1
|
Jiang H, Luo X, Yin J, Fu H, Wang F. Orthogonal Subspace Representation for Generative Adversarial Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:4413-4427. [PMID: 38530724 DOI: 10.1109/tnnls.2024.3377436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Disentanglement learning aims to separate explanatory factors of variation so that different attributes of the data can be well characterized and isolated, which promotes efficient inference for downstream tasks. Mainstream disentanglement approaches based on generative adversarial networks (GANs) learn interpretable data representation. However, most typical GAN-based works lack the discussion of the latent subspace, causing insufficient consideration of the variation of independent factors. Although some recent research analyzes the latent space on pretrained GANs for image editing, they do not emphasize learning representation directly from the subspace perspective. Appropriate subspace properties could facilitate corresponding feature representation learning to satisfy the independent variation requirements of the obtained explanatory factors, which is crucial for better disentanglement. In this work, we propose a unified framework for ensuring disentanglement, which fully investigates latent subspace learning (SL) in GAN. The novel GAN-based architecture explores orthogonal subspace representation (OSR) on vanilla GAN, named OSRGAN. To guide a subspace with strong correlation, less redundancy, and robust distinguishability, our OSR includes three stages, self-latent-aware, orthogonal subspace-aware, and structure representation-aware, respectively. First, the self-latent-aware stage promotes the latent subspace strongly correlated with the data space to discover interpretable factors, but with poor independence of variation. Second, the following orthogonal subspace-aware stage adaptively learns some 1-D linear subspace spanned by a set of orthogonal bases in the latent space. There is less redundancy between them, expressing the corresponding independence. Third, the structure representation-aware stage aligns the projection on the orthogonal subspace and the latent variables. Accordingly, feature representation in each linear subspace can be distinguishable, enhancing the independent expression of interpretable factors. In addition, we design an alternating optimization step, achieving a tradeoff training of OSRGAN on different properties. Despite it strictly constrains orthogonality, the loss weight coefficient of distinguishability induced by orthogonality could be adjusted and balanced with correlation constraint. To elucidate, this tradeoff training prevents our OSRGAN from overemphasizing any property and damaging the expressiveness of the feature representation. It takes into account both interpretable factors and their independent variation characteristics. Meanwhile, alternating optimization could keep the cost and efficiency of forward inference unchanged and will not burden the computational complexity. In theory, we clarify the significance of OSR, which brings better independence of factors, along with interpretability as correlation could converge to a high range faster. Moreover, through the convergence behavior analysis, including the objective functions under different constraints and the evaluation curve with iterations, our model demonstrates enhanced stability and definitely converges toward a higher peak for disentanglement. To depict the performance in downstream tasks, we compared the state-of-the-art GAN-based and even VAE-based approaches on different datasets. Our OSRGAN achieves higher disentanglement scores on FactorVAE, SAP, MIG, and VP metrics. All the experimental results illustrate that our novel GAN-based framework has considerable advantages on disentanglement.
Collapse
|
2
|
Wang R, Zhou D, Huang H, Zhou Y. MIT: Mutual Information Topic Model for Diverse Topic Extraction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:2523-2537. [PMID: 38324432 DOI: 10.1109/tnnls.2024.3357698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
To automatically mine structured semantic topics from text, neural topic modeling has arisen and made some progress. However, most existing work focuses on designing a mechanism to enhance topic coherence but sacrificing the diversity of the extracted topics. To address this limitation, we propose the first neural-based topic modeling approach purely based on mutual information maximization, called the mutual information topic (MIT) model, in this article. The proposed MIT significantly improves topic diversity by maximizing the mutual information between word distribution and topic distribution. Meanwhile, MIT also utilizes Dirichlet prior in latent topic space to ensure the quality of mined topics. The experimental results on three publicly benchmark text corpora show that MIT could extract topics with higher coherence values (considering four topic coherence metrics) than competitive approaches and has a significant improvement on topic diversity metric. Besides, our experiments prove that the proposed MIT converges faster and more stable than adversarial-neural topic models.
Collapse
|
3
|
Tur K. Multi-Modal Machine Learning Approach for COVID-19 Detection Using Biomarkers and X-Ray Imaging. Diagnostics (Basel) 2024; 14:2800. [PMID: 39767161 PMCID: PMC11674685 DOI: 10.3390/diagnostics14242800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Accurate and rapid detection of COVID-19 remains critical for clinical management, especially in resource-limited settings. Current diagnostic methods face challenges in terms of speed and reliability, creating a need for complementary AI-based models that integrate diverse data sources. Objectives: This study aimed to develop and evaluate a multi-modal machine learning model that combines clinical biomarkers and chest X-ray images to enhance diagnostic accuracy and provide interpretable insights. Methods: We used a dataset of 250 patients (180 COVID-19 positive and 70 negative cases) collected from clinical settings. Biomarkers such as CRP, ferritin, NLR, and albumin were included alongside chest X-ray images. Random Forest and Gradient Boosting models were used for biomarkers, and ResNet and VGG CNN architectures were applied to imaging data. A late-fusion strategy integrated predictions from these modalities. Stratified k-fold cross-validation ensured robust evaluation while preventing data leakage. Model performance was assessed using AUC-ROC, F1-score, Specificity, Negative Predictive Value (NPV), and Matthews Correlation Coefficient (MCC), with confidence intervals calculated via bootstrap resampling. Results: The Gradient Boosting + VGG fusion model achieved the highest performance, with an AUC-ROC of 0.94, F1-score of 0.93, Specificity of 93%, NPV of 96%, and MCC of 0.91. SHAP and LIME interpretability analyses identified CRP, ferritin, and specific lung regions as key contributors to predictions. Discussion: The proposed multi-modal approach significantly enhances diagnostic accuracy compared to single-modality models. Its interpretability aligns with clinical understanding, supporting its potential for real-world application.
Collapse
Affiliation(s)
- Kagan Tur
- Internal Medicine Department, Faculty of Medicine, Ahi Evran University, Kirsehir 40200, Turkey
| |
Collapse
|
4
|
Hong Q, Lin L, Li Z, Li Q, Yao J, Wu Q, Liu K, Tian J. A Distance Transformation Deep Forest Framework With Hybrid-Feature Fusion for CXR Image Classification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:14633-14644. [PMID: 37285251 DOI: 10.1109/tnnls.2023.3280646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Detecting pneumonia, especially coronavirus disease 2019 (COVID-19), from chest X-ray (CXR) images is one of the most effective ways for disease diagnosis and patient triage. The application of deep neural networks (DNNs) for CXR image classification is limited due to the small sample size of the well-curated data. To tackle this problem, this article proposes a distance transformation-based deep forest framework with hybrid-feature fusion (DTDF-HFF) for accurate CXR image classification. In our proposed method, hybrid features of CXR images are extracted in two ways: hand-crafted feature extraction and multigrained scanning. Different types of features are fed into different classifiers in the same layer of the deep forest (DF), and the prediction vector obtained at each layer is transformed to form distance vector based on a self-adaptive scheme. The distance vectors obtained by different classifiers are fused and concatenated with the original features, then input into the corresponding classifier at the next layer. The cascade grows until DTDF-HFF can no longer gain benefits from the new layer. We compare the proposed method with other methods on the public CXR datasets, and the experimental results show that the proposed method can achieve state-of-the art (SOTA) performance. The code will be made publicly available at https://github.com/hongqq/DTDF-HFF.
Collapse
|
5
|
Huang L, Ruan S, Xing Y, Feng M. A review of uncertainty quantification in medical image analysis: Probabilistic and non-probabilistic methods. Med Image Anal 2024; 97:103223. [PMID: 38861770 DOI: 10.1016/j.media.2024.103223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/16/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
The comprehensive integration of machine learning healthcare models within clinical practice remains suboptimal, notwithstanding the proliferation of high-performing solutions reported in the literature. A predominant factor hindering widespread adoption pertains to an insufficiency of evidence affirming the reliability of the aforementioned models. Recently, uncertainty quantification methods have been proposed as a potential solution to quantify the reliability of machine learning models and thus increase the interpretability and acceptability of the results. In this review, we offer a comprehensive overview of the prevailing methods proposed to quantify the uncertainty inherent in machine learning models developed for various medical image tasks. Contrary to earlier reviews that exclusively focused on probabilistic methods, this review also explores non-probabilistic approaches, thereby furnishing a more holistic survey of research pertaining to uncertainty quantification for machine learning models. Analysis of medical images with the summary and discussion on medical applications and the corresponding uncertainty evaluation protocols are presented, which focus on the specific challenges of uncertainty in medical image analysis. We also highlight some potential future research work at the end. Generally, this review aims to allow researchers from both clinical and technical backgrounds to gain a quick and yet in-depth understanding of the research in uncertainty quantification for medical image analysis machine learning models.
Collapse
Affiliation(s)
- Ling Huang
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Su Ruan
- Quantif, LITIS, University of Rouen Normandy, France.
| | - Yucheng Xing
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Mengling Feng
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Institute of Data Science, National University of Singapore, Singapore
| |
Collapse
|
6
|
Zhou X, Fu Y, Dong S, Li L, Xue S, Chen R, Huang G, Liu J, Shi K. Intelligent ultrafast total-body PET for sedation-free pediatric [ 18F]FDG imaging. Eur J Nucl Med Mol Imaging 2024; 51:2353-2366. [PMID: 38383744 DOI: 10.1007/s00259-024-06649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE This study aims to develop deep learning techniques on total-body PET to bolster the feasibility of sedation-free pediatric PET imaging. METHODS A deformable 3D U-Net was developed based on 245 adult subjects with standard total-body PET imaging for the quality enhancement of simulated rapid imaging. The developed method was first tested on 16 children receiving total-body [18F]FDG PET scans with standard 300-s acquisition time with sedation. Sixteen rapid scans (acquisition time about 3 s, 6 s, 15 s, 30 s, and 75 s) were retrospectively simulated by selecting the reconstruction time window. In the end, the developed methodology was prospectively tested on five children without sedation to prove the routine feasibility. RESULTS The approach significantly improved the subjective image quality and lesion conspicuity in abdominal and pelvic regions of the generated 6-s data. In the first test set, the proposed method enhanced the objective image quality metrics of 6-s data, such as PSNR (from 29.13 to 37.09, p < 0.01) and SSIM (from 0.906 to 0.921, p < 0.01). Furthermore, the errors of mean standardized uptake values (SUVmean) for lesions between 300-s data and 6-s data were reduced from 12.9 to 4.1% (p < 0.01), and the errors of max SUV (SUVmax) were reduced from 17.4 to 6.2% (p < 0.01). In the prospective test, radiologists reached a high degree of consistency on the clinical feasibility of the enhanced PET images. CONCLUSION The proposed method can effectively enhance the image quality of total-body PET scanning with ultrafast acquisition time, leading to meeting clinical diagnostic requirements of lesion detectability and quantification in abdominal and pelvic regions. It has much potential to solve the dilemma of the use of sedation and long acquisition time that influence the health of pediatric patients.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shunjie Dong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lianghua Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Song Xue
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| | - Ruohua Chen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Qiu Y, Liu Y, Li S, Xu J. MiniSeg: An Extremely Minimum Network Based on Lightweight Multiscale Learning for Efficient COVID-19 Segmentation. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:8570-8584. [PMID: 37015641 DOI: 10.1109/tnnls.2022.3230821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The rapid spread of the new pandemic, i.e., coronavirus disease 2019 (COVID-19), has severely threatened global health. Deep-learning-based computer-aided screening, e.g., COVID-19 infected area segmentation from computed tomography (CT) image, has attracted much attention by serving as an adjunct to increase the accuracy of COVID-19 screening and clinical diagnosis. Although lesion segmentation is a hot topic, traditional deep learning methods are usually data-hungry with millions of parameters, easy to overfit under limited available COVID-19 training data. On the other hand, fast training/testing and low computational cost are also necessary for quick deployment and development of COVID-19 screening systems, but traditional methods are usually computationally intensive. To address the above two problems, we propose MiniSeg, a lightweight model for efficient COVID-19 segmentation from CT images. Our efforts start with the design of an attentive hierarchical spatial pyramid (AHSP) module for lightweight, efficient, effective multiscale learning that is essential for image segmentation. Then, we build a two-path (TP) encoder for deep feature extraction, where one path uses AHSP modules for learning multiscale contextual features and the other is a shallow convolutional path for capturing fine details. The two paths interact with each other for learning effective representations. Based on the extracted features, a simple decoder is added for COVID-19 segmentation. For comparing MiniSeg to previous methods, we build a comprehensive COVID-19 segmentation benchmark. Extensive experiments demonstrate that the proposed MiniSeg achieves better accuracy because its only 83k parameters make it less prone to overfitting. Its high efficiency also makes it easy to deploy and develop. The code has been released at https://github.com/yun-liu/MiniSeg.
Collapse
|
8
|
Zhang Y, Chen Y, Cao J, Liu H, Li Z. Dynamical Modeling and Qualitative Analysis of a Delayed Model for CD8 T Cells in Response to Viral Antigens. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7138-7149. [PMID: 36279328 DOI: 10.1109/tnnls.2022.3214076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although the immune effector CD8 T cells play a crucial role in clearance of viruses, the mechanisms underlying the dynamics of how CD8 T cells respond to viral infection remain largely unexplored. Here, we develop a delayed model that incorporates CD8 T cells and infected cells to investigate the functional role of CD8 T cells in persistent virus infection. Bifurcation analysis reveals that the model has four steady states that can finely divide the progressions of viral infection into four states, and endows the model with bistability that has ability to achieve the switch from one state to another. Furthermore, analytical and numerical methods find that the time delay resulting from incubation period of virus can induce a stable low-infection steady state to be oscillatory, coexisting with a stable high-infection steady state in phase space. In particular, a novel mechanism to achieve the switch between two stable steady states, time-delay-based switch, is proposed, where the initial conditions and other parameters of the model remain unchanged. Moreover, our model predicts that, for a certain range of initial antigen load: 1) under a longer incubation period, the lower the initial antigen load, the easier the virus infection will evolve into severe state; while the higher the initial antigen load, the easier it is for the virus infection to be effectively controlled and 2) only when the incubation period is small, the lower the initial antigen load, the easier it is to effectively control the infection progression. Our results are consistent with multiple experimental observations, which may facilitate the understanding of the dynamical and physiological mechanisms of CD8 T cells in response to viral infections.
Collapse
|
9
|
Feng B, Shi J, Huang L, Yang Z, Feng ST, Li J, Chen Q, Xue H, Chen X, Wan C, Hu Q, Cui E, Chen Y, Long W. Robustly federated learning model for identifying high-risk patients with postoperative gastric cancer recurrence. Nat Commun 2024; 15:742. [PMID: 38272913 PMCID: PMC10811238 DOI: 10.1038/s41467-024-44946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
The prediction of patient disease risk via computed tomography (CT) images and artificial intelligence techniques shows great potential. However, training a robust artificial intelligence model typically requires large-scale data support. In practice, the collection of medical data faces obstacles related to privacy protection. Therefore, the present study aims to establish a robust federated learning model to overcome the data island problem and identify high-risk patients with postoperative gastric cancer recurrence in a multicentre, cross-institution setting, thereby enabling robust treatment with significant value. In the present study, we collect data from four independent medical institutions for experimentation. The robust federated learning model algorithm yields area under the receiver operating characteristic curve (AUC) values of 0.710, 0.798, 0.809, and 0.869 across four data centres. Additionally, the effectiveness of the algorithm is evaluated, and both adaptive and common features are identified through analysis.
Collapse
Affiliation(s)
- Bao Feng
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, China
- Laboratory of Intelligent Detection and Information Processing, Guilin University of Aerospace Technology, Guilin, China
| | - Jiangfeng Shi
- Laboratory of Intelligent Detection and Information Processing, Guilin University of Aerospace Technology, Guilin, China
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, China
| | - Liebin Huang
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, China
| | - Zhiqi Yang
- Department of Radiology, Meizhou People's Hospital, Meizhou, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianpeng Li
- Department of Radiology, Dongguan People's Hospital, Dongguan, China
| | - Qinxian Chen
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, China
| | - Huimin Xue
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, China
| | - Xiangguang Chen
- Department of Radiology, Meizhou People's Hospital, Meizhou, China
| | - Cuixia Wan
- Department of Radiology, Meizhou People's Hospital, Meizhou, China
| | - Qinghui Hu
- Laboratory of Intelligent Detection and Information Processing, Guilin University of Aerospace Technology, Guilin, China
| | - Enming Cui
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, China
| | - Yehang Chen
- Laboratory of Intelligent Detection and Information Processing, Guilin University of Aerospace Technology, Guilin, China.
| | - Wansheng Long
- Department of Radiology, Jiangmen Central Hospital, Jiangmen, China.
| |
Collapse
|
10
|
Seoni S, Jahmunah V, Salvi M, Barua PD, Molinari F, Acharya UR. Application of uncertainty quantification to artificial intelligence in healthcare: A review of last decade (2013-2023). Comput Biol Med 2023; 165:107441. [PMID: 37683529 DOI: 10.1016/j.compbiomed.2023.107441] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Uncertainty estimation in healthcare involves quantifying and understanding the inherent uncertainty or variability associated with medical predictions, diagnoses, and treatment outcomes. In this era of Artificial Intelligence (AI) models, uncertainty estimation becomes vital to ensure safe decision-making in the medical field. Therefore, this review focuses on the application of uncertainty techniques to machine and deep learning models in healthcare. A systematic literature review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Our analysis revealed that Bayesian methods were the predominant technique for uncertainty quantification in machine learning models, with Fuzzy systems being the second most used approach. Regarding deep learning models, Bayesian methods emerged as the most prevalent approach, finding application in nearly all aspects of medical imaging. Most of the studies reported in this paper focused on medical images, highlighting the prevalent application of uncertainty quantification techniques using deep learning models compared to machine learning models. Interestingly, we observed a scarcity of studies applying uncertainty quantification to physiological signals. Thus, future research on uncertainty quantification should prioritize investigating the application of these techniques to physiological signals. Overall, our review highlights the significance of integrating uncertainty techniques in healthcare applications of machine learning and deep learning models. This can provide valuable insights and practical solutions to manage uncertainty in real-world medical data, ultimately improving the accuracy and reliability of medical diagnoses and treatment recommendations.
Collapse
Affiliation(s)
- Silvia Seoni
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | | | - Massimo Salvi
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Prabal Datta Barua
- School of Business (Information System), University of Southern Queensland, Toowoomba, QLD, 4350, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Filippo Molinari
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
| |
Collapse
|
11
|
Ghnemat R, Alodibat S, Abu Al-Haija Q. Explainable Artificial Intelligence (XAI) for Deep Learning Based Medical Imaging Classification. J Imaging 2023; 9:177. [PMID: 37754941 PMCID: PMC10532018 DOI: 10.3390/jimaging9090177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Recently, deep learning has gained significant attention as a noteworthy division of artificial intelligence (AI) due to its high accuracy and versatile applications. However, one of the major challenges of AI is the need for more interpretability, commonly referred to as the black-box problem. In this study, we introduce an explainable AI model for medical image classification to enhance the interpretability of the decision-making process. Our approach is based on segmenting the images to provide a better understanding of how the AI model arrives at its results. We evaluated our model on five datasets, including the COVID-19 and Pneumonia Chest X-ray dataset, Chest X-ray (COVID-19 and Pneumonia), COVID-19 Image Dataset (COVID-19, Viral Pneumonia, Normal), and COVID-19 Radiography Database. We achieved testing and validation accuracy of 90.6% on a relatively small dataset of 6432 images. Our proposed model improved accuracy and reduced time complexity, making it more practical for medical diagnosis. Our approach offers a more interpretable and transparent AI model that can enhance the accuracy and efficiency of medical diagnosis.
Collapse
Affiliation(s)
- Rawan Ghnemat
- Department of Computer Science, Princess Sumaya University for Technology, Amman 11941, Jordan
| | - Sawsan Alodibat
- Department of Computer Science, Princess Sumaya University for Technology, Amman 11941, Jordan
| | - Qasem Abu Al-Haija
- Department of Cybersecurity, Princess Sumaya University for Technology, Amman 11941, Jordan
| |
Collapse
|
12
|
Lee MH, Shomanov A, Kudaibergenova M, Viderman D. Deep Learning Methods for Interpretation of Pulmonary CT and X-ray Images in Patients with COVID-19-Related Lung Involvement: A Systematic Review. J Clin Med 2023; 12:jcm12103446. [PMID: 37240552 DOI: 10.3390/jcm12103446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
SARS-CoV-2 is a novel virus that has been affecting the global population by spreading rapidly and causing severe complications, which require prompt and elaborate emergency treatment. Automatic tools to diagnose COVID-19 could potentially be an important and useful aid. Radiologists and clinicians could potentially rely on interpretable AI technologies to address the diagnosis and monitoring of COVID-19 patients. This paper aims to provide a comprehensive analysis of the state-of-the-art deep learning techniques for COVID-19 classification. The previous studies are methodically evaluated, and a summary of the proposed convolutional neural network (CNN)-based classification approaches is presented. The reviewed papers have presented a variety of CNN models and architectures that were developed to provide an accurate and quick automatic tool to diagnose the COVID-19 virus based on presented CT scan or X-ray images. In this systematic review, we focused on the critical components of the deep learning approach, such as network architecture, model complexity, parameter optimization, explainability, and dataset/code availability. The literature search yielded a large number of studies over the past period of the virus spread, and we summarized their past efforts. State-of-the-art CNN architectures, with their strengths and weaknesses, are discussed with respect to diverse technical and clinical evaluation metrics to safely implement current AI studies in medical practice.
Collapse
Affiliation(s)
- Min-Ho Lee
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Adai Shomanov
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Madina Kudaibergenova
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Dmitriy Viderman
- School of Medicine, Nazarbayev University, 5/1 Kerey and Zhanibek Khandar Str., Astana 010000, Kazakhstan
| |
Collapse
|
13
|
Tenali N, Babu GRM. HQDCNet: Hybrid Quantum Dilated Convolution Neural Network for detecting covid-19 in the context of Big Data Analytics. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 83:1-27. [PMID: 37362720 PMCID: PMC10176300 DOI: 10.1007/s11042-023-15515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/12/2023] [Accepted: 04/19/2023] [Indexed: 06/28/2023]
Abstract
Medical care services are changing to address problems with the development of big data frameworks as a result of the widespread use of big data analytics. Covid illness has recently been one of the leading causes of death in people. Since then, related input chest X-ray image for diagnosing COVID illness have been enhanced by diagnostic tools. Big data technological breakthroughs provide a fantastic option for reducing contagious Covid disease. To increase the model's confidence, it is necessary to integrate a large number of training sets, however handling the data may be difficult. With the development of big data technology, a unique method to identify and categorise covid illness is now found in this research. In order to manage incoming big data, a massive volume of chest x-ray images is gathered and analysed using a distributed computing server built on the Hadoop framework. In order to group identical groups in the input x-ray images, which in turn segments the dominating portions of an image, the fuzzy empowered weighted k-means algorithm is then employed. A hybrid quantum dilated convolution neural network is suggested to classify various kinds of covid instances, and a Black Widow-based Moth Flame is also shown to improve the performance of the classifier pattern. The performance analysis of COVID-19 detection makes use of the COVID-19 radiography dataset. The suggested HQDCNet approach has an accuracy of 99.01. The experimental results are evaluated in Python using performance metrics such as accuracy, precision, recall, f-measure, and loss function.
Collapse
Affiliation(s)
- Nagamani Tenali
- Department of CSE, Y.S. Rajasekhar Reddy University College of Engineering & Technology, Acharya Nagarjuna University, Guntur, Nagarjuna Nagar India
| | - Gatram Rama Mohan Babu
- Computer Science and Engineering (AI&ML), RVR & JC College of Engineering, Guntur, Chowdavaram India
| |
Collapse
|
14
|
Wang X, Cheng L, Zhang D, Liu Z, Jiang L. Broad learning solution for rapid diagnosis of COVID-19. Biomed Signal Process Control 2023; 83:104724. [PMID: 36811035 PMCID: PMC9935280 DOI: 10.1016/j.bspc.2023.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
COVID-19 has put all of humanity in a health dilemma as it spreads rapidly. For many infectious diseases, the delay of detection results leads to the spread of infection and an increase in healthcare costs. COVID-19 diagnostic methods rely on a large number of redundant labeled data and time-consuming data training processes to obtain satisfactory results. However, as a new epidemic, obtaining large clinical datasets is still challenging, which will inhibit the training of deep models. And a model that can really rapidly diagnose COVID-19 at all stages of the model has still not been proposed. To address these limitations, we combine feature attention and broad learning to propose a diagnostic system (FA-BLS) for COVID-19 pulmonary infection, which introduces a broad learning structure to address the slow diagnosis speed of existing deep learning methods. In our network, transfer learning is performed with ResNet50 convolutional modules with fixed weights to extract image features, and the attention mechanism is used to enhance feature representation. After that, feature nodes and enhancement nodes are generated by broad learning with random weights to adaptly select features for diagnosis. Finally, three publicly accessible datasets were used to evaluate our optimization model. It was determined that the FA-BLS model had a 26-130 times faster training speed than deep learning with a similar level of accuracy, which can achieve a fast and accurate diagnosis, achieve effective isolation from COVID-19 and the proposed method also opens up a new method for other types of chest CT image recognition problems.
Collapse
Affiliation(s)
- Xiaowei Wang
- School of Physical Science and Technology, Shenyang Normal University, Shenyang, 110034, China
| | - Liying Cheng
- School of Physical Science and Technology, Shenyang Normal University, Shenyang, 110034, China
| | - Dan Zhang
- Navigation College, Dalian Maritime University, Dalian, 116026, China
| | - Zuchen Liu
- School of Physical Science and Technology, Shenyang Normal University, Shenyang, 110034, China
| | - Longtao Jiang
- School of Physical Science and Technology, Shenyang Normal University, Shenyang, 110034, China
| |
Collapse
|
15
|
Li G, Togo R, Ogawa T, Haseyama M. Boosting automatic COVID-19 detection performance with self-supervised learning and batch knowledge ensembling. Comput Biol Med 2023; 158:106877. [PMID: 37019015 PMCID: PMC10063457 DOI: 10.1016/j.compbiomed.2023.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
PROBLEM Detecting COVID-19 from chest X-ray (CXR) images has become one of the fastest and easiest methods for detecting COVID-19. However, the existing methods usually use supervised transfer learning from natural images as a pretraining process. These methods do not consider the unique features of COVID-19 and the similar features between COVID-19 and other pneumonia. AIM In this paper, we want to design a novel high-accuracy COVID-19 detection method that uses CXR images, which can consider the unique features of COVID-19 and the similar features between COVID-19 and other pneumonia. METHODS Our method consists of two phases. One is self-supervised learning-based pertaining; the other is batch knowledge ensembling-based fine-tuning. Self-supervised learning-based pretraining can learn distinguished representations from CXR images without manually annotated labels. On the other hand, batch knowledge ensembling-based fine-tuning can utilize category knowledge of images in a batch according to their visual feature similarities to improve detection performance. Unlike our previous implementation, we introduce batch knowledge ensembling into the fine-tuning phase, reducing the memory used in self-supervised learning and improving COVID-19 detection accuracy. RESULTS On two public COVID-19 CXR datasets, namely, a large dataset and an unbalanced dataset, our method exhibited promising COVID-19 detection performance. Our method maintains high detection accuracy even when annotated CXR training images are reduced significantly (e.g., using only 10% of the original dataset). In addition, our method is insensitive to changes in hyperparameters. CONCLUSION The proposed method outperforms other state-of-the-art COVID-19 detection methods in different settings. Our method can reduce the workloads of healthcare providers and radiologists.
Collapse
Affiliation(s)
- Guang Li
- Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-Ku, Sapporo, 060-0814, Japan.
| | - Ren Togo
- Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-Ku, Sapporo, 060-0814, Japan.
| | - Takahiro Ogawa
- Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-Ku, Sapporo, 060-0814, Japan.
| | - Miki Haseyama
- Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-Ku, Sapporo, 060-0814, Japan.
| |
Collapse
|
16
|
Fu Y, Dong S, Niu M, Xue L, Guo H, Huang Y, Xu Y, Yu T, Shi K, Yang Q, Shi Y, Zhang H, Tian M, Zhuo C. AIGAN: Attention-encoding Integrated Generative Adversarial Network for the reconstruction of low-dose CT and low-dose PET images. Med Image Anal 2023; 86:102787. [PMID: 36933386 DOI: 10.1016/j.media.2023.102787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/05/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
X-ray computed tomography (CT) and positron emission tomography (PET) are two of the most commonly used medical imaging technologies for the evaluation of many diseases. Full-dose imaging for CT and PET ensures the image quality but usually raises concerns about the potential health risks of radiation exposure. The contradiction between reducing the radiation exposure and remaining diagnostic performance can be addressed effectively by reconstructing the low-dose CT (L-CT) and low-dose PET (L-PET) images to the same high-quality ones as full-dose (F-CT and F-PET). In this paper, we propose an Attention-encoding Integrated Generative Adversarial Network (AIGAN) to achieve efficient and universal full-dose reconstruction for L-CT and L-PET images. AIGAN consists of three modules: the cascade generator, the dual-scale discriminator and the multi-scale spatial fusion module (MSFM). A sequence of consecutive L-CT (L-PET) slices is first fed into the cascade generator that integrates with a generation-encoding-generation pipeline. The generator plays the zero-sum game with the dual-scale discriminator for two stages: the coarse and fine stages. In both stages, the generator generates the estimated F-CT (F-PET) images as like the original F-CT (F-PET) images as possible. After the fine stage, the estimated fine full-dose images are then fed into the MSFM, which fully explores the inter- and intra-slice structural information, to output the final generated full-dose images. Experimental results show that the proposed AIGAN achieves the state-of-the-art performances on commonly used metrics and satisfies the reconstruction needs for clinical standards.
Collapse
Affiliation(s)
- Yu Fu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China; Binjiang Institute, Zhejiang University, Hangzhou, China
| | - Shunjie Dong
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
| | - Meng Niu
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Le Xue
- Department of Nuclear Medicine and Medical PET Center The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hanning Guo
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Yanyan Huang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
| | - Yuanfan Xu
- Hangzhou Universal Medical Imaging Diagnostic Center, Hangzhou, China
| | - Tianbai Yu
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, University Hospital Bern, Bern, Switzerland
| | - Qianqian Yang
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
| | - Yiyu Shi
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Hong Zhang
- Binjiang Institute, Zhejiang University, Hangzhou, China; Department of Nuclear Medicine and Medical PET Center The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, China.
| | - Cheng Zhuo
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China; Key Laboratory of Collaborative Sensing and Autonomous Unmanned Systems of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
17
|
HOMDA: High-Order Moment-Based Domain Alignment for unsupervised domain adaptation. Knowl Based Syst 2023. [DOI: 10.1016/j.knosys.2022.110205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Aldhahi W, Sull S. Uncertain-CAM: Uncertainty-Based Ensemble Machine Voting for Improved COVID-19 CXR Classification and Explainability. Diagnostics (Basel) 2023; 13:441. [PMID: 36766546 PMCID: PMC9914375 DOI: 10.3390/diagnostics13030441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has had a significant impact on patients and healthcare systems across the world. Distinguishing non-COVID-19 patients from COVID-19 patients at the lowest possible cost and in the earliest stages of the disease is a major issue. Additionally, the implementation of explainable deep learning decisions is another issue, especially in critical fields such as medicine. The study presents a method to train deep learning models and apply an uncertainty-based ensemble voting policy to achieve 99% accuracy in classifying COVID-19 chest X-rays from normal and pneumonia-related infections. We further present a training scheme that integrates the cyclic cosine annealing approach with cross-validation and uncertainty quantification that is measured using prediction interval coverage probability (PICP) as final ensemble voting weights. We also propose the Uncertain-CAM technique, which improves deep learning explainability and provides a more reliable COVID-19 classification system. We introduce a new image processing technique to measure the explainability based on ground-truth, and we compared it with the widely adopted Grad-CAM method.
Collapse
Affiliation(s)
| | - Sanghoon Sull
- School of Electrical Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
19
|
An efficient lung disease classification from X-ray images using hybrid Mask-RCNN and BiDLSTM. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Liu S, Cai T, Tang X, Zhang Y, Wang C. COVID-19 diagnosis via chest X-ray image classification based on multiscale class residual attention. Comput Biol Med 2022; 149:106065. [PMID: 36081225 PMCID: PMC9433340 DOI: 10.1016/j.compbiomed.2022.106065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/07/2022] [Accepted: 08/27/2022] [Indexed: 12/11/2022]
Abstract
Aiming at detecting COVID-19 effectively, a multiscale class residual attention (MCRA) network is proposed via chest X-ray (CXR) image classification. First, to overcome the data shortage and improve the robustness of our network, a pixel-level image mixing of local regions was introduced to achieve data augmentation and reduce noise. Secondly, multi-scale fusion strategy was adopted to extract global contextual information at different scales and enhance semantic representation. Last but not least, class residual attention was employed to generate spatial attention for each class, which can avoid inter-class interference and enhance related features to further improve the COVID-19 detection. Experimental results show that our network achieves superior diagnostic performance on COVIDx dataset, and its accuracy, PPV, sensitivity, specificity and F1-score are 97.71%, 96.76%, 96.56%, 98.96% and 96.64%, respectively; moreover, the heat maps can endow our deep model with somewhat interpretability.
Collapse
Affiliation(s)
- Shangwang Liu
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China; Engineering Lab of Intelligence Business & Internet of Things, Henan Province, China.
| | - Tongbo Cai
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China; Engineering Lab of Intelligence Business & Internet of Things, Henan Province, China
| | - Xiufang Tang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China; Engineering Lab of Intelligence Business & Internet of Things, Henan Province, China
| | - Yangyang Zhang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China; Engineering Lab of Intelligence Business & Internet of Things, Henan Province, China
| | - Changgeng Wang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, 453007, China; Engineering Lab of Intelligence Business & Internet of Things, Henan Province, China
| |
Collapse
|
21
|
Kumar S, Nagar R, Bhatnagar S, Vaddi R, Gupta SK, Rashid M, Bashir AK, Alkhalifah T. Chest X ray and cough sample based deep learning framework for accurate diagnosis of COVID-19. COMPUTERS & ELECTRICAL ENGINEERING : AN INTERNATIONAL JOURNAL 2022; 103:108391. [PMID: 36119394 PMCID: PMC9472671 DOI: 10.1016/j.compeleceng.2022.108391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 05/27/2023]
Abstract
All witnessed the terrible effects of the COVID-19 pandemic on the health and work lives of the population across the world. It is hard to diagnose all infected people in real time since the conventional medical diagnosis of COVID-19 patients takes a couple of days for accurate diagnosis results. In this paper, a novel learning framework is proposed for the early diagnosis of COVID-19 patients using hybrid deep fusion learning models. The proposed framework performs early classification of patients based on collected samples of chest X-ray images and Coswara cough (sound) samples of possibly infected people. The captured cough samples are pre-processed using speech signal processing techniques and Mel frequency cepstral coefficient features are extracted using deep convolutional neural networks. Finally, the proposed system fuses extracted features to provide 98.70% and 82.7% based on Chest-X ray images and cough (audio) samples for early diagnosis using the weighted sum-rule fusion method.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Computer Science and Engineering, International Institute of Information Technology, Naya Raipur, Raipur, Chhattisgarh, 493661, India
| | - Rishab Nagar
- Department of Computer Science and Engineering, International Institute of Information Technology, Naya Raipur, Raipur, Chhattisgarh, 493661, India
| | - Saumya Bhatnagar
- Department of Computer Science and Engineering, International Institute of Information Technology, Naya Raipur, Raipur, Chhattisgarh, 493661, India
| | - Ramesh Vaddi
- Department of Electronics and Communication Engineering, School of Engineering and Applied Sciences, SRM University, Amaravati, Guntur, Andhra Pradesh, 522240, India
| | - Sachin Kumar Gupta
- School of Electronics and Communication Engineering, Shri Mata Vaishno Devi University, Katra, India
| | - Mamoon Rashid
- Department of Computer Engineering, Faculty of Science and Technology, Vishwakarma University, Pune, India
- Vishwakarma University Research Center of Excellence for Health Informatics, Pune, India
| | - Ali Kashif Bashir
- Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, UK
| | - Tamim Alkhalifah
- Department of computer science, College of Science and Arts in Ar Rass, Qassim University, Saudi Arabia
| |
Collapse
|
22
|
Dong S, Pan Z, Fu Y, Yang Q, Gao Y, Yu T, Shi Y, Zhuo C. DeU-Net 2.0: Enhanced Deformable U-Net for 3D Cardiac Cine MRI Segmentation. Med Image Anal 2022; 78:102389. [DOI: 10.1016/j.media.2022.102389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 11/24/2022]
|
23
|
Gour M, Jain S. Uncertainty-aware convolutional neural network for COVID-19 X-ray images classification. Comput Biol Med 2022; 140:105047. [PMID: 34847386 PMCID: PMC8609674 DOI: 10.1016/j.compbiomed.2021.105047] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
Deep learning (DL) has shown great success in the field of medical image analysis. In the wake of the current pandemic situation of SARS-CoV-2, a few pioneering works based on DL have made significant progress in automated screening of COVID-19 disease from the chest X-ray (CXR) images. But these DL models have no inherent way of expressing uncertainty associated with the model's prediction, which is very important in medical image analysis. Therefore, in this paper, we develop an uncertainty-aware convolutional neural network model, named UA-ConvNet, for the automated detection of COVID-19 disease from CXR images, with an estimation of associated uncertainty in the model's predictions. The proposed approach utilizes the EfficientNet-B3 model and Monte Carlo (MC) dropout, where an EfficientNet-B3 model has been fine-tuned on the CXR images. During inference, MC dropout has been applied for M forward passes to obtain the posterior predictive distribution. After that mean and entropy have been calculated on the obtained predictive distribution to get the mean prediction and model uncertainty. The proposed method is evaluated on the three different datasets of chest X-ray images, namely the COVID19CXr, X-ray image, and Kaggle datasets. The proposed UA-ConvNet model achieves a G-mean of 98.02% (with a Confidence Interval (CI) of 97.99-98.07) and sensitivity of 98.15% for the multi-class classification task on the COVID19CXr dataset. For binary classification, the proposed model achieves a G-mean of 99.16% (with a CI of 98.81-99.19) and a sensitivity of 99.30% on the X-ray Image dataset. Our proposed approach shows its superiority over the existing methods for diagnosing the COVID-19 cases from the CXR images.
Collapse
Affiliation(s)
- Mahesh Gour
- Maulana Azad National Institute of Technology, Bhopal, MP, 462003, India.
| | - Sweta Jain
- Maulana Azad National Institute of Technology, Bhopal, MP, 462003, India
| |
Collapse
|
24
|
Gudigar A, Raghavendra U, Nayak S, Ooi CP, Chan WY, Gangavarapu MR, Dharmik C, Samanth J, Kadri NA, Hasikin K, Barua PD, Chakraborty S, Ciaccio EJ, Acharya UR. Role of Artificial Intelligence in COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:8045. [PMID: 34884045 PMCID: PMC8659534 DOI: 10.3390/s21238045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022]
Abstract
The global pandemic of coronavirus disease (COVID-19) has caused millions of deaths and affected the livelihood of many more people. Early and rapid detection of COVID-19 is a challenging task for the medical community, but it is also crucial in stopping the spread of the SARS-CoV-2 virus. Prior substantiation of artificial intelligence (AI) in various fields of science has encouraged researchers to further address this problem. Various medical imaging modalities including X-ray, computed tomography (CT) and ultrasound (US) using AI techniques have greatly helped to curb the COVID-19 outbreak by assisting with early diagnosis. We carried out a systematic review on state-of-the-art AI techniques applied with X-ray, CT, and US images to detect COVID-19. In this paper, we discuss approaches used by various authors and the significance of these research efforts, the potential challenges, and future trends related to the implementation of an AI system for disease detection during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Sneha Nayak
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore;
| | - Wai Yee Chan
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Mokshagna Rohit Gangavarapu
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chinmay Dharmik
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Jyothi Samanth
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia;
- School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Subrata Chakraborty
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - Edward J. Ciaccio
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - U. Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore;
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|