a novel method for detecting ASD with EEG data. METHODS This study quantified the functional connectivity of the subject's brain from EEG signals and defined the individual to be the unit of analysis. Publicly available EEG data were gathered from 97 and 92 subjects with ASD and typical development (TD), respectively, while they were at rest or performing a task. Time-series maps of brain functional connectivity were constructed, and the data were augmented using a deep convolutional generative adversarial network. In addition, a combined network for ASD detection, based on convolutional neural network (CNN) and long short-term memory (LSTM), was designed and implemented. RESULTS Based on functional connectivity, the network achieved classification accuracies of 81.08% and 74.55% on resting state and task state data, respectively. In addition, we found that the functional connectivity of ASD differed from TD primarily in the short-distance functional connectivity of the parietal and occipital lobes and in the distant connections from the right temporoparietal junction region to the left posterior temporal lobe. CONCLUSIONS This paper provides a new perspective for better utilizing EEG to understand ASD. The method proposed in our study is expected to be a reliable tool to assist in the diagnosis of ASD.
Collapse
Affiliation(s)
- Yongjie Xu
- Research Center for Biomedical Information Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zengjie Yu
- Research Center for Biomedical Information Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yisheng Li
- Research Center for Biomedical Information Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuehan Liu
- Research Center for Biomedical Information Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Li
- Research Center for Biomedical Information Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yishan Wang
- Research Center for Biomedical Information Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
17
|
Liu R, Huang ZA, Hu Y, Zhu Z, Wong KC, Tan KC. Attention-Like Multimodality Fusion With Data Augmentation for Diagnosis of Mental Disorders Using MRI. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7627-7641. [PMID: 36374900 DOI: 10.1109/tnnls.2022.3219551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The globally rising prevalence of mental disorders leads to shortfalls in timely diagnosis and therapy to reduce patients' suffering. Facing such an urgent public health problem, professional efforts based on symptom criteria are seriously overstretched. Recently, the successful applications of computer-aided diagnosis approaches have provided timely opportunities to relieve the tension in healthcare services. Particularly, multimodal representation learning gains increasing attention thanks to the high temporal and spatial resolution information extracted from neuroimaging fusion. In this work, we propose an efficient multimodality fusion framework to identify multiple mental disorders based on the combination of functional and structural magnetic resonance imaging. A multioutput conditional generative adversarial network (GAN) is developed to address the scarcity of multimodal data for augmentation. Based on the augmented training data, the multiheaded gating fusion model is proposed for classification by extracting the complementary features across different modalities. The experiments demonstrate that the proposed model can achieve robust accuracies of 75.1 ± 1.5 %, 72.9 ± 1.1 %, and 87.2 ± 1.5 % for autism spectrum disorder (ASD), attention deficit/hyperactivity disorder, and schizophrenia, respectively. In addition, the interpretability of our model is expected to enable the identification of remarkable neuropathology diagnostic biomarkers, leading to well-informed therapeutic decisions.
Collapse
|
18
|
Qiu L, Zhai J. A hybrid CNN-SVM model for enhanced autism diagnosis. PLoS One 2024; 19:e0302236. [PMID: 38743688 PMCID: PMC11093301 DOI: 10.1371/journal.pone.0302236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
Autism is a representative disorder of pervasive developmental disorder. It exerts influence upon an individual's behavior and performance, potentially co-occurring with other mental illnesses. Consequently, an effective diagnostic approach proves to be invaluable in both therapeutic interventions and the timely provision of medical support. Currently, most scholars' research primarily relies on neuroimaging techniques for auxiliary diagnosis and does not take into account the distinctive features of autism's social impediments. In order to address this deficiency, this paper introduces a novel convolutional neural network-support vector machine model that integrates resting state functional magnetic resonance imaging data with the social responsiveness scale metrics for the diagnostic assessment of autism. We selected 821 subjects containing the social responsiveness scale measure from the publicly available Autism Brain Imaging Data Exchange dataset, including 379 subjects with autism spectrum disorder and 442 typical controls. After preprocessing of fMRI data, we compute the static and dynamic functional connectivity for each subject. Subsequently, convolutional neural networks and attention mechanisms are utilized to extracts their respective features. The extracted features, combined with the social responsiveness scale features, are then employed as novel inputs for the support vector machine to categorize autistic patients and typical controls. The proposed model identifies salient features within the static and dynamic functional connectivity, offering a possible biological foundation for clinical diagnosis. By incorporating the behavioral assessments, the model achieves a remarkable classification accuracy of 94.30%, providing a more reliable support for auxiliary diagnosis.
Collapse
Affiliation(s)
- Linjie Qiu
- School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Zhai
- School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Zheng K, Yu S, Chen B. CI-GNN: A Granger causality-inspired graph neural network for interpretable brain network-based psychiatric diagnosis. Neural Netw 2024; 172:106147. [PMID: 38306785 DOI: 10.1016/j.neunet.2024.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
There is a recent trend to leverage the power of graph neural networks (GNNs) for brain-network based psychiatric diagnosis, which, in turn, also motivates an urgent need for psychiatrists to fully understand the decision behavior of the used GNNs. However, most of the existing GNN explainers are either post-hoc in which another interpretive model needs to be created to explain a well-trained GNN, or do not consider the causal relationship between the extracted explanation and the decision, such that the explanation itself contains spurious correlations and suffers from weak faithfulness. In this work, we propose a granger causality-inspired graph neural network (CI-GNN), a built-in interpretable model that is able to identify the most influential subgraph (i.e., functional connectivity within brain regions) that is causally related to the decision (e.g., major depressive disorder patients or healthy controls), without the training of an auxillary interpretive network. CI-GNN learns disentangled subgraph-level representations α and β that encode, respectively, the causal and non-causal aspects of original graph under a graph variational autoencoder framework, regularized by a conditional mutual information (CMI) constraint. We theoretically justify the validity of the CMI regulation in capturing the causal relationship. We also empirically evaluate the performance of CI-GNN against three baseline GNNs and four state-of-the-art GNN explainers on synthetic data and three large-scale brain disease datasets. We observe that CI-GNN achieves the best performance in a wide range of metrics and provides more reliable and concise explanations which have clinical evidence. The source code and implementation details of CI-GNN are freely available at GitHub repository (https://github.com/ZKZ-Brain/CI-GNN/).
Collapse
Affiliation(s)
- Kaizhong Zheng
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China.
| | - Shujian Yu
- Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Machine Learning Group, UiT - Arctic University of Norway, Tromsø, Norway.
| | - Badong Chen
- National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
20
|
Ma K, Wen X, Zhu Q, Zhang D. Ordinal Pattern Tree: A New Representation Method for Brain Network Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1526-1538. [PMID: 38090837 DOI: 10.1109/tmi.2023.3342047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Brain networks, describing the functional or structural interactions of brain with graph theory, have been widely used for brain imaging analysis. Currently, several network representation methods have been developed for describing and analyzing brain networks. However, most of these methods ignored the valuable weighted information of the edges in brain networks. In this paper, we propose a new representation method (i.e., ordinal pattern tree) for brain network analysis. Compared with the existing network representation methods, the proposed ordinal pattern tree (OPT) can not only leverage the weighted information of the edges but also express the hierarchical relationships of nodes in brain networks. On OPT, nodes are connected by ordinal edges which are constructed by using the ordinal pattern relationships of weighted edges. We represent brain networks as OPTs and further develop a new graph kernel called optimal transport (OT) based ordinal pattern tree (OT-OPT) kernel to measure the similarity between paired brain networks. In OT-OPT kernel, the OT distances are used to calculate the transport costs between the nodes on the OPTs. Based on these OT distances, we use exponential function to calculate OT-OPT kernel which is proved to be positive definite. To evaluate the effectiveness of the proposed method, we perform classification and regression experiments on ADHD-200, ABIDE and ADNI datasets. The experimental results demonstrate that our proposed method outperforms the state-of-the-art graph methods in the classification and regression tasks.
Collapse
|
21
|
Yang D, Kang MK, Huang G, Eggebrecht AT, Hong KS. Repetitive Transcranial Alternating Current Stimulation to Improve Working Memory: An EEG-fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1257-1266. [PMID: 38498739 DOI: 10.1109/tnsre.2024.3377138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Transcranial electrical stimulation has demonstrated the potential to enhance cognitive functions such as working memory, learning capacity, and attentional allocation. Recently, it was shown that periodic stimulation within a specific duration could augment the human brain's neuroplasticity. This study investigates the effects of repetitive transcranial alternating current stimulation (tACS; 1 mA, 5 Hz, 2 min duration) on cognitive function, functional connectivity, and topographic changes using both electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Fifteen healthy subjects were recruited to measure brain activity in the pre-, during-, and post-stimulation sessions under tACS and sham stimulation conditions. Fourteen trials of working memory tasks and eight repetitions of tACS/sham stimulation with a 1-minute intersession interval were applied to the frontal cortex of the participants. The working memory score, EEG band-wise powers, EEG topography, concentration changes of oxygenated hemoglobin, and functional connectivity (FC) were individually analyzed to quantify the behavioral and neurophysiological effects of tACS. Our results indicate that tACS increases: i) behavioral scores (i.e., 15.08, ) and EEG band-wise powers (i.e., theta and beta bands) compared to the sham stimulation condition, ii) FC of both EEG-fNIRS signals, especially in the large-scale brain network communication and interhemispheric connections, and iii) the hemodynamic response in comparison to the pre-stimulation session and the sham condition. Conclusively, the repetitive theta-band tACS stimulation improves the working memory capacity regarding behavioral and neuroplasticity perspectives. Additionally, the proposed fNIRS biomarkers (mean, slope), EEG band-wise powers, and FC can be used as neuro-feedback indices for closed-loop brain stimulation.
Collapse
|
22
|
Bian C, Xia N, Xie A, Cong S, Dong Q. Adversarially Trained Persistent Homology Based Graph Convolutional Network for Disease Identification Using Brain Connectivity. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:503-516. [PMID: 37643097 DOI: 10.1109/tmi.2023.3309874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Brain disease propagation is associated with characteristic alterations in the structural and functional connectivity networks of the brain. To identify disease-specific network representations, graph convolutional networks (GCNs) have been used because of their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks. However, existing GCNs generally focus on learning the discriminative region of interest (ROI) features, often ignoring important topological information that enables the integration of connectome patterns of brain activity. In addition, most methods fail to consider the vulnerability of GCNs to perturbations in network properties of the brain, which considerably degrades the reliability of diagnosis results. In this study, we propose an adversarially trained persistent homology-based graph convolutional network (ATPGCN) to capture disease-specific brain connectome patterns and classify brain diseases. First, the brain functional/structural connectivity is constructed using different neuroimaging modalities. Then, we develop a novel strategy that concatenates the persistent homology features from a brain algebraic topology analysis with readout features of the global pooling layer of a GCN model to collaboratively learn the individual-level representation. Finally, we simulate the adversarial perturbations by targeting the risk ROIs from clinical prior, and incorporate them into a training loop to evaluate the robustness of the model. The experimental results on three independent datasets demonstrate that ATPGCN outperforms existing classification methods in disease identification and is robust to minor perturbations in network architecture. Our code is available at https://github.com/CYB08/ATPGCN.
Collapse
|
23
|
Park S, Thomson P, Kiar G, Castellanos FX, Milham MP, Bernhardt B, Di Martino A. Delineating a Pathway for the Discovery of Functional Connectome Biomarkers of Autism. ADVANCES IN NEUROBIOLOGY 2024; 40:511-544. [PMID: 39562456 DOI: 10.1007/978-3-031-69491-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The promise of individually tailored care for autism has driven efforts to establish biomarkers. This chapter appraises the state of precision-medicine research focused on biomarkers based on the functional brain connectome. This work is grounded on abundant evidence supporting the brain dysconnection model of autism and the advantages of resting-state functional MRI (R-fMRI) for studying the brain in vivo. After considering biomarker requirements of consistency and clinical relevance, we provide a scoping review of R-fMRI studies of individual prediction in autism. In the past 10 years, responding to the availability of open data through the Autism Brain Imaging Data Exchange, machine learning studies have surged. Nearly all have focused on diagnostic label classification. These efforts have shown that autism prediction is feasible using functional connectome markers, with accuracy reported well above chance. In parallel, emerging approaches more directly addressing autism heterogeneity are paving the way for much-needed biomarkers of longitudinal outcome and treatment response. We conclude with key challenges to be addressed by the next generation of studies.
Collapse
Affiliation(s)
- Shinwon Park
- Child Mind Institute, Autism Center, New York, NY, USA
| | | | - Gregory Kiar
- Child Mind Institute, Center for Data Analytics, Innovation, and Rigor, New York, NY, USA
| | - F Xavier Castellanos
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Michael P Milham
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Child Mind Institute, Center for the Developing Brain, New York, NY, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
24
|
Xiao Q, Xu H, Chu Z, Feng Q, Zhang Y. Margin-Maximized Norm-Mixed Representation Learning for Autism Spectrum Disorder Diagnosis With Multi-Level Flux Features. IEEE Trans Biomed Eng 2024; 71:183-194. [PMID: 37432838 DOI: 10.1109/tbme.2023.3294223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Early diagnosis and timely intervention are significantly beneficial to patients with autism spectrum disorder (ASD). Although structural magnetic resonance imaging (sMRI) has become an essential tool to facilitate the diagnosis of ASD, these sMRI-based approaches still have the following issues. The heterogeneity and subtle anatomical changes place higher demands for effective feature descriptors. Additionally, the original features are usually high-dimensional, while most existing methods prefer to select feature subsets in the original space, in which noises and outliers may hinder the discriminative ability of selected features. In this article, we propose a margin-maximized norm-mixed representation learning framework for ASD diagnosis with multi-level flux features extracted from sMRI. Specifically, a flux feature descriptor is devised to quantify comprehensive gradient information of brain structures on both local and global levels. For the multi-level flux features, we learn latent representations in an assumed low-dimensional space, in which a self-representation term is incorporated to characterize the relationships among features. We also introduce mixed norms to finely select original flux features for the construction of latent representations while preserving the low-rankness of latent representations. Furthermore, a margin maximization strategy is applied to enlarge the inter-class distance of samples, thereby increasing the discriminative ability of latent representations. The extensive experiments on several datasets show that our proposed method can achieve promising classification performance (the average area under curve, accuracy, specificity, and sensitivity on the studied ASD datasets are 0.907, 0.896, 0.892, and 0.908, respectively) and also find potential biomarkers for ASD diagnosis.
Collapse
|
25
|
Jia Z, Wang Y, Li S, Yang M, Liu Z, Zhang H. MICDnet: Multimodal information processing networks for Crohn's disease diagnosis. Comput Biol Med 2024; 168:107790. [PMID: 38042104 DOI: 10.1016/j.compbiomed.2023.107790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Crohn's disease (CD) is a chronic inflammatory disease with increasing incidence worldwide and unclear etiology. Its clinical manifestations vary depending on location, extent, and severity of the lesions. In order to diagnose Crohn's disease, medical professionals need to comprehensively analyze patients' multimodal examination data, which includes medical imaging such as colonoscopy, pathological, and text information from clinical records. The processes of multimodal data analysis require collaboration among medical professionals from different departments, which wastes a lot of time and human resources. Therefore, a multimodal medical assisted diagnosis system for Crohn's disease is particularly significant. Existing network frameworks find it hard to effectively capture multimodal patient data for diagnosis, and multimodal data for Crohn's disease is currently lacking. In addition,a combination of data from patients with similar symptoms could serve as an effective reference for disease diagnosis. Thus, we propose a multimodal information diagnosis network (MICDnet) to learn CD feature representations by integrating colonoscopy, pathology images and clinical texts. Specifically, MICDnet first preprocesses each modality data, then uses encoders to extract image and text features separately. After that, multimodal feature fusion is performed. Finally, CD classification and diagnosis are conducted based on the fused features. Under the authorization, we build a dataset of 136 hospitalized inspectors, with colonoscopy images of seven areas, pathology images, and clinical record text for each individual. Training MICDnet on this dataset shows that multimodal diagnosis can improve the diagnostic accuracy of CD, and the diagnostic performance of MICDnet is superior to other models.
Collapse
Affiliation(s)
- Zixi Jia
- Faculty of Robot Science and Engineering, Northeastern University, Shenyang, Liaoning, 110169, China
| | - Yilu Wang
- Faculty of Robot Science and Engineering, Northeastern University, Shenyang, Liaoning, 110169, China
| | - Shengming Li
- Faculty of Robot Science and Engineering, Northeastern University, Shenyang, Liaoning, 110169, China
| | - Meiqi Yang
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Zhongyuan Liu
- Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - Huijing Zhang
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China.
| |
Collapse
|
26
|
Hu Y, Huang ZA, Liu R, Xue X, Sun X, Song L, Tan KC. Source Free Semi-Supervised Transfer Learning for Diagnosis of Mental Disorders on fMRI Scans. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023; 45:13778-13795. [PMID: 37486851 DOI: 10.1109/tpami.2023.3298332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The high prevalence of mental disorders gradually poses a huge pressure on the public healthcare services. Deep learning-based computer-aided diagnosis (CAD) has emerged to relieve the tension in healthcare institutions by detecting abnormal neuroimaging-derived phenotypes. However, training deep learning models relies on sufficient annotated datasets, which can be costly and laborious. Semi-supervised learning (SSL) and transfer learning (TL) can mitigate this challenge by leveraging unlabeled data within the same institution and advantageous information from source domain, respectively. This work is the first attempt to propose an effective semi-supervised transfer learning (SSTL) framework dubbed S3TL for CAD of mental disorders on fMRI data. Within S3TL, a secure cross-domain feature alignment method is developed to generate target-related source model in SSL. Subsequently, we propose an enhanced dual-stage pseudo-labeling approach to assign pseudo-labels for unlabeled samples in target domain. Finally, an advantageous knowledge transfer method is conducted to improve the generalization capability of the target model. Comprehensive experimental results demonstrate that S3TL achieves competitive accuracies of 69.14%, 69.65%, and 72.62% on ABIDE-I, ABIDE-II, and ADHD-200 datasets, respectively. Furthermore, the simulation experiments also demonstrate the application potential of S3TL through model interpretation analysis and federated learning extension.
Collapse
|
27
|
Wang Y, Long H, Zhou Q, Bo T, Zheng J. PLSNet: Position-aware GCN-based autism spectrum disorder diagnosis via FC learning and ROIs sifting. Comput Biol Med 2023; 163:107184. [PMID: 37356292 DOI: 10.1016/j.compbiomed.2023.107184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Brain function connectivity, derived from functional magnetic resonance imaging (fMRI), has enjoyed high popularity in the studies of Autism Spectrum Disorder (ASD) diagnosis. Albeit rapid progress has been made, most studies still suffer from several knotty issues: (1) the hardship of modeling the sophisticated brain neuronal connectivity; (2) the mismatch of identically graph node setup to the variations of different brain regions; (3) the dimensionality explosion resulted from excessive voxels in each fMRI sample; (4) the poor interpretability giving rise to unpersuasive diagnosis. To ameliorate these issues, we propose a position-aware graph-convolution-network-based model, namely PLSNet, with superior accuracy and compelling built-in interpretability for ASD diagnosis. Specifically, a time-series encoder is designed for context-rich feature extraction, followed by a function connectivity generator to model the correlation with long range dependencies. In addition, to discriminate the brain nodes with different locations, the position embedding technique is adopted, giving a unique identity to each graph region. We then embed a rarefying method to sift the salient nodes during message diffusion, which would also benefit the reduction of the dimensionality complexity. Extensive experiments conducted on Autism Brain Imaging Data Exchange demonstrate that our PLSNet achieves state-of-the-art performance. Notably, on CC200 atlas, PLSNet reaches an accuracy of 76.4% and a specificity of 78.6%, overwhelming the previous state-of-the-art with 2.5% and 6.5% under five-fold cross-validation policy. Moreover, the most salient brain regions predicted by PLSNet are closely consistent with the theoretical knowledge in the medical domain, providing potential biomarkers for ASD clinical diagnosis. Our code is available at https://github.com/CodeGoat24/PLSNet.
Collapse
Affiliation(s)
- Yibin Wang
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Haixia Long
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Qianwei Zhou
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Jianwei Zheng
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
28
|
Ji J, Zhang Y. Deep Hashing Mutual Learning for Brain Network Classification. IEEE J Biomed Health Inform 2023; 27:4489-4499. [PMID: 37318974 DOI: 10.1109/jbhi.2023.3286421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, clinical phenotypic semantic information has begun to play an important role in some brain network classification methods based on deep learning. However, most current methods only consider the phenotypic semantic information of individual brain networks but ignore the potential phenotypic characteristics among group brain networks. To address this problem, we present a deep hashing mutual learning (DHML)-based brain network classification method. Specifically, we first design a separable CNN-based deep hashing learning to extract individual topological features of brain networks and map them into hash codes. Secondly, we construct a group brain network relationship graph based on the similarity of phenotypic semantic information, in which each node is a brain network, and the properties of the nodes are the individual features extracted in the previous step. Then, we adopt a GCN-based deep hashing learning to extract the group topological features of the brain network and map them to hash codes. Finally, the two deep hashing learning models perform mutual learning by measuring the distribution differences between the hash codes to achieve the interaction of individual and group features. The experimental results on the three commonly used brain atlases (AAL Atlas, Dosenbach160 Atlas, and CC200 Atlas) of the ABIDE I dataset show that our proposed DHML method achieves optimal classification performance compared with some state-of-the-art methods.
Collapse
|
29
|
Jönemo J, Abramian D, Eklund A. Evaluation of Augmentation Methods in Classifying Autism Spectrum Disorders from fMRI Data with 3D Convolutional Neural Networks. Diagnostics (Basel) 2023; 13:2773. [PMID: 37685311 PMCID: PMC10487086 DOI: 10.3390/diagnostics13172773] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Classifying subjects as healthy or diseased using neuroimaging data has gained a lot of attention during the last 10 years, and recently, different deep learning approaches have been used. Despite this fact, there has not been any investigation regarding how 3D augmentation can help to create larger datasets, required to train deep networks with millions of parameters. In this study, deep learning was applied to derivatives from resting state functional MRI data, to investigate how different 3D augmentation techniques affect the test accuracy. Specifically, resting state derivatives from 1112 subjects in ABIDE (Autism Brain Imaging Data Exchange) preprocessed were used to train a 3D convolutional neural network (CNN) to classify each subject according to presence or absence of autism spectrum disorder. The results show that augmentation only provide minor improvements to the test accuracy.
Collapse
Affiliation(s)
- Johan Jönemo
- Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden
| | - David Abramian
- Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden
| | - Anders Eklund
- Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden
- Division of Statistics and Machine Learning, Department of Computer and Information Science, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
30
|
Teng J, Mi C, Shi J, Li N. Brain disease research based on functional magnetic resonance imaging data and machine learning: a review. Front Neurosci 2023; 17:1227491. [PMID: 37662098 PMCID: PMC10469689 DOI: 10.3389/fnins.2023.1227491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 09/05/2023] Open
Abstract
Brain diseases, including neurodegenerative diseases and neuropsychiatric diseases, have long plagued the lives of the affected populations and caused a huge burden on public health. Functional magnetic resonance imaging (fMRI) is an excellent neuroimaging technology for measuring brain activity, which provides new insight for clinicians to help diagnose brain diseases. In recent years, machine learning methods have displayed superior performance in diagnosing brain diseases compared to conventional methods, attracting great attention from researchers. This paper reviews the representative research of machine learning methods in brain disease diagnosis based on fMRI data in the recent three years, focusing on the most frequent four active brain disease studies, including Alzheimer's disease/mild cognitive impairment, autism spectrum disorders, schizophrenia, and Parkinson's disease. We summarize these 55 articles from multiple perspectives, including the effect of the size of subjects, extracted features, feature selection methods, classification models, validation methods, and corresponding accuracies. Finally, we analyze these articles and introduce future research directions to provide neuroimaging scientists and researchers in the interdisciplinary fields of computing and medicine with new ideas for AI-aided brain disease diagnosis.
Collapse
Affiliation(s)
- Jing Teng
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Chunlin Mi
- School of Control and Computer Engineering, North China Electric Power University, Beijing, China
| | - Jian Shi
- Department of Hematology and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Na Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
31
|
Qureshi MS, Qureshi MB, Asghar J, Alam F, Aljarbouh A. Prediction and Analysis of Autism Spectrum Disorder Using Machine Learning Techniques. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:4853800. [PMID: 37469788 PMCID: PMC10352530 DOI: 10.1155/2023/4853800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 07/21/2023]
Abstract
Autism spectrum disorder is a severe, life-prolonged neurodevelopmental disease typified by disabilities that are chronic or limited in the development of socio-communication skills, thinking abilities, activities, and behavior. In children aged two to three years, the symptoms of autism are more evident and easier to recognize. The major part of the existing literature on autism spectrum disorder is covered by a prediction system based on traditional machine learning algorithms such as support vector machine, random forest, multiple layer perceptron, naive Bayes, convolution neural network, and deep neural network. The proposed models are validated by using performance measurement parameters such as accuracy, precision, and recall. In this research, autism spectrum disorder prediction has been investigated and compared using common parameters such as application type, simulation method, comparison methodology, and input data. The key purpose of this study is to give a centralized framework to use for researchers working on autism spectrum disorder prediction. The best results were obtained by using the random forest algorithm as it performs better than other traditional machine learning algorithms. The achieved accuracy is 89.23%. The workflow representations of the investigated frameworks assist readers in comprehending the fundamental workings and architectures of these frameworks.
Collapse
Affiliation(s)
- Muhammad Shuaib Qureshi
- Department of Computer Science, School of Arts and Sciences, University of Central Asia, Naryn, Kyrgyzstan
| | | | - Junaid Asghar
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan, KPK, Pakistan
| | - Fatima Alam
- Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad 44000, Pakistan
| | - Ayman Aljarbouh
- Department of Computer Science, School of Arts and Sciences, University of Central Asia, Naryn, Kyrgyzstan
| |
Collapse
|
32
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
33
|
Alves CL, Toutain TGLDO, de Carvalho Aguiar P, Pineda AM, Roster K, Thielemann C, Porto JAM, Rodrigues FA. Diagnosis of autism spectrum disorder based on functional brain networks and machine learning. Sci Rep 2023; 13:8072. [PMID: 37202411 DOI: 10.1038/s41598-023-34650-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/04/2023] [Indexed: 05/20/2023] Open
Abstract
Autism is a multifaceted neurodevelopmental condition whose accurate diagnosis may be challenging because the associated symptoms and severity vary considerably. The wrong diagnosis can affect families and the educational system, raising the risk of depression, eating disorders, and self-harm. Recently, many works have proposed new methods for the diagnosis of autism based on machine learning and brain data. However, these works focus on only one pairwise statistical metric, ignoring the brain network organization. In this paper, we propose a method for the automatic diagnosis of autism based on functional brain imaging data recorded from 500 subjects, where 242 present autism spectrum disorder considering the regions of interest throughout Bootstrap Analysis of Stable Cluster map. Our method can distinguish the control group from autism spectrum disorder patients with high accuracy. Indeed the best performance provides an AUC near 1.0, which is higher than that found in the literature. We verify that the left ventral posterior cingulate cortex region is less connected to an area in the cerebellum of patients with this neurodevelopment disorder, which agrees with previous studies. The functional brain networks of autism spectrum disorder patients show more segregation, less distribution of information across the network, and less connectivity compared to the control cases. Our workflow provides medical interpretability and can be used on other fMRI and EEG data, including small data sets.
Collapse
Affiliation(s)
- Caroline L Alves
- Institute of Mathematical and Computer Sciences (ICMC), University of São Paulo (USP), São Paulo, Brazil.
- BioMEMS Lab, Aschaffenburg University of Applied Sciences, Aschaffenburg, Germany.
| | | | - Patricia de Carvalho Aguiar
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Aruane M Pineda
- Institute of Mathematical and Computer Sciences (ICMC), University of São Paulo (USP), São Paulo, Brazil
| | - Kirstin Roster
- Institute of Mathematical and Computer Sciences (ICMC), University of São Paulo (USP), São Paulo, Brazil
| | | | | | - Francisco A Rodrigues
- Institute of Mathematical and Computer Sciences (ICMC), University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
34
|
Liu S, Liang B, Wang S, Li B, Pan L, Wang SH. NF-GAT: A Node Feature-Based Graph Attention Network for ASD Classification. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 5:428-433. [PMID: 38899023 PMCID: PMC11186657 DOI: 10.1109/ojemb.2023.3267612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 04/12/2023] [Indexed: 06/21/2024] Open
Abstract
Goal: The purpose of this paper is to recognize autism spectrum disorders (ASD) using graph attention network. Methods: we propose a node features graph attention network (NF-GAT) for learning functional connectivity (FC) features to achieve ASD diagnosis. Firstly, node features are modelled based on functional magnetic resonance imaging (fMRI) data, with each subject modelled as a graph. Next, we use the graph attention layer to learn the node features and gets the node information of different nodes for ASD classification. Results: Compared with other models, the NF-GAT has significant advantages in terms of classification results. Conclusions: NF-GAT can be effectively used for ASD classification.
Collapse
Affiliation(s)
- Shuaiqi Liu
- College of Electronic and Information Engineering, Machine Vision Engineering Research Center of Hebei ProvinceHebei UniversityBaoding071002China
- National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijing100190China
| | - Beibei Liang
- Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Siqi Wang
- Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Bing Li
- National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijing100190China
| | - Lidong Pan
- Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Shui-Hua Wang
- School of Computer Science and TechnologyHenan Polytechnic UniversityJiaozuo454000China
| |
Collapse
|
35
|
Ji J, Zou A, Liu J, Yang C, Zhang X, Song Y. A Survey on Brain Effective Connectivity Network Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:1879-1899. [PMID: 34469315 DOI: 10.1109/tnnls.2021.3106299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Human brain effective connectivity characterizes the causal effects of neural activities among different brain regions. Studies of brain effective connectivity networks (ECNs) for different populations contribute significantly to the understanding of the pathological mechanism associated with neuropsychiatric diseases and facilitate finding new brain network imaging markers for the early diagnosis and evaluation for the treatment of cerebral diseases. A deeper understanding of brain ECNs also greatly promotes brain-inspired artificial intelligence (AI) research in the context of brain-like neural networks and machine learning. Thus, how to picture and grasp deeper features of brain ECNs from functional magnetic resonance imaging (fMRI) data is currently an important and active research area of the human brain connectome. In this survey, we first show some typical applications and analyze existing challenging problems in learning brain ECNs from fMRI data. Second, we give a taxonomy of ECN learning methods from the perspective of computational science and describe some representative methods in each category. Third, we summarize commonly used evaluation metrics and conduct a performance comparison of several typical algorithms both on simulated and real datasets. Finally, we present the prospects and references for researchers engaged in learning ECNs.
Collapse
|
36
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
37
|
Ma H, Cao Y, Li M, Zhan L, Xie Z, Huang L, Gao Y, Jia X. Abnormal amygdala functional connectivity and deep learning classification in multifrequency bands in autism spectrum disorder: A multisite functional magnetic resonance imaging study. Hum Brain Mapp 2023; 44:1094-1104. [PMID: 36346215 PMCID: PMC9875923 DOI: 10.1002/hbm.26141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Previous studies have explored resting-state functional connectivity (rs-FC) of the amygdala in patients with autism spectrum disorder (ASD). However, it remains unclear whether there are frequency-specific FC alterations of the amygdala in ASD and whether FC in specific frequency bands can be used to distinguish patients with ASD from typical controls (TCs). Data from 306 patients with ASD and 314 age-matched and sex-matched TCs were collected from 28 sites in the Autism Brain Imaging Data Exchange database. The bilateral amygdala, defined as the seed regions, was used to perform seed-based FC analyses in the conventional, slow-5, and slow-4 frequency bands at each site. Image-based meta-analyses were used to obtain consistent brain regions across 28 sites in the three frequency bands. By combining generative adversarial networks and deep neural networks, a deep learning approach was applied to distinguish patients with ASD from TCs. The meta-analysis results showed frequency band specificity of FC in ASD, which was reflected in the slow-5 frequency band instead of the conventional and slow-4 frequency bands. The deep learning results showed that, compared with the conventional and slow-4 frequency bands, the slow-5 frequency band exhibited a higher accuracy of 74.73%, precision of 74.58%, recall of 75.05%, and area under the curve of 0.811 to distinguish patients with ASD from TCs. These findings may help us to understand the pathological mechanisms of ASD and provide preliminary guidance for the clinical diagnosis of ASD.
Collapse
Affiliation(s)
- Huibin Ma
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Yikang Cao
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Mengting Li
- College of Teacher Education, Zhejiang Normal University, Jinhua, China.,Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Zhou Xie
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, China
| | - Lina Huang
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Yanyan Gao
- College of Teacher Education, Zhejiang Normal University, Jinhua, China.,Key Laboratory of Intelligent Education Technology and Application, Zhejiang Normal University, Jinhua, China
| | - Xize Jia
- Department of Radiology, Changshu No. 2 People's Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| |
Collapse
|
38
|
Yousefian A, Shayegh F, Maleki Z. Detection of autism spectrum disorder using graph representation learning algorithms and deep neural network, based on fMRI signals. Front Syst Neurosci 2023; 16:904770. [PMID: 36817947 PMCID: PMC9932324 DOI: 10.3389/fnsys.2022.904770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Can we apply graph representation learning algorithms to identify autism spectrum disorder (ASD) patients within a large brain imaging dataset? ASD is mainly identified by brain functional connectivity patterns. Attempts to unveil the common neural patterns emerged in ASD are the essence of ASD classification. We claim that graph representation learning methods can appropriately extract the connectivity patterns of the brain, in such a way that the method can be generalized to every recording condition, and phenotypical information of subjects. These methods can capture the whole structure of the brain, both local and global properties. Methods The investigation is done for the worldwide brain imaging multi-site database known as ABIDE I and II (Autism Brain Imaging Data Exchange). Among different graph representation techniques, we used AWE, Node2vec, Struct2vec, multi node2vec, and Graph2Img. The best approach was Graph2Img, in which after extracting the feature vectors representative of the brain nodes, the PCA algorithm is applied to the matrix of feature vectors. The classifier adapted to the features embedded in graphs is an LeNet deep neural network. Results and discussion Although we could not outperform the previous accuracy of 10-fold cross-validation in the identification of ASD versus control patients in this dataset, for leave-one-site-out cross-validation, we could obtain better results (our accuracy: 80%). The result is that graph embedding methods can prepare the connectivity matrix more suitable for applying to a deep network.
Collapse
Affiliation(s)
| | - Farzaneh Shayegh
- Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
39
|
Liu X, Wu J, Li W, Liu Q, Tian L, Huang H. Domain Adaptation via Low Rank and Class Discriminative Representation for Autism Spectrum Disorder Identification: A Multi-Site fMRI Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:806-817. [PMID: 37018581 DOI: 10.1109/tnsre.2022.3233656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
To construct a more effective model with good generalization performance for inter-site autism spectrum disorder (ASD) diagnosis, domain adaptation based ASD diagnostic models are proposed to alleviate the inter-site heterogeneity. However, most existing methods only reduce the marginal distribution difference without considering class discriminative information, and are difficult to achieve satisfactory results. In this paper, we propose a low rank and class discriminative representation (LRCDR) based multi-source unsupervised domain adaptation method to reduce the marginal and conditional distribution differences synchronously for improving ASD identification. Specifically, LRCDR adopts low rank representation to alleviate the marginal distribution difference between domains by aligning the global structure of the projected multi-site data. To reduce the conditional distribution difference of data from all sites, LRCDR learns the class discriminative representation of data from multiple source domains and the target domain to enhance the intra-class compactness and inter-class separability of the projected data. For inter-site prediction on all ABIDE I data (1102 subjects from 17 sites), LRCDR obtains the mean accuracy of 73.1%, superior to the results of the compared state-of-the-art domain adaptation methods and multi-site ASD identification methods. In addition, we locate some meaningful biomarkers: Most of the top important biomarkers are inter-network resting-state functional connectivities (RSFCs). The proposed LRCDR method can effectively improve the identification of ASD, and has great potential as a clinical diagnostic tool.
Collapse
|
40
|
Song X, Zhou F, Frangi AF, Cao J, Xiao X, Lei Y, Wang T, Lei B. Multicenter and Multichannel Pooling GCN for Early AD Diagnosis Based on Dual-Modality Fused Brain Network. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:354-367. [PMID: 35767511 DOI: 10.1109/tmi.2022.3187141] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For significant memory concern (SMC) and mild cognitive impairment (MCI), their classification performance is limited by confounding features, diverse imaging protocols, and limited sample size. To address the above limitations, we introduce a dual-modality fused brain connectivity network combining resting-state functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), and propose three mechanisms in the current graph convolutional network (GCN) to improve classifier performance. First, we introduce a DTI-strength penalty term for constructing functional connectivity networks. Stronger structural connectivity and bigger structural strength diversity between groups provide a higher opportunity for retaining connectivity information. Second, a multi-center attention graph with each node representing a subject is proposed to consider the influence of data source, gender, acquisition equipment, and disease status of those training samples in GCN. The attention mechanism captures their different impacts on edge weights. Third, we propose a multi-channel mechanism to improve filter performance, assigning different filters to features based on feature statistics. Applying those nodes with low-quality features to perform convolution would also deteriorate filter performance. Therefore, we further propose a pooling mechanism, which introduces the disease status information of those training samples to evaluate the quality of nodes. Finally, we obtain the final classification results by inputting the multi-center attention graph into the multi-channel pooling GCN. The proposed method is tested on three datasets (i.e., an ADNI 2 dataset, an ADNI 3 dataset, and an in-house dataset). Experimental results indicate that the proposed method is effective and superior to other related algorithms, with a mean classification accuracy of 93.05% in our binary classification tasks. Our code is available at: https://github.com/Xuegang-S.
Collapse
|
41
|
Factorization of Broad Expansion for Broad Learning System. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2023.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
42
|
Previously Marzena Szkodo MOR, Micai M, Caruso A, Fulceri F, Fazio M, Scattoni ML. Technologies to support the diagnosis and/or treatment of neurodevelopmental disorders: A systematic review. Neurosci Biobehav Rev 2023; 145:105021. [PMID: 36581169 DOI: 10.1016/j.neubiorev.2022.105021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In recent years, there has been a great interest in utilizing technology in mental health research. The rapid technological development has encouraged researchers to apply technology as a part of a diagnostic process or treatment of Neurodevelopmental Disorders (NDDs). With the large number of studies being published comes an urgent need to inform clinicians and researchers about the latest advances in this field. Here, we methodically explore and summarize findings from studies published between August 2019 and February 2022. A search strategy led to the identification of 4108 records from PubMed and APA PsycInfo databases. 221 quantitative studies were included, covering a wide range of technologies used for diagnosis and/or treatment of NDDs, with the biggest focus on Autism Spectrum Disorder (ASD). The most popular technologies included machine learning, functional magnetic resonance imaging, electroencephalogram, magnetic resonance imaging, and neurofeedback. The results of the review indicate that technology-based diagnosis and intervention for NDD population is promising. However, given a high risk of bias of many studies, more high-quality research is needed.
Collapse
Affiliation(s)
| | - Martina Micai
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Angela Caruso
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Fulceri
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Maria Fazio
- Department of Mathematics, Computer Science, Physics and Earth Sciences (MIFT), University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
43
|
Kim JI, Bang S, Yang JJ, Kwon H, Jang S, Roh S, Kim SH, Kim MJ, Lee HJ, Lee JM, Kim BN. Classification of Preschoolers with Low-Functioning Autism Spectrum Disorder Using Multimodal MRI Data. J Autism Dev Disord 2023; 53:25-37. [PMID: 34984638 DOI: 10.1007/s10803-021-05368-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 02/03/2023]
Abstract
Multimodal imaging studies targeting preschoolers and low-functioning autism spectrum disorder (ASD) patients are scarce. We applied machine learning classifiers to parameters from T1-weighted MRI and DTI data of 58 children with ASD (age 3-6 years) and 48 typically developing controls (TDC). Classification performance reached an accuracy, sensitivity, and specificity of 88.8%, 93.0%, and 83.8%, respectively. The most prominent features were the cortical thickness of the right inferior occipital gyrus, mean diffusivity of the middle cerebellar peduncle, and nodal efficiency of the left posterior cingulate gyrus. Machine learning-based analysis of MRI data was useful in distinguishing low-functioning ASD preschoolers from TDCs. Combination of T1 and DTI improved classification accuracy about 10%, and large-scale multi-modal MRI studies are warranted for external validation.
Collapse
Affiliation(s)
- Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, 222-1 Wangsimni-ro, Sungdong-gu, Seoul, 04763, Republic of Korea
| | - Sungkyu Bang
- Department of Biomedical Engineering, Hanyang University, 222 Wangsimni-ro, Sungdong-gu, Seoul, 04763, Republic of Korea
| | - Jin-Ju Yang
- Department of Biomedical Engineering, Hanyang University, 222 Wangsimni-ro, Sungdong-gu, Seoul, 04763, Republic of Korea
| | - Heejin Kwon
- Department of Psychology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 02722, Republic of Korea
| | - Soomin Jang
- Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sungwon Roh
- Department of Psychiatry, Hanyang University Medical Center, 222-1 Wangsimni-ro, Sungdong-gu, Seoul, 04763, Republic of Korea
- Department of Psychiatry, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Seok Hyeon Kim
- Department of Psychiatry, Hanyang University Medical Center, 222-1 Wangsimni-ro, Sungdong-gu, Seoul, 04763, Republic of Korea
- Department of Psychiatry, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Mi Jung Kim
- Department of Rehabilitation Medicine, Hanyang University College of Medicine, 222 Wangsimni-ro, Sungdong-gu, Seoul, 04763, Republic of Korea
| | - Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, 222 Wangsimni-ro, Sungdong-gu, Seoul, 04763, Republic of Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, 222 Wangsimni-ro, Sungdong-gu, Seoul, 04763, Republic of Korea.
| | - Bung-Nyun Kim
- Department of Psychiatry, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, 101 Daehak-no, Chongno-gu, Seoul, 03080, Republic of Korea.
| |
Collapse
|
44
|
Hao X, An Q, Li J, Min H, Guo Y, Yu M, Qin J. Exploring high-order correlations with deep-broad learning for autism spectrum disorder diagnosis. Front Neurosci 2022; 16:1046268. [PMID: 36483179 PMCID: PMC9723136 DOI: 10.3389/fnins.2022.1046268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 01/25/2023] Open
Abstract
Recently, a lot of research has been conducted on diagnosing neurological disorders, such as autism spectrum disorder (ASD). Functional magnetic resonance imaging (fMRI) is the commonly used technique to assist in the diagnosis of ASD. In the past years, some conventional methods have been proposed to extract the low-order functional connectivity network features for ASD diagnosis, which ignore the complexity and global features of the brain network. Most deep learning-based methods generally have a large number of parameters that need to be adjusted during the learning process. To overcome the limitations mentioned above, we propose a novel deep-broad learning method for learning the higher-order brain functional connectivity network features to assist in ASD diagnosis. Specifically, we first construct the high-order functional connectivity network that describes global correlations of the brain regions based on hypergraph, and then we use the deep-broad learning method to extract the high-dimensional feature representations for brain networks sequentially. The evaluation of the proposed method is conducted on Autism Brain Imaging Data Exchange (ABIDE) dataset. The results show that our proposed method can achieve 71.8% accuracy on the multi-center dataset and 70.6% average accuracy on 17 single-center datasets, which are the best results compared with the state-of-the-art methods. Experimental results demonstrate that our method can describe the global features of the brain regions and get rich discriminative information for the classification task.
Collapse
Affiliation(s)
- Xiaoke Hao
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Qijin An
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Jiayang Li
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Hongjie Min
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Yingchun Guo
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Ming Yu
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Jing Qin
- School of Nursing, Centre for Smart Health, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
45
|
Horien C, Floris DL, Greene AS, Noble S, Rolison M, Tejavibulya L, O'Connor D, McPartland JC, Scheinost D, Chawarska K, Lake EMR, Constable RT. Functional Connectome-Based Predictive Modeling in Autism. Biol Psychiatry 2022; 92:626-642. [PMID: 35690495 PMCID: PMC10948028 DOI: 10.1016/j.biopsych.2022.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/08/2023]
Abstract
Autism is a heterogeneous neurodevelopmental condition, and functional magnetic resonance imaging-based studies have helped advance our understanding of its effects on brain network activity. We review how predictive modeling, using measures of functional connectivity and symptoms, has helped reveal key insights into this condition. We discuss how different prediction frameworks can further our understanding of the brain-based features that underlie complex autism symptomatology and consider how predictive models may be used in clinical settings. Throughout, we highlight aspects of study interpretation, such as data decay and sampling biases, that require consideration within the context of this condition. We close by suggesting exciting future directions for predictive modeling in autism.
Collapse
Affiliation(s)
- Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut; MD-PhD Program, Yale School of Medicine, New Haven, Connecticut.
| | - Dorothea L Floris
- Methods of Plasticity Research, Department of Psychology, University of Zürich, Zurich, Switzerland; Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Abigail S Greene
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut; MD-PhD Program, Yale School of Medicine, New Haven, Connecticut
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Max Rolison
- Yale Child Study Center, New Haven, Connecticut
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut
| | - David O'Connor
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - James C McPartland
- Department of Psychology, Yale University, New Haven, Connecticut; Yale Child Study Center, New Haven, Connecticut
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Statistics and Data Science, Yale University, New Haven, Connecticut; Yale Child Study Center, New Haven, Connecticut
| | - Katarzyna Chawarska
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut; Department of Statistics and Data Science, Yale University, New Haven, Connecticut; Yale Child Study Center, New Haven, Connecticut
| | - Evelyn M R Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - R Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, Connecticut; Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut; Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| |
Collapse
|
46
|
Moridian P, Ghassemi N, Jafari M, Salloum-Asfar S, Sadeghi D, Khodatars M, Shoeibi A, Khosravi A, Ling SH, Subasi A, Alizadehsani R, Gorriz JM, Abdulla SA, Acharya UR. Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review. Front Mol Neurosci 2022; 15:999605. [PMID: 36267703 PMCID: PMC9577321 DOI: 10.3389/fnmol.2022.999605] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the Supplementary Appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We suggest future approaches to detecting ASDs using AI techniques and MRI neuroimaging.
Collapse
Affiliation(s)
- Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Navid Ghassemi
- Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahboobeh Jafari
- Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran
| | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Delaram Sadeghi
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Afshin Shoeibi
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Ultimo, NSW, Australia
| | - Abdulhamit Subasi
- Faculty of Medicine, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Computer Science, College of Engineering, Effat University, Jeddah, Saudi Arabia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, VIC, Australia
| | - Juan M. Gorriz
- Data Science and Computational Intelligence Institute, University of Granada, Granada, Spain
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - U. Rajendra Acharya
- Ngee Ann Polytechnic, Singapore, Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
| |
Collapse
|
47
|
Ji J, Zhang Y. Functional Brain Network Classification Based on Deep Graph Hashing Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2891-2902. [PMID: 35533175 DOI: 10.1109/tmi.2022.3173428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Brain network classification using resting-state functional magnetic resonance imaging (rs-fMRI) is an effective analytical method for diagnosing brain diseases. In recent years, brain network classification methods based on deep learning have attracted increasing attention. However, these methods only consider the spatial topological characteristics of the brain network but ignore its proximity relationships in semantic space. To overcome this problem, we propose a novel brain network classification method based on deep graph hashing learning named BNC-DGHL. Specifically, we first extract the deep features of the brain network and then learn a graph hash function based on clinical phenotype labels and the similarity of diagnostic labels. Secondly, we use the learned graph hash function to convert deep features into hash codes, which can maintain the original semantic spatial relationships. Finally, we calculate the distance between hash codes to obtain the predicted category of the brain network. Experimental results on ABIDE I, ABIDE II, and ADHD-200 datasets demonstrate that our method achieves better classification performance of brain diseases compared with some state-of-the-art methods, and the abnormal functional connectivities between brain regions identified may serve as biomarkers associated with related brain diseases.
Collapse
|
48
|
Xu S, Ren Y, Tao Z, Song L, He X. Hierarchical Individual Naturalistic Functional Brain Networks with Group Consistency uncovered by a Two-Stage NAS-Volumetric Sparse DBN Framework. eNeuro 2022; 9:ENEURO.0200-22.2022. [PMID: 35995557 PMCID: PMC9463984 DOI: 10.1523/eneuro.0200-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/30/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
The functional magnetic resonance imaging under naturalistic paradigm (NfMRI) showed great advantages in identifying complex and interactive functional brain networks due to its dynamics and multimodal information. In recent years, various deep learning models, such as deep convolutional autoencoder (DCAE), deep belief network (DBN) and volumetric sparse deep belief network (vsDBN), can obtain hierarchical functional brain networks (FBN) and temporal features from fMRI data. Among them, the vsDBN model revealed a good capability in identifying hierarchical FBNs by modelling fMRI volume images. However, due to the high dimensionality of fMRI volumes and the diverse training parameters of deep learning methods, especially the network architecture that is the most critical parameter for uncovering the hierarchical organization of human brain function, researchers still face challenges in designing an appropriate deep learning framework with automatic network architecture optimization to model volumetric NfMRI. In addition, most of the existing deep learning models ignore the group-wise consistency and inter-subject variation properties embedded in NfMRI volumes. To solve these problems, we proposed a two-stage neural architecture search and vs DBN model (two-stage NAS-vsDBN model) to identify the hierarchical human brain spatio-temporal features possessing both group-consistency and individual-uniqueness under naturalistic condition. Moreover, our model defined reliable network structure for modelling volumetric NfMRI data via NAS framework, and the group-level and individual-level FBNs and associated temporal features exhibited great consistency. In general, our method well identified the hierarchical temporal and spatial features of the brain function and revealed the crucial properties of neural processes under natural viewing condition.Significance StatementIn this paper, we proposed and applied a novel analytical strategy - a two-stage NAS-vsDBN model to identify both group-level and individual-level spatio-temporal features at multi-scales from volumetric NfMRI data. The proposed PSO-based NAS framework can find optimal neural structure for both group-wise and individual-level vs-DBN models. Furthermore, with well-established correspondence between two stages of vsDBN models, our model can effectively detect group-level FBNs that reveal the consistency in neural processes across subjects and individual-level FBNs that maintain the subject specific variability, verifying the inherent property of brain function under naturalistic condition.
Collapse
Affiliation(s)
- Shuhan Xu
- School of Information Science & Technology, Northwest University, China
| | - Yudan Ren
- School of Information Science & Technology, Northwest University, China
| | - Zeyang Tao
- School of Information Science & Technology, Northwest University, China
| | - Limei Song
- School of Information Science & Technology, Northwest University, China
| | - Xiaowei He
- School of Information Science & Technology, Northwest University, China
| |
Collapse
|
49
|
Han J, Jiang G, Ouyang G, Li X. A Multimodal Approach for Identifying Autism Spectrum Disorders in Children. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2003-2011. [PMID: 35853070 DOI: 10.1109/tnsre.2022.3192431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Identification of autism spectrum disorder (ASD) in children is challenging due to the complexity and heterogeneity of ASD. Currently, most existing methods mainly rely on a single modality with limited information and often cannot achieve satisfactory performance. To address this issue, this paper investigates from internal neurophysiological and external behavior perspectives simultaneously and proposes a new multimodal diagnosis framework for identifying ASD in children with fusion of electroencephalogram (EEG) and eye-tracking (ET) data. Specifically, we designed a two-step multimodal feature learning and fusion model based on a typical deep learning algorithm, stacked denoising autoencoder (SDAE). In the first step, two SDAE models are designed for feature learning for EEG and ET modality, respectively. Then, a third SDAE model in the second step is designed to perform multimodal fusion with learned EEG and ET features in a concatenated way. Our designed multimodal identification model can automatically capture correlations and complementarity from behavior modality and neurophysiological modality in a latent feature space, and generate informative feature representations with better discriminability and generalization for enhanced identification performance. We collected a multimodal dataset containing 40 ASD children and 50 typically developing (TD) children to evaluate our proposed method. Experimental results showed that our proposed method achieved superior performance compared with two unimodal methods and a simple feature-level fusion method, which has promising potential to provide an objective and accurate diagnosis to assist clinicians.
Collapse
|
50
|
Identification of Autism spectrum disorder based on a novel feature selection method and Variational Autoencoder. Comput Biol Med 2022; 148:105854. [PMID: 35863246 DOI: 10.1016/j.compbiomed.2022.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/23/2022] [Accepted: 05/29/2022] [Indexed: 11/22/2022]
Abstract
The development of noninvasive brain imaging such as resting-state functional magnetic resonance imaging (rs-fMRI) and its combination with AI algorithm provides a promising solution for the early diagnosis of Autism spectrum disorder (ASD). However, the performance of the current ASD classification based on rs-fMRI still needs to be improved. This paper introduces a classification framework to aid ASD diagnosis based on rs-fMRI. In the framework, we proposed a novel filter feature selection method based on the difference between step distribution curves (DSDC) to select remarkable functional connectivities (FCs) and utilized a multilayer perceptron (MLP) which was pretrained by a simplified Variational Autoencoder (VAE) for classification. We also designed a pipeline consisting of a normalization procedure and a modified hyperbolic tangent (tanh) activation function to replace the classical tanh function, further improving the model accuracy. Our model was evaluated by 10 times 10-fold cross-validation and achieved an average accuracy of 78.12%, outperforming the state-of-the-art methods reported on the same dataset. Given the importance of sensitivity and specificity in disease diagnosis, two constraints were designed in our model which can improve the model's sensitivity and specificity by up to 9.32% and 10.21%, respectively. The added constraints allow our model to handle different application scenarios and can be used broadly.
Collapse
|