1
|
Karamimanesh M, Abiri E, Shahsavari M, Hassanli K, van Schaik A, Eshraghian J. Spiking neural networks on FPGA: A survey of methodologies and recent advancements. Neural Netw 2025; 186:107256. [PMID: 39965527 DOI: 10.1016/j.neunet.2025.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/28/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
The mimicry of the biological brain's structure in information processing enables spiking neural networks (SNNs) to exhibit significantly reduced power consumption compared to conventional systems. Consequently, these networks have garnered heightened attention and spurred extensive research endeavors in recent years, proposing various structures to achieve low power consumption, high speed, and improved recognition ability. However, researchers are still in the early stages of developing more efficient neural networks that more closely resemble the biological brain. This development and research require suitable hardware for execution with appropriate capabilities, and field-programmable gate array (FPGA) serves as a highly qualified candidate compared to existing hardware such as central processing unit (CPU) and graphics processing unit (GPU). FPGA, with parallel processing capabilities similar to the brain, lower latency and power consumption, and higher throughput, is highly eligible hardware for assisting in the development of spiking neural networks. In this review, an attempt has been made to facilitate researchers' path to further develop this field by collecting and examining recent works and the challenges that hinder the implementation of these networks on FPGA.
Collapse
Affiliation(s)
- Mehrzad Karamimanesh
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Ebrahim Abiri
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Mahyar Shahsavari
- AI Department, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| | - Kourosh Hassanli
- Department of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - André van Schaik
- The MARCS Institute, International Centre for Neuromorphic Systems, Western Sydney University, Australia.
| | - Jason Eshraghian
- Department of Electrical Engineering, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
2
|
Limbacher T, Ozdenizci O, Legenstein R. Memory-Dependent Computation and Learning in Spiking Neural Networks Through Hebbian Plasticity. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:2551-2562. [PMID: 38113154 DOI: 10.1109/tnnls.2023.3341446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Spiking neural networks (SNNs) are the basis for many energy-efficient neuromorphic hardware systems. While there has been substantial progress in SNN research, artificial SNNs still lack many capabilities of their biological counterparts. In biological neural systems, memory is a key component that enables the retention of information over a huge range of temporal scales, ranging from hundreds of milliseconds up to years. While Hebbian plasticity is believed to play a pivotal role in biological memory, it has so far been analyzed mostly in the context of pattern completion and unsupervised learning in artificial and SNNs. Here, we propose that Hebbian plasticity is fundamental for computations in biological and artificial spiking neural systems. We introduce a novel memory-augmented SNN architecture that is enriched by Hebbian synaptic plasticity. We show that Hebbian enrichment renders SNNs surprisingly versatile in terms of their computational as well as learning capabilities. It improves their abilities for out-of-distribution generalization, one-shot learning, cross-modal generative association, language processing, and reward-based learning. This suggests that powerful cognitive neuromorphic systems can be built based on this principle.
Collapse
|
3
|
Kang YG, Ishii M, Park J, Shin U, Jang S, Yoon S, Kim M, Okazaki A, Ito M, Nomura A, Hosokawa K, BrightSky M, Kim S. Solving Max-Cut Problem Using Spiking Boltzmann Machine Based on Neuromorphic Hardware with Phase Change Memory. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406433. [PMID: 39440674 PMCID: PMC11633485 DOI: 10.1002/advs.202406433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/27/2024] [Indexed: 10/25/2024]
Abstract
Efficiently solving combinatorial optimization problems (COPs) such as Max-Cut is challenging because the resources required increase exponentially with the problem size. This study proposes a hardware-friendly method for solving the Max-Cut problem by implementing a spiking neural network (SNN)-based Boltzmann machine (BM) in neuromorphic hardware systems. To implement the hardware-oriented version of the spiking Boltzmann machine (sBM), the stochastic dynamics of leaky integrate-and-fire (LIF) neurons with random walk noise are analyzed, and an innovative algorithm based on overlapping time windows is proposed. The simulation results demonstrate the effective convergence and high accuracy of the proposed method for large-scale Max-Cut problems. The proposed method is validated through successful hardware implementation on a 6-transistor/2-resistor (6T2R) neuromorphic chip with phase change memory (PCM) synapses. In addition, as an expansion of the algorithm, several annealing techniques and bias split methods are proposed to improve convergence, along with circuit design ideas for efficient evaluation of sampling convergence using cell arrays and spiking systems. Overall, the results of the proposed methods demonstrate the potential of energy-efficient and hardware-implementable approaches using SNNs to solve COPs. To the best of the author's knowledge, this is the first study to solve the Max-Cut problem using an SNN neuromorphic hardware chip.
Collapse
Affiliation(s)
- Yu Gyeong Kang
- Department of Material Science & EngineeringInter‐University Semiconductor Research CenterResearch Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | | | - Jaeweon Park
- Department of Material Science & EngineeringInter‐University Semiconductor Research CenterResearch Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | - Uicheol Shin
- Department of Material Science & EngineeringInter‐University Semiconductor Research CenterResearch Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | - Suyeon Jang
- Department of Material Science & EngineeringInter‐University Semiconductor Research CenterResearch Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | - Seongwon Yoon
- Department of Material Science & EngineeringInter‐University Semiconductor Research CenterResearch Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | - Mingi Kim
- Department of Material Science & EngineeringInter‐University Semiconductor Research CenterResearch Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | | | - Megumi Ito
- IBM Research‐TokyoChuo‐kuTokyo103‐0015Japan
| | | | | | | | - Sangbum Kim
- Department of Material Science & EngineeringInter‐University Semiconductor Research CenterResearch Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
4
|
Casanueva-Morato D, Ayuso-Martinez A, Dominguez-Morales JP, Jimenez-Fernandez A, Jimenez-Moreno G. Bio-inspired computational memory model of the Hippocampus: An approach to a neuromorphic spike-based Content-Addressable Memory. Neural Netw 2024; 178:106474. [PMID: 38941736 DOI: 10.1016/j.neunet.2024.106474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/12/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
The brain has computational capabilities that surpass those of modern systems, being able to solve complex problems efficiently in a simple way. Neuromorphic engineering aims to mimic biology in order to develop new systems capable of incorporating such capabilities. Bio-inspired learning systems continue to be a challenge that must be solved, and much work needs to be done in this regard. Among all brain regions, the hippocampus stands out as an autoassociative short-term memory with the capacity to learn and recall memories from any fragment of them. These characteristics make the hippocampus an ideal candidate for developing bio-inspired learning systems that, in addition, resemble content-addressable memories. Therefore, in this work we propose a bio-inspired spiking content-addressable memory model based on the CA3 region of the hippocampus with the ability to learn, forget and recall memories, both orthogonal and non-orthogonal, from any fragment of them. The model was implemented on the SpiNNaker hardware platform using Spiking Neural Networks. A set of experiments based on functional, stress and applicability tests were performed to demonstrate its correct functioning. This work presents the first hardware implementation of a fully-functional bio-inspired spiking hippocampal content-addressable memory model, paving the way for the development of future more complex neuromorphic systems.
Collapse
Affiliation(s)
- Daniel Casanueva-Morato
- Escuela Técnica Superior de Ingeniería Informática (ETSII), Universidad de Sevilla, Seville, Avenida de Reina Mercedes s/n, 41012, Spain; Robotics and Tech. of Computers Lab., Universidad de Sevilla, Seville, 41012, Spain; Escuela Politécnica Superior (EPS), Universidad de Sevilla, Sevilla, 41011, Spain.
| | - Alvaro Ayuso-Martinez
- Escuela Técnica Superior de Ingeniería Informática (ETSII), Universidad de Sevilla, Seville, Avenida de Reina Mercedes s/n, 41012, Spain; Robotics and Tech. of Computers Lab., Universidad de Sevilla, Seville, 41012, Spain; Escuela Politécnica Superior (EPS), Universidad de Sevilla, Sevilla, 41011, Spain.
| | - Juan P Dominguez-Morales
- Escuela Técnica Superior de Ingeniería Informática (ETSII), Universidad de Sevilla, Seville, Avenida de Reina Mercedes s/n, 41012, Spain; Robotics and Tech. of Computers Lab., Universidad de Sevilla, Seville, 41012, Spain; Escuela Politécnica Superior (EPS), Universidad de Sevilla, Sevilla, 41011, Spain; Smart Computer Systems Research and Engineering Lab (SCORE), Research Institute of Computer Engineering (I3US), Universidad de Sevilla, Seville, 41012, Spain.
| | - Angel Jimenez-Fernandez
- Escuela Técnica Superior de Ingeniería Informática (ETSII), Universidad de Sevilla, Seville, Avenida de Reina Mercedes s/n, 41012, Spain; Robotics and Tech. of Computers Lab., Universidad de Sevilla, Seville, 41012, Spain; Escuela Politécnica Superior (EPS), Universidad de Sevilla, Sevilla, 41011, Spain; Smart Computer Systems Research and Engineering Lab (SCORE), Research Institute of Computer Engineering (I3US), Universidad de Sevilla, Seville, 41012, Spain.
| | - Gabriel Jimenez-Moreno
- Escuela Técnica Superior de Ingeniería Informática (ETSII), Universidad de Sevilla, Seville, Avenida de Reina Mercedes s/n, 41012, Spain; Robotics and Tech. of Computers Lab., Universidad de Sevilla, Seville, 41012, Spain; Escuela Politécnica Superior (EPS), Universidad de Sevilla, Sevilla, 41011, Spain; Smart Computer Systems Research and Engineering Lab (SCORE), Research Institute of Computer Engineering (I3US), Universidad de Sevilla, Seville, 41012, Spain.
| |
Collapse
|
5
|
Mompó Alepuz A, Papageorgiou D, Tolu S. Brain-inspired biomimetic robot control: a review. Front Neurorobot 2024; 18:1395617. [PMID: 39224906 PMCID: PMC11366706 DOI: 10.3389/fnbot.2024.1395617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Complex robotic systems, such as humanoid robot hands, soft robots, and walking robots, pose a challenging control problem due to their high dimensionality and heavy non-linearities. Conventional model-based feedback controllers demonstrate robustness and stability but struggle to cope with the escalating system design and tuning complexity accompanying larger dimensions. In contrast, data-driven methods such as artificial neural networks excel at representing high-dimensional data but lack robustness, generalization, and real-time adaptiveness. In response to these challenges, researchers are directing their focus to biological paradigms, drawing inspiration from the remarkable control capabilities inherent in the human body. This has motivated the exploration of new control methods aimed at closely emulating the motor functions of the brain given the current insights in neuroscience. Recent investigation into these Brain-Inspired control techniques have yielded promising results, notably in tasks involving trajectory tracking and robot locomotion. This paper presents a comprehensive review of the foremost trends in biomimetic brain-inspired control methods to tackle the intricacies associated with controlling complex robotic systems.
Collapse
Affiliation(s)
- Adrià Mompó Alepuz
- Department of Electrical and Photonics Engineering, Technical University of Denmark, Copenhagen, Denmark
| | | | | |
Collapse
|
6
|
Kaster M, Czappa F, Butz-Ostendorf M, Wolf F. Building a realistic, scalable memory model with independent engrams using a homeostatic mechanism. Front Neuroinform 2024; 18:1323203. [PMID: 38706939 PMCID: PMC11066267 DOI: 10.3389/fninf.2024.1323203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 05/07/2024] Open
Abstract
Memory formation is usually associated with Hebbian learning and synaptic plasticity, which changes the synaptic strengths but omits structural changes. A recent study suggests that structural plasticity can also lead to silent memory engrams, reproducing a conditioned learning paradigm with neuron ensembles. However, this study is limited by its way of synapse formation, enabling the formation of only one memory engram. Overcoming this, our model allows the formation of many engrams simultaneously while retaining high neurophysiological accuracy, e.g., as found in cortical columns. We achieve this by substituting the random synapse formation with the Model of Structural Plasticity. As a homeostatic model, neurons regulate their activity by growing and pruning synaptic elements based on their current activity. Utilizing synapse formation based on the Euclidean distance between the neurons with a scalable algorithm allows us to easily simulate 4 million neurons with 343 memory engrams. These engrams do not interfere with one another by default, yet we can change the simulation parameters to form long-reaching associations. Our model's analysis shows that homeostatic engram formation requires a certain spatiotemporal order of events. It predicts that synaptic pruning precedes and enables synaptic engram formation and that it does not occur as a mere compensatory response to enduring synapse potentiation as in Hebbian plasticity with synaptic scaling. Our model paves the way for simulations addressing further inquiries, ranging from memory chains and hierarchies to complex memory systems comprising areas with different learning mechanisms.
Collapse
Affiliation(s)
- Marvin Kaster
- Laboratory for Parallel Programming, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Fabian Czappa
- Laboratory for Parallel Programming, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
| | - Markus Butz-Ostendorf
- Laboratory for Parallel Programming, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
- Data Science, Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Felix Wolf
- Laboratory for Parallel Programming, Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
7
|
Ghanbarpour M, Haghiri S, Hazzazi F, Assaad M, Chaudhary MA, Ahmadi A. Investigation on Vision System: Digital FPGA Implementation in Case of Retina Rod Cells. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:299-307. [PMID: 37824307 DOI: 10.1109/tbcas.2023.3323324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The development of prostheses and treatments for illnesses and recovery has recently been centered on hardware modeling for various delicate biological components, including the nervous system, brain, eyes, and heart. The retina, being the thinnest and deepest layer of the eye, is of particular interest. In this study, we employ the Nyquist-Based Approximation of Retina Rod Cell (NBAoRRC) approach, which has been adapted to utilize Look-Up Tables (LUTs) rather than original functions, to implement rod cells in the retina using cost-effective hardware. In modern mathematical models, numerous nonlinear functions are used to represent the activity of these cells. However, these nonlinear functions would require a substantial amount of hardware for direct implementation and may not meet the required speed constraints. The proposed method eliminates the need for multiplication functions and utilizes a fast, cost-effective rod cell device. Simulation results demonstrate the extent to which the proposed model aligns with the behavior of the primary rod cell model, particularly in terms of dynamic behavior. Based on the results of hardware implementation using the Field-Programmable Gate Arrays (FPGA) board Virtex-5, the proposed model is shown to be reliable, consume 30 percent less power than the primary model, and have reduced hardware resource requirements. Based on the results of hardware implementation using the reconfigurable FPGA board Virtex-5, the proposed model is reliable, uses 30% less power consumption than the primary model in the worth state of the set of approximation method, and has a reduced hardware resource requirement. In fact, using the proposed model, this reduction in the power consumption can be achieved. Finally, in this article, by using the LUT which is systematically sampled (Nyquist rate), we were able to remove all costly operators in terms of hardware (digital) realization and achieve very good results in the field of digital implementation in two scales of network and single neuron.
Collapse
|
8
|
Islam M, Hasan Majumder M, Hussein M, Hossain KM, Miah M. A review of machine learning and deep learning algorithms for Parkinson's disease detection using handwriting and voice datasets. Heliyon 2024; 10:e25469. [PMID: 38356538 PMCID: PMC10865258 DOI: 10.1016/j.heliyon.2024.e25469] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder with significant clinical implications. Early and accurate diagnosis of PD is crucial for timely intervention and personalized treatment. In recent years, Machine Learning (ML) and Deep Learning (DL) techniques have emerged as promis-ing tools for improving PD diagnosis. This review paper presents a detailed analysis of the current state of ML and DL-based PD diagnosis, focusing on voice, handwriting, and wave spiral datasets. The study also evaluates the effectiveness of various ML and DL algorithms, including classifiers, on these datasets and highlights their potential in enhancing diagnostic accuracy and aiding clinical decision-making. Additionally, the paper explores the identifi-cation of biomarkers using these techniques, offering insights into improving the diagnostic process. The discussion encompasses different data formats and commonly employed ML and DL methods in PD diagnosis, providing a comprehensive overview of the field. This review serves as a roadmap for future research, guiding the development of ML and DL-based tools for PD detection. It is expected to benefit both the scientific community and medical practitioners by advancing our understanding of PD diagnosis and ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Md.Ariful Islam
- Department of Robotics and Mechatronics Engineering, University of Dhaka, Nilkhet Rd, Dhaka, 1000, Bangladesh
| | - Md.Ziaul Hasan Majumder
- Institute of Electronics, Bangladesh Atomic Energy Commission, Dhaka, 1207, Bangladesh
- Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md.Alomgeer Hussein
- Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Khondoker Murad Hossain
- Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md.Sohel Miah
- Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka, 1000, Bangladesh
- Moulvibazar Polytechnic Institute, Bangladesh
| |
Collapse
|
9
|
Nwaigwe D, Carboni L, Mermillod M, Achard S, Dojat M. Graph-based methods coupled with specific distributional distances for adversarial attack detection. Neural Netw 2024; 169:11-19. [PMID: 37852166 DOI: 10.1016/j.neunet.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Artificial neural networks are prone to being fooled by carefully perturbed inputs which cause an egregious misclassification. These adversarial attacks have been the focus of extensive research. Likewise, there has been an abundance of research in ways to detect and defend against them. We introduce a novel approach of detection and interpretation of adversarial attacks from a graph perspective. For an input image, we compute an associated sparse graph using the layer-wise relevance propagation algorithm (Bach et al., 2015). Specifically, we only keep edges of the neural network with the highest relevance values. Three quantities are then computed from the graph which are then compared against those computed from the training set. The result of the comparison is a classification of the image as benign or adversarial. To make the comparison, two classification methods are introduced: (1) an explicit formula based on Wasserstein distance applied to the degree of node and (2) a logistic regression. Both classification methods produce strong results which lead us to believe that a graph-based interpretation of adversarial attacks is valuable.
Collapse
Affiliation(s)
- Dwight Nwaigwe
- Univ. Grenoble Alpes, Inria, CNRS, LJK, Grenoble, France; Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, Grenoble, France
| | - Lucrezia Carboni
- Univ. Grenoble Alpes, Inria, CNRS, LJK, Grenoble, France; Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, Grenoble, France
| | - Martial Mermillod
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Sophie Achard
- Univ. Grenoble Alpes, Inria, CNRS, LJK, Grenoble, France
| | - Michel Dojat
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, GIN, Grenoble, France.
| |
Collapse
|
10
|
Rostami M, Farajollahi A, Parvin H. Deep learning-based face detection and recognition on drones. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2024; 15:373-387. [DOI: 10.1007/s12652-022-03897-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/03/2022] [Indexed: 08/28/2023]
|
11
|
Siddique MAB, Zhang Y, An H. Monitoring time domain characteristics of Parkinson's disease using 3D memristive neuromorphic system. Front Comput Neurosci 2023; 17:1274575. [PMID: 38162516 PMCID: PMC10754992 DOI: 10.3389/fncom.2023.1274575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Parkinson's disease (PD) is a neurodegenerative disorder affecting millions of patients. Closed-Loop Deep Brain Stimulation (CL-DBS) is a therapy that can alleviate the symptoms of PD. The CL-DBS system consists of an electrode sending electrical stimulation signals to a specific region of the brain and a battery-powered stimulator implanted in the chest. The electrical stimuli in CL-DBS systems need to be adjusted in real-time in accordance with the state of PD symptoms. Therefore, fast and precise monitoring of PD symptoms is a critical function for CL-DBS systems. However, the current CL-DBS techniques suffer from high computational demands for real-time PD symptom monitoring, which are not feasible for implanted and wearable medical devices. Methods In this paper, we present an energy-efficient neuromorphic PD symptom detector using memristive three-dimensional integrated circuits (3D-ICs). The excessive oscillation at beta frequencies (13-35 Hz) at the subthalamic nucleus (STN) is used as a biomarker of PD symptoms. Results Simulation results demonstrate that our neuromorphic PD detector, implemented with an 8-layer spiking Long Short-Term Memory (S-LSTM), excels in recognizing PD symptoms, achieving a training accuracy of 99.74% and a validation accuracy of 99.52% for a 75%-25% data split. Furthermore, we evaluated the improvement of our neuromorphic CL-DBS detector using NeuroSIM. The chip area, latency, energy, and power consumption of our CL-DBS detector were reduced by 47.4%, 66.63%, 65.6%, and 67.5%, respectively, for monolithic 3D-ICs. Similarly, for heterogeneous 3D-ICs, employing memristive synapses to replace traditional Static Random Access Memory (SRAM) resulted in reductions of 44.8%, 64.75%, 65.28%, and 67.7% in chip area, latency, and power usage. Discussion This study introduces a novel approach for PD symptom evaluation by directly utilizing spiking signals from neural activities in the time domain. This method significantly reduces the time and energy required for signal conversion compared to traditional frequency domain approaches. The study pioneers the use of neuromorphic computing and memristors in designing CL-DBS systems, surpassing SRAM-based designs in chip design area, latency, and energy efficiency. Lastly, the proposed neuromorphic PD detector demonstrates high resilience to timing variations in brain neural signals, as confirmed by robustness analysis.
Collapse
Affiliation(s)
- Md Abu Bakr Siddique
- Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI, United States
| | - Yan Zhang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States
| | - Hongyu An
- Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
12
|
Xu M, Chen X, Guo Y, Wang Y, Qiu D, Du X, Cui Y, Wang X, Xiong J. Reconfigurable Neuromorphic Computing: Materials, Devices, and Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301063. [PMID: 37285592 DOI: 10.1002/adma.202301063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/15/2023] [Indexed: 06/09/2023]
Abstract
Neuromorphic computing has been attracting ever-increasing attention due to superior energy efficiency, with great promise to promote the next wave of artificial general intelligence in the post-Moore era. Current approaches are, however, broadly designed for stationary and unitary assignments, thus encountering reluctant interconnections, power consumption, and data-intensive computing in that domain. Reconfigurable neuromorphic computing, an on-demand paradigm inspired by the inherent programmability of brain, can maximally reallocate finite resources to perform the proliferation of reproducibly brain-inspired functions, highlighting a disruptive framework for bridging the gap between different primitives. Although relevant research has flourished in diverse materials and devices with novel mechanisms and architectures, a precise overview remains blank and urgently desirable. Herein, the recent strides along this pursuit are systematically reviewed from material, device, and integration perspectives. At the material and device level, one comprehensively conclude the dominant mechanisms for reconfigurability, categorized into ion migration, carrier migration, phase transition, spintronics, and photonics. Integration-level developments for reconfigurable neuromorphic computing are also exhibited. Finally, a perspective on the future challenges for reconfigurable neuromorphic computing is discussed, definitely expanding its horizon for scientific communities.
Collapse
Affiliation(s)
- Minyi Xu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xinrui Chen
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yehao Guo
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yang Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Dong Qiu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xinchuan Du
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yi Cui
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
13
|
Sanaullah, Koravuna S, Rückert U, Jungeblut T. Exploring spiking neural networks: a comprehensive analysis of mathematical models and applications. Front Comput Neurosci 2023; 17:1215824. [PMID: 37692462 PMCID: PMC10483570 DOI: 10.3389/fncom.2023.1215824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
This article presents a comprehensive analysis of spiking neural networks (SNNs) and their mathematical models for simulating the behavior of neurons through the generation of spikes. The study explores various models, including LIF and NLIF, for constructing SNNs and investigates their potential applications in different domains. However, implementation poses several challenges, including identifying the most appropriate model for classification tasks that demand high accuracy and low-performance loss. To address this issue, this research study compares the performance, behavior, and spike generation of multiple SNN models using consistent inputs and neurons. The findings of the study provide valuable insights into the benefits and challenges of SNNs and their models, emphasizing the significance of comparing multiple models to identify the most effective one. Moreover, the study quantifies the number of spiking operations required by each model to process the same inputs and produce equivalent outputs, enabling a thorough assessment of computational efficiency. The findings provide valuable insights into the benefits and limitations of SNNs and their models. The research underscores the significance of comparing different models to make informed decisions in practical applications. Additionally, the results reveal essential variations in biological plausibility and computational efficiency among the models, further emphasizing the importance of selecting the most suitable model for a given task. Overall, this study contributes to a deeper understanding of SNNs and offers practical guidelines for using their potential in real-world scenarios.
Collapse
Affiliation(s)
- Sanaullah
- Industrial the Internet of Things, Department of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, Bielefeld, Germany
| | - Shamini Koravuna
- AG Kognitronik & Sensorik, Technical Faculty, Universität Bielefeld, Bielefeld, Germany
| | - Ulrich Rückert
- AG Kognitronik & Sensorik, Technical Faculty, Universität Bielefeld, Bielefeld, Germany
| | - Thorsten Jungeblut
- Industrial the Internet of Things, Department of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, Bielefeld, Germany
| |
Collapse
|
14
|
Mishra R, Suri M. A survey and perspective on neuromorphic continual learning systems. Front Neurosci 2023; 17:1149410. [PMID: 37214407 PMCID: PMC10194827 DOI: 10.3389/fnins.2023.1149410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
With the advent of low-power neuromorphic computing systems, new possibilities have emerged for deployment in various sectors, like healthcare and transport, that require intelligent autonomous applications. These applications require reliable low-power solutions for sequentially adapting to new relevant data without loss of learning. Neuromorphic systems are inherently inspired by biological neural networks that have the potential to offer an efficient solution toward the feat of continual learning. With increasing attention in this area, we present a first comprehensive review of state-of-the-art neuromorphic continual learning (NCL) paradigms. The significance of our study is multi-fold. We summarize the recent progress and propose a plausible roadmap for developing end-to-end NCL systems. We also attempt to identify the gap between research and the real-world deployment of NCL systems in multiple applications. We do so by assessing the recent contributions in neuromorphic continual learning at multiple levels-applications, algorithms, architectures, and hardware. We discuss the relevance of NCL systems and draw out application-specific requisites. We analyze the biological underpinnings that are used for acquiring high-level performance. At the hardware level, we assess the ability of the current neuromorphic platforms and emerging nano-device-based architectures to support these algorithms in the presence of several constraints. Further, we propose refinements to continual learning metrics for applying them to NCL systems. Finally, the review identifies gaps and possible solutions that are not yet focused upon for deploying application-specific NCL systems in real-life scenarios.
Collapse
|
15
|
Pandey A, Vishwakarma DK. VABDC-Net: A framework for Visual-Caption Sentiment Recognition via spatio-depth visual attention and bi-directional caption processing. Knowl Based Syst 2023. [DOI: 10.1016/j.knosys.2023.110515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
16
|
Neuromorphic processor-oriented hybrid Q-format multiplication with adaptive quantization for tiny YOLO3. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
AbstractDeep neural networks (DNNs) have delivered unprecedented achievements in the modern Internet of Everything society, encompassing autonomous driving, expert diagnosis, unmanned supermarkets, etc. It continues to be challenging for researchers and engineers to develop a high-performance neuromorphic processor for deployment in edge devices or embedded hardware. DNNs’ superpower derives from their enormous and complex network architecture, which is computation-intensive, time-consuming, and energy-heavy. Due to the limited perceptual capacity of humans, accurate processing results from DNNs require a substantial amount of computing time, making them redundant in some applications. Utilizing adaptive quantization technology to compress the DNN model with sufficient accuracy is crucial for facilitating the deployment of neuromorphic processors in emerging edge applications. This study proposes a method to boost the development of neuromorphic processors by conducting fixed-point multiplication in a hybrid Q-format using an adaptive quantization technique on the convolution of tiny YOLO3. In particular, this work integrates the sign-bit check and bit roundoff techniques into the arithmetic of fixed-point multiplications to address overflow and roundoff issues within the convolution’s adding and multiplying operations. In addition, a hybrid Q-format multiplication module is developed to assess the proposed method from a hardware perspective. The experimental results prove that the hybrid multiplication with adaptive quantization on the tiny YOLO3’s weights and feature maps possesses a lower error rate than alternative fixed-point representation formats while sustaining the same object detection accuracy. Moreover, the fixed-point numbers represented by Q(6.9) have a suboptimal error rate, which can be utilized as an alternative representation form for the tiny YOLO3 algorithm-based neuromorphic processor design. In addition, the 8-bit hybrid Q-format multiplication module exhibits low power consumption and low latency in contrast to benchmark multipliers.
Collapse
|
17
|
Li P, Liu Q, Liu Z. Outer-synchronization criterions for asymmetric recurrent time-varying neural networks described by differential-algebraic system via data-sampling principles. Front Comput Neurosci 2022; 16:1029235. [DOI: 10.3389/fncom.2022.1029235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
Asymmetric recurrent time-varying neural networks (ARTNNs) can enable realistic brain-like models to help scholars explore the mechanisms of the human brain and thus realize the applications of artificial intelligence, whose dynamical behaviors such as synchronization has attracted extensive research interest due to its superior applicability and flexibility. In this paper, we examined the outer-synchronization of ARTNNs, which are described by the differential-algebraic system (DAS). By designing appropriate centralized and decentralized data-sampling approaches which fully account for information gathering at the times tk and tki. Using the characteristics of integral inequalities and the theory of differential equations, several novel suitable outer-synchronization conditions were established. Those conditions facilitate the analysis and applications of dynamical behaviors of ARTNNs. The superiority of the theoretical results was then demonstrated by using a numerical example.
Collapse
|
18
|
LaCERA: Layer-Centric Event-Routing Architecture. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Chen W, Zhang W, Wang W. A multi-view convolutional neural network based on cross-connection and residual-wider. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Yu Y, Zhang Y, Song Z, Tang CK. LMA: lightweight mixed-domain attention for efficient network design. APPL INTELL 2022. [DOI: 10.1007/s10489-022-04170-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Kumar VD, Rajesh P, Polat K, Alenezi F, Althubiti SA, Alhudhaif A. Wi-Fi signal-based human action acknowledgement using channel state information with CNN-LSTM: a device less approach. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
22
|
Pan W, Zhang W, Pu Y. Fractional-order multiscale attention feature pyramid network for time series classification. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Yang J, Gao T, Jiang S. A Dual-input Fault Diagnosis Model Based on SE-MSCNN for Analog Circuits. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Robust stereo inertial odometry based on self-supervised feature points. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
25
|
Perez-Valero E, Morillas C, Lopez-Gordo MA, Carrera-Muñoz I, López-Alcalde S, Vílchez-Carrillo RM. An Automated Approach for the Detection of Alzheimer's Disease From Resting State Electroencephalography. Front Neuroinform 2022; 16:924547. [PMID: 35898959 PMCID: PMC9309796 DOI: 10.3389/fninf.2022.924547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 12/05/2022] Open
Abstract
Early detection is crucial to control the progression of Alzheimer's disease and to postpone intellectual decline. Most current detection techniques are costly, inaccessible, or invasive. Furthermore, they require laborious analysis, what delays the start of medical treatment. To overcome this, researchers have recently investigated AD detection based on electroencephalography, a non-invasive neurophysiology technique, and machine learning algorithms. However, these approaches typically rely on manual procedures such as visual inspection, that requires additional personnel for the analysis, or on cumbersome EEG acquisition systems. In this paper, we performed a preliminary evaluation of a fully-automated approach for AD detection based on a commercial EEG acquisition system and an automated classification pipeline. For this purpose, we recorded the resting state brain activity of 26 participants from three groups: mild AD, mild cognitive impairment (MCI-non-AD), and healthy controls. First, we applied automated data-driven algorithms to reject EEG artifacts. Then, we obtained spectral, complexity, and entropy features from the preprocessed EEG segments. Finally, we assessed two binary classification problems: mild AD vs. controls, and MCI-non-AD vs. controls, through leave-one-subject-out cross-validation. The preliminary results that we obtained are comparable to the best reported in literature, what suggests that AD detection could be automatically detected through automated processing and commercial EEG systems. This is promising, since it may potentially contribute to reducing costs related to AD screening, and to shortening detection times, what may help to advance medical treatment.
Collapse
Affiliation(s)
- Eduardo Perez-Valero
- Department of Computers Architecture and Technology, University of Granada, Granada, Spain
- Brain Computer Interface Laboratory, Research Center for Information and Communications Technologies, University of Granada, Granada, Spain
| | - Christian Morillas
- Department of Computers Architecture and Technology, University of Granada, Granada, Spain
- Brain Computer Interface Laboratory, Research Center for Information and Communications Technologies, University of Granada, Granada, Spain
| | - Miguel A. Lopez-Gordo
- Brain Computer Interface Laboratory, Research Center for Information and Communications Technologies, University of Granada, Granada, Spain
- Department of Signal Theory, Telematics, and Communications, University of Granada, Granada, Spain
- *Correspondence: Miguel A. Lopez-Gordo
| | - Ismael Carrera-Muñoz
- Cognitive Neurology Group, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | | |
Collapse
|
26
|
A BERT-Based Aspect-Level Sentiment Analysis Algorithm for Cross-Domain Text. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8726621. [PMID: 35795761 PMCID: PMC9252649 DOI: 10.1155/2022/8726621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Cross-domain text sentiment analysis is a text sentiment classification task that uses the existing source domain annotation data to assist the target domain, which can not only reduce the workload of new domain data annotation, but also significantly improve the utilization of source domain annotation resources. In order to effectively achieve the performance of cross-domain text sentiment classification, this paper proposes a BERT-based aspect-level sentiment analysis algorithm for cross-domain text to achieve fine-grained sentiment analysis of cross-domain text. First, the algorithm uses the BERT structure to extract sentence-level and aspect-level representation vectors, extracts local features through an improved convolutional neural network, and combines aspect-level corpus and sentence-level corpus to form a sequence sentence pair. Then, the algorithm uses domain adversarial neural network to make the feature representation extracted from different domains as indistinguishable as possible, that is, the features extracted from the source domain and the target domain have more similarity. Finally, by training the sentiment classifier on the source domain dataset with sentiment labels, it is expected that the classifier can achieve a good sentiment classification effect in both source and target domain, and achieve sentence-level and aspect-level sentiment classification. At the same time, the error pooled values of the sentiment classifier and the domain adversary are passed backwards to realize the update and optimization of the model parameters, thereby training a model with cross-domain analysis capability. Experiments are carried out on the Amazon product review dataset, and accuracy and F1 value are used as evaluation indicators. Compared with other classical algorithms, the experimental results show that the proposed algorithm has better performance.
Collapse
|
27
|
Liu J, Hua Y, Yang R, Luo Y, Lu H, Wang Y, Yang S, Ding X. Bio-Inspired Autonomous Learning Algorithm With Application to Mobile Robot Obstacle Avoidance. Front Neurosci 2022; 16:905596. [PMID: 35844210 PMCID: PMC9279938 DOI: 10.3389/fnins.2022.905596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Spiking Neural Networks (SNNs) are often considered the third generation of Artificial Neural Networks (ANNs), owing to their high information processing capability and the accurate simulation of biological neural network behaviors. Though the research for SNNs has been quite active in recent years, there are still some challenges to applying SNNs to various potential applications, especially for robot control. In this study, a biologically inspired autonomous learning algorithm based on reward modulated spike-timing-dependent plasticity is proposed, where a novel rewarding generation mechanism is used to generate the reward signals for both learning and decision-making processes. The proposed learning algorithm is evaluated by a mobile robot obstacle avoidance task and experimental results show that the mobile robot with the proposed algorithm exhibits a good learning ability. The robot can successfully avoid obstacles in the environment after some learning trials. This provides an alternative method to design and apply the bio-inspired robot with autonomous learning capability in the typical robotic task scenario.
Collapse
Affiliation(s)
- Junxiu Liu
- School of Electronic Engineering, Guangxi Normal University, Guilin, China
| | - Yifan Hua
- School of Electronic Engineering, Guangxi Normal University, Guilin, China
| | - Rixing Yang
- College of Innovation and Entrepreneurship, Guangxi Normal University, Guilin, China
- *Correspondence: Rixing Yang
| | - Yuling Luo
- School of Electronic Engineering, Guangxi Normal University, Guilin, China
| | - Hao Lu
- School of Electronic Engineering, Guangxi Normal University, Guilin, China
| | - Yanhu Wang
- School of Electronic Engineering, Guangxi Normal University, Guilin, China
| | - Su Yang
- Department of Computer Science, Swansea University, Swansea, United Kingdom
| | - Xuemei Ding
- School of Computing, Engineering and Intelligent Systems, Ulster University, Derry, United Kingdom
| |
Collapse
|
28
|
Network Audio Data and Music Composition Teaching Based on Heterogeneous Cellular Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:9329856. [PMID: 35733568 PMCID: PMC9208950 DOI: 10.1155/2022/9329856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
With the rapid development of services such as Industry 4.0 and Internet of Vehicles, it is difficult for traditional cellular networks to meet the needs of network users for quantification, diversification, and greenness in the future. Various cellular networks expand multiple micro-cell nodes and relay nodes under macro-cells to form a multilayer network architecture. Based on this, in the process of data transmission, the links have been repeatedly reduced, and at the same time, the terminal power consumption has been reduced and the running system has been improved. This article will use the ratio of the capacity, energy consumption, and resource allocation of different cellular networks as the main means to optimize the cost. Using graph theory, auction theory, and multipurpose optimization algorithms, we have conducted in-depth research topics on upstream and downstream wireless resource allocation, network relay deployment and transmission scheduling, MMW large-scale multi-antenna transmission technology, and base station energy management. A series of optimization schemes and algorithms are proposed. This dissertation is based on the research of educational system design theory in the field of educational technology so as to carry out the research of music education system design theory suitable for the nature of music subjects and learning and education characteristics. Based on the necessity and importance of music education system design theory, the research framework of music education system design theory is constructed in advance. The voice data acquisition system collects voice data through a network grabber and real-time recording and uses signal processing and pattern recognition technology to automatically classify the collected voice data into three categories: voice, environmental sound, and music. After establishing the audio data deployment strategy, simulation method, and architecture design based on heterogeneous cellular network, this paper designs the corresponding music composition teaching system, mainly including score editing, viewing, and content display of the composition teaching system, and the final test shows that the system designed in this paper can be effectively used in various music school teaching combined with heterogeneous cellular networks.
Collapse
|
29
|
Learning dynamic causal mechanisms from non-stationary data. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Fang X, Tan Y, Zhang F, Duan S, Wang L. Transient Response and Firing Behaviors of Memristive Neuron Circuit. Front Neurosci 2022; 16:922086. [PMID: 35812218 PMCID: PMC9257141 DOI: 10.3389/fnins.2022.922086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The signal transmission mechanism of the Resistor-Capacitor (RC) circuit is similar to the intracellular and extracellular signal propagating mechanism of the neuron. Thus, the RC circuit can be utilized as the circuit model of the neuron cell membrane. However, resistors are electronic components with the fixed-resistance and have no memory properties. A memristor is a promising neuro-morphological electronic device with nonvolatile, switching, and nonlinear characteristics. First of all, we consider replacing the resistor in the RC neuron circuit with a memristor, which is named the Memristor-Capacitor (MC) circuit, then the MC neuron model is constructed. We compare the charging and discharging processes between the RC and MC neuron circuits. Secondly, two models are compared under the different external stimuli. Finally, the synchronous and asynchronous activities of the RC and MC neuron circuits are performed. Extensive experimental results suggest that the charging and discharging speed of the MC neuron circuit is faster than that of the RC neuron circuit. Given sufficient time and proper external stimuli, the RC and MC neuron circuits can produce the action potentials. The synchronous and asynchronous phenomena in the two neuron circuits reproduce nonlinear dynamic behaviors of the biological neurons.
Collapse
Affiliation(s)
- Xiaoyan Fang
- College of Artificial Intelligence, Southwest University, Chongqing, China
| | - Yao Tan
- Department of Big Data and Machine Learning, Chongqing University of Technology, Chongqing, China
| | - Fengqing Zhang
- College of Artificial Intelligence, Southwest University, Chongqing, China
| | - Shukai Duan
- College of Artificial Intelligence, Southwest University, Chongqing, China
| | - Lidan Wang
- College of Artificial Intelligence, Southwest University, Chongqing, China
- *Correspondence: Lidan Wang
| |
Collapse
|
31
|
Alfalouji Q, Sartor P, Zanuttigh P. Reframing control methods for parameters optimization in adversarial image generation. Neural Netw 2022; 153:303-313. [PMID: 35772251 DOI: 10.1016/j.neunet.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
Training procedures for deep networks require the setting of several hyper-parameters that strongly affect the obtained results. The problem is even worse in adversarial learning strategies used for image generation where a proper balancing of the discriminative and generative networks is fundamental for an effective training. In this work we propose a novel hyper-parameters optimization strategy based on the use of Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) controllers. Both open loop and closed loop schemes for the tuning of a single parameter or of multiple parameters together are proposed allowing an efficient parameter tuning without resorting to computationally demanding trial-and-error schemes. We applied the proposed strategies to the widely used BEGAN and CycleGAN models: They allowed to achieve a more stable training that converges faster. The obtained images are also sharper with a slightly better quality both visually and according to the FID and FCN metrics. Image translation results also showed better background preservation and less color artifacts with respect to CycleGAN.
Collapse
Affiliation(s)
- Qamar Alfalouji
- Technical University of Graz, Inffeldgasse 16b, Graz, 8010, Austria.
| | - Piergiorgio Sartor
- R&D Center Europe SL1, Sony Europe B.V., Hedelfinger Strasse 61, Stuttgart, 70327, Germany.
| | - Pietro Zanuttigh
- Department of Information Engineering, University of Padova, Via Gradenigo 6B, Padova, 35131, Italy.
| |
Collapse
|
32
|
Wang J, Tang C, Zheng X, Liu X, Zhang W, Zhu E. Graph regularized spatial-spectral subspace clustering for hyperspectral band selection. Neural Netw 2022; 153:292-302. [PMID: 35763881 DOI: 10.1016/j.neunet.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 06/12/2022] [Indexed: 10/18/2022]
Abstract
Hyperspectral band selection, which aims to select a small number of bands to reduce data redundancy and noisy bands, has attracted widespread attention in recent years. Many effective clustering-based band selection methods have been proposed to accomplish the band selection task and have achieved satisfying performance. However, most of the previous methods reshape the original hyperspectral images (HSIs) into a set of stretched band vectors, which ignore the spatial information of HSIs and the difference between diverse regions. To address these issues, a graph regularized spatial-spectral subspace clustering method for hyperspectral band selection is proposed in this paper, referred to as GRSC. Specifically, the proposed method adopts superpixel segmentation to preserve the spatial information of HSIs by segmenting their first principal component into diverse homogeneous regions. Then the discriminative latent features are generated from each segmented region to represent the whole band, which can mitigate the effect of noise on the band selection. Finally, a self-representation subspace clustering model and an l2,1-norm regularization are utilized to explore the spectral correlation among all bands. In addition, a similarity graph between region-aware latent features is adaptively learned to preserve the spatial structure of HSIs in the latent representation space. Extensive classification experimental results on three public datasets verify the effectiveness of GRSC over several state-of-the-art methods. The demo code of this work is publicly available at https://github.com/WangJun2023/GRSC.
Collapse
Affiliation(s)
- Jun Wang
- School of Computer Science, China University of Geosciences, Wuhan 430074, PR China.
| | - Chang Tang
- School of Computer Science, China University of Geosciences, Wuhan 430074, PR China.
| | - Xiao Zheng
- School of Computer, National University of Defense Technology, Changsha 410073, PR China.
| | - Xinwang Liu
- School of Computer, National University of Defense Technology, Changsha 410073, PR China.
| | - Wei Zhang
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center (National Supercomputing Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - En Zhu
- School of Computer, National University of Defense Technology, Changsha 410073, PR China.
| |
Collapse
|
33
|
Heidari A, Jafari Navimipour N, Unal M, Toumaj S. Machine learning applications for COVID-19 outbreak management. Neural Comput Appl 2022; 34:15313-15348. [PMID: 35702664 PMCID: PMC9186489 DOI: 10.1007/s00521-022-07424-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Recently, the COVID-19 epidemic has resulted in millions of deaths and has impacted practically every area of human life. Several machine learning (ML) approaches are employed in the medical field in many applications, including detecting and monitoring patients, notably in COVID-19 management. Different medical imaging systems, such as computed tomography (CT) and X-ray, offer ML an excellent platform for combating the pandemic. Because of this need, a significant quantity of study has been carried out; thus, in this work, we employed a systematic literature review (SLR) to cover all aspects of outcomes from related papers. Imaging methods, survival analysis, forecasting, economic and geographical issues, monitoring methods, medication development, and hybrid apps are the seven key uses of applications employed in the COVID-19 pandemic. Conventional neural networks (CNNs), long short-term memory networks (LSTM), recurrent neural networks (RNNs), generative adversarial networks (GANs), autoencoders, random forest, and other ML techniques are frequently used in such scenarios. Next, cutting-edge applications related to ML techniques for pandemic medical issues are discussed. Various problems and challenges linked with ML applications for this pandemic were reviewed. It is expected that additional research will be conducted in the upcoming to limit the spread and catastrophe management. According to the data, most papers are evaluated mainly on characteristics such as flexibility and accuracy, while other factors such as safety are overlooked. Also, Keras was the most often used library in the research studied, accounting for 24.4 percent of the time. Furthermore, medical imaging systems are employed for diagnostic reasons in 20.4 percent of applications.
Collapse
Affiliation(s)
- Arash Heidari
- Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Computer Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | | | - Mehmet Unal
- Department of Computer Engineering, Nisantasi University, Istanbul, Turkey
| | - Shiva Toumaj
- Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
34
|
Online subspace learning and imputation by Tensor-Ring decomposition. Neural Netw 2022; 153:314-324. [PMID: 35772252 DOI: 10.1016/j.neunet.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/31/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
Abstract
This paper considers the completion problem of a partially observed high-order streaming data, which is cast as an online low-rank tensor completion problem. Though the online low-rank tensor completion problem has drawn lots of attention in recent years, most of them are designed based on the traditional decomposition method, such as CP and Tucker. Inspired by the advantages of Tensor Ring decomposition over the traditional decompositions in expressing high-order data and its superiority in missing values estimation, this paper proposes two online subspace learning and imputation methods based on Tensor Ring decomposition. Specifically, we first propose an online Tensor Ring subspace learning and imputation model by formulating an exponentially weighted least squares with Frobenium norm regularization of TR-cores. Then, two commonly used optimization algorithms, i.e. alternating recursive least squares and stochastic-gradient algorithms, are developed to solve the proposed model. Numerical experiments show that the proposed methods are more effective to exploit the time-varying subspace in comparison with the conventional Tensor Ring completion methods. Besides, the proposed methods are demonstrated to be superior to obtain better results than state-of-the-art online methods in streaming data completion under varying missing ratios and noise.
Collapse
|
35
|
Han L, Wang Y, Chen M, Huo J, Dang H. Non-local self-similarity recurrent neural network: dataset and study. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
36
|
Wu C, Wang Z. Robust fuzzy dual-local information clustering with kernel metric and quadratic surface prototype for image segmentation. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03690-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Weakly-supervised object localization with gradient-pyramid feature. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
The Impact of Corporate Capital Structure on Financial Performance Based on Convolutional Neural Network. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5895560. [PMID: 35515502 PMCID: PMC9064525 DOI: 10.1155/2022/5895560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/02/2022] [Indexed: 11/18/2022]
Abstract
Capital structure is an important indicator to measure the source, composition, and proportion of a company's equity and debit capital. It is not only related to the internal operating environment of listed companies but also related to the rights and obligations of shareholders and is closely related to the company's future development direction, decision-making bodies, and changes in governance structure. This study aims to study the impact of corporate capital structure on financial performance based on convolutional neural network. Based on the relevant theories of capital structure, by constructing a convolutional neural network model, taking a listed company as the research object, this study analyzes the company's capital structure, liabilities, and other financial conditions. Finally, it is concluded that short-term liabilities can meet the company's sustainable development and enhance the competitiveness of the industry, thereby increasing the company's operating income. However, a poor capital structure can negatively impact a company's finances. By improving the corporate governance structure of listed companies, strengthening the adjustment of the financing structure of listed companies, and strengthening the management of listed company's operating risks, the company's capital structure can be improved so that the company's financial situation can be sustainable and healthy.
Collapse
|
39
|
Yang S, Linares-Barranco B, Chen B. Heterogeneous Ensemble-Based Spike-Driven Few-Shot Online Learning. Front Neurosci 2022; 16:850932. [PMID: 35615277 PMCID: PMC9124799 DOI: 10.3389/fnins.2022.850932] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022] Open
Abstract
Spiking neural networks (SNNs) are regarded as a promising candidate to deal with the major challenges of current machine learning techniques, including the high energy consumption induced by deep neural networks. However, there is still a great gap between SNNs and the few-shot learning performance of artificial neural networks. Importantly, existing spike-based few-shot learning models do not target robust learning based on spatiotemporal dynamics and superior machine learning theory. In this paper, we propose a novel spike-based framework with the entropy theory, namely, heterogeneous ensemble-based spike-driven few-shot online learning (HESFOL). The proposed HESFOL model uses the entropy theory to establish the gradient-based few-shot learning scheme in a recurrent SNN architecture. We examine the performance of the HESFOL model based on the few-shot classification tasks using spiking patterns and the Omniglot data set, as well as the few-shot motor control task using an end-effector. Experimental results show that the proposed HESFOL scheme can effectively improve the accuracy and robustness of spike-driven few-shot learning performance. More importantly, the proposed HESFOL model emphasizes the application of modern entropy-based machine learning methods in state-of-the-art spike-driven learning algorithms. Therefore, our study provides new perspectives for further integration of advanced entropy theory in machine learning to improve the learning performance of SNNs, which could be of great merit to applied developments with spike-based neuromorphic systems.
Collapse
Affiliation(s)
- Shuangming Yang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
- *Correspondence: Shuangming Yang,
| | | | - Badong Chen
- Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an, China
- Badong Chen,
| |
Collapse
|
40
|
|
41
|
A novel second-order learning algorithm based attention-LSTM model for dynamic chemical process modeling. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Yang S, Gao T, Wang J, Deng B, Azghadi MR, Lei T, Linares-Barranco B. SAM: A Unified Self-Adaptive Multicompartmental Spiking Neuron Model for Learning With Working Memory. Front Neurosci 2022; 16:850945. [PMID: 35527819 PMCID: PMC9074872 DOI: 10.3389/fnins.2022.850945] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Working memory is a fundamental feature of biological brains for perception, cognition, and learning. In addition, learning with working memory, which has been show in conventional artificial intelligence systems through recurrent neural networks, is instrumental to advanced cognitive intelligence. However, it is hard to endow a simple neuron model with working memory, and to understand the biological mechanisms that have resulted in such a powerful ability at the neuronal level. This article presents a novel self-adaptive multicompartment spiking neuron model, referred to as SAM, for spike-based learning with working memory. SAM integrates four major biological principles including sparse coding, dendritic non-linearity, intrinsic self-adaptive dynamics, and spike-driven learning. We first describe SAM's design and explore the impacts of critical parameters on its biological dynamics. We then use SAM to build spiking networks to accomplish several different tasks including supervised learning of the MNIST dataset using sequential spatiotemporal encoding, noisy spike pattern classification, sparse coding during pattern classification, spatiotemporal feature detection, meta-learning with working memory applied to a navigation task and the MNIST classification task, and working memory for spatiotemporal learning. Our experimental results highlight the energy efficiency and robustness of SAM in these wide range of challenging tasks. The effects of SAM model variations on its working memory are also explored, hoping to offer insight into the biological mechanisms underlying working memory in the brain. The SAM model is the first attempt to integrate the capabilities of spike-driven learning and working memory in a unified single neuron with multiple timescale dynamics. The competitive performance of SAM could potentially contribute to the development of efficient adaptive neuromorphic computing systems for various applications from robotics to edge computing.
Collapse
Affiliation(s)
- Shuangming Yang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Tian Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | | | - Tao Lei
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science and Technology, Xi’an, China
| | | |
Collapse
|
43
|
Shi S, Wang Z, Cui G, Wang S, Shang R, Li W, Wei Z, Gu Y. Quantum-inspired complex convolutional neural networks. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
44
|
Li M, Shang X, Liu N, Pan X, Han F. Knowledge Management in Relationship Among Abusive Management, Self-Efficacy, and Corporate Performance Under Artificial Intelligence. JOURNAL OF GLOBAL INFORMATION MANAGEMENT 2022. [DOI: 10.4018/jgim.307067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose is to explore the application potential of HCI (Human-Computer Interaction) technology under AI (Artificial Intelligence) in enterprise performance evaluation and the influence of abusive management and self-efficacy on enterprise performance. Guided by psychological theory, employees from a listed real estate enterprise are selected, and the research themes of abusive management, self-efficacy, and employee performance are assumed. Afterward, the employee job satisfaction and performance evaluation model and system interface based on deep learning BPNN (BackPropagation Neural Network), SVM (Support Vector Machine) regression, and HCI are innovatively proposed. The results show that the HCI interface can be accessed accurately according to the employee's verbal instructions. BPNN model has reached the best performance at the iteration of 70times, and all indexes have reached the expected employee satisfaction.
Collapse
Affiliation(s)
- Moye Li
- Key Laboratory of Island Tourism Resource Data Mining and Monitoring, Ministry of Culture and Tourism, Sanya, China
| | | | - Na Liu
- Liaocheng University, China
| | - Xingchen Pan
- Business School, Gansu University of Political Science and Law, Gansu, China
| | | |
Collapse
|
45
|
The Progress of Business Analytics and Knowledge Management for Enterprise Performance Using Artificial Intelligence and Man-machine Coordination. JOURNAL OF GLOBAL INFORMATION MANAGEMENT 2022. [DOI: 10.4018/jgim.302642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study aims to explore the integration of human-computer interaction (HCI) technology and platform ecosystem in artificial intelligence (AI) environment, thus providing a practical basis for the intelligent development of strategic management of platform ecosystem. With clothing e-commerce as an example, first, the business model of brand clothing is simply analyzed. Then, the fashion knowledge management method is adopted to build the fashion data warehouse. The platform intelligent clothing ecosystem is innovatively put forward through the research of business analytics and management mode of clothing e-commerce industry. The optimized genetic algorithm is used to solve the objective function of the model, and a flexible production scheduling model with multiple constraints and maximum cost-saving is established. Finally, the questionnaire results of voice interaction users are analyzed by HCI customer trust model.
Collapse
|
46
|
Walking motion real-time detection method based on walking stick, IoT, COPOD and improved LightGBM. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
47
|
Channel pruning guided by global channel relation. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
48
|
Wu X, Ji S, Wang J, Guo Y. Speech synthesis with face embeddings. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Chen L, Ren J, Chen P, Mao X, Zhao Q. Limited text speech synthesis with electroglottograph based on Bi-LSTM and modified Tacotron-2. APPL INTELL 2022. [DOI: 10.1007/s10489-021-03075-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractThis paper proposes a framework of applying only the EGG signal for speech synthesis in the limited categories of contents scenario. EGG is a sort of physiological signal which can reflect the trends of the vocal cord movement. Note that EGG’s different acquisition method contrasted with speech signals, we exploit its application in speech synthesis under the following two scenarios. (1) To synthesize speeches under high noise circumstances, where clean speech signals are unavailable. (2) To enable dumb people who retain vocal cord vibration to speak again. Our study consists of two stages, EGG to text and text to speech. The first is a text content recognition model based on Bi-LSTM, which converts each EGG signal sample into the corresponding text with a limited class of contents. This model achieves 91.12% accuracy on the validation set in a 20-class content recognition experiment. Then the second step synthesizes speeches with the corresponding text and the EGG signal. Based on modified Tacotron-2, our model gains the Mel cepstral distortion (MCD) of 5.877 and the mean opinion score (MOS) of 3.87, which is comparable with the state-of-the-art performance and achieves an improvement by 0.42 and a relatively smaller model size than the origin Tacotron-2. Considering to introduce the characteristics of speakers contained in EGG to the final synthesized speech, we put forward a fine-grained fundamental frequency modification method, which adjusts the fundamental frequency according to EGG signals and achieves a lower MCD of 5.781 and a higher MOS of 3.94 than that without modification.
Collapse
|
50
|
Hou Y, Jia S, Lun X, Zhang S, Chen T, Wang F, Lv J. Deep Feature Mining via the Attention-Based Bidirectional Long Short Term Memory Graph Convolutional Neural Network for Human Motor Imagery Recognition. Front Bioeng Biotechnol 2022; 9:706229. [PMID: 35223807 PMCID: PMC8873790 DOI: 10.3389/fbioe.2021.706229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Recognition accuracy and response time are both critically essential ahead of building the practical electroencephalography (EEG)-based brain–computer interface (BCI). However, recent approaches have compromised either the classification accuracy or the responding time. This paper presents a novel deep learning approach designed toward both remarkably accurate and responsive motor imagery (MI) recognition based on scalp EEG. Bidirectional long short-term memory (BiLSTM) with the attention mechanism is employed, and the graph convolutional neural network (GCN) promotes the decoding performance by cooperating with the topological structure of features, which are estimated from the overall data. Particularly, this method is trained and tested on the short EEG recording with only 0.4 s in length, and the result has shown effective and efficient prediction based on individual and groupwise training, with 98.81% and 94.64% accuracy, respectively, which outperformed all the state-of-the-art studies. The introduced deep feature mining approach can precisely recognize human motion intents from raw and almost-instant EEG signals, which paves the road to translate the EEG-based MI recognition to practical BCI systems.
Collapse
Affiliation(s)
- Yimin Hou
- School of Automation Engineering, Northeast Electric Power University, Jilin, China
| | - Shuyue Jia
- School of Computer Science, Northeast Electric Power University, Jilin, China
- *Correspondence: Shuyue Jia,
| | - Xiangmin Lun
- School of Automation Engineering, Northeast Electric Power University, Jilin, China
- College of Mechanical and Electric Engineering, Changchun University of Science and Technology, Changchun, China
| | - Shu Zhang
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Tao Chen
- School of Automation Engineering, Northeast Electric Power University, Jilin, China
| | - Fang Wang
- School of Automation Engineering, Northeast Electric Power University, Jilin, China
| | - Jinglei Lv
- School of Biomedical Engineering and Brain and Mind Center, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|