1
|
Jiao L, Ma M, He P, Geng X, Liu X, Liu F, Ma W, Yang S, Hou B, Tang X. Brain-Inspired Learning, Perception, and Cognition: A Comprehensive Review. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:5921-5941. [PMID: 38809737 DOI: 10.1109/tnnls.2024.3401711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The progress of brain cognition and learning mechanisms has provided new inspiration for the next generation of artificial intelligence (AI) and provided the biological basis for the establishment of new models and methods. Brain science can effectively improve the intelligence of existing models and systems. Compared with other reviews, this article provides a comprehensive review of brain-inspired deep learning algorithms for learning, perception, and cognition from microscopic, mesoscopic, macroscopic, and super-macroscopic perspectives. First, this article introduces the brain cognition mechanism. Then, it summarizes the existing studies on brain-inspired learning and modeling from the perspectives of neural structure, cognitive module, learning mechanism, and behavioral characteristics. Next, this article introduces the potential learning directions of brain-inspired learning from four aspects: perception, cognition, understanding, and decision-making. Finally, the top-ten open problems that brain-inspired learning, perception, and cognition currently face are summarized, and the next generation of AI technology has been prospected. This work intends to provide a quick overview of the research on brain-inspired AI algorithms and to motivate future research by illuminating the latest developments in brain science.
Collapse
|
2
|
Lin W, Yang D, Chen C, Zhou Y, Chen W, Wang Y. Source Causal Connectivity Noninvasively Predicting Surgical Outcomes of Drug-Refractory Epilepsy. CNS Neurosci Ther 2025; 31:e70196. [PMID: 39754318 DOI: 10.1111/cns.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
AIMS Drug-refractory epilepsy (DRE) refers to the failure of controlling seizures with adequate trials of two tolerated and appropriately chosen anti-seizure medications (ASMs). For patients with DRE, surgical intervention becomes the most effective and viable treatment, but its success rate is unsatisfactory at only approximately 50%. Predicting surgical outcomes in advance can provide additional guidance to clinicians. Despite the high accuracy of invasive methods, they inevitably carry the risk of post-operative infection and complications. Herein, to noninvasively predict surgical outcomes of DRE, we propose the "source causal connectivity" framework. METHODS In this framework, sLORETA, an EEG source imaging technique, was first used to inversely reconstruct intracranial neuronal electrical activity. Then, full convergent cross mapping (FCCM), a robust causal measure was introduced to calculate the causal connectivity between remodeled neuronal signals within epileptogenic zones (EZs). After that, statistical tests were performed to find out if there was a significant difference between the successful and failed surgical groups. Finally, a model for surgical outcome prediction was developed by combining causal network features with machine learning. RESULTS A total of 39 seizures with 205 ictal EEG segments were included in this prospective study. Experimental results exhibit that source causal connectivity in α-frequency band (8~13 Hz) gains the most significant differences between the surgical success and failure groups, with a p-value of 5.00e-05 and Cohen's d effect size of 0.68. All machine learning models can achieve an average accuracy of higher than 85%. Among them, the SVM classifier with Gaussian kernel function and Bayesian optimization demonstrates the highest accuracy of 90.73%, with a PPV of 87.91%, an NPV of 92.98%, a sensitivity of 90.91%, a specificity of 90.60%, and an F1-score of 89.39%. CONCLUSION Our results demonstrate that the source causal network of EZ is a reliable biomarker for predicting DRE surgical outcomes. The findings promote noninvasive precision medicine for DRE.
Collapse
Affiliation(s)
- Wentao Lin
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Danni Yang
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Chen Chen
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Yuanfeng Zhou
- Children's Hospital of Fudan University, Shanghai, China
| | - Wei Chen
- School of Biomedical Engineering, University of Sydney, Camperdown, New South Wales, Australia
| | - Yalin Wang
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- Key Laboratory of Special Functional Materials and Structural Design, Ministry of Education, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Greaves MD, Novelli L, Mansour L S, Zalesky A, Razi A. Structurally informed models of directed brain connectivity. Nat Rev Neurosci 2025; 26:23-41. [PMID: 39663407 DOI: 10.1038/s41583-024-00881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 12/13/2024]
Abstract
Understanding how one brain region exerts influence over another in vivo is profoundly constrained by models used to infer or predict directed connectivity. Although such neural interactions rely on the anatomy of the brain, it remains unclear whether, at the macroscale, structural (or anatomical) connectivity provides useful constraints on models of directed connectivity. Here, we review the current state of research on this question, highlighting a key distinction between inference-based effective connectivity and prediction-based directed functional connectivity. We explore the methods via which structural connectivity has been integrated into directed connectivity models: through prior distributions, fixed parameters in state-space models and inputs to structure learning algorithms. Although the evidence suggests that integrating structural connectivity substantially improves directed connectivity models, assessments of reliability and out-of-sample validity are lacking. We conclude this Review with a strategy for future research that addresses current challenges and identifies opportunities for advancing the integration of structural and directed connectivity to ultimately improve understanding of the brain in health and disease.
Collapse
Affiliation(s)
- Matthew D Greaves
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
| | - Leonardo Novelli
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Sina Mansour L
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Zalesky
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Adeel Razi
- School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
- Wellcome Centre for Human Neuroimaging, University College London, London, UK.
- CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Huang F, Huang Y, Guo S, Chang X, Chen Y, Wang M, Wang Y, Ren S. A review of studies on constructing classification models to identify mental illness using brain effective connectivity. Psychiatry Res Neuroimaging 2025; 346:111928. [PMID: 39626592 DOI: 10.1016/j.pscychresns.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Brain effective connectivity (EC) is a functional measurement that reflects the causal effects and topological relationships of neural activities. Recent research has increasingly focused on the classification for mental illnesses and healthy controls using brain EC; however, no comprehensive reviews have synthesized these studies. Therefore, the aim of this review is to thoroughly examine the existing literature on constructing diagnosis model for mental illnesses using brain EC. We first conducted a systematical literature search and thirty-five papers met the inclusion criteria. Subsequently, we summarized the approaches for estimating EC, the classification and validation methods used, the accuracies of models, and the main findings. Finally, we discussed the limitations of current research and the challenges in future research. These summaries and discussion provide references for future research on mental illnesses identification based on brain EC.
Collapse
Affiliation(s)
- Fangfang Huang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China.
| | - Yuan Huang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Siying Guo
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaoyi Chang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Yuqi Chen
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Mingzhu Wang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Yingfang Wang
- Department of Preventive Medicine, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang 471000, China
| | - Shuai Ren
- Luoyang Fifth People's Hospital, Luoyang 471027, China
| |
Collapse
|
5
|
Wang Y, Qiao C, Qu G, Calhoun VD, Stephen JM, Wilson TW, Wang YP. A Deep Dynamic Causal Learning Model to Study Changes in Dynamic Effective Connectivity During Brain Development. IEEE Trans Biomed Eng 2024; 71:3390-3401. [PMID: 38968024 PMCID: PMC11700232 DOI: 10.1109/tbme.2024.3423803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
OBJECTIVE Brain dynamic effective connectivity (dEC), characterizes the information transmission patterns between brain regions that change over time, which provides insight into the biological mechanism underlying brain development. However, most existing methods predominantly capture fixed or temporally invariant EC, leaving dEC largely unexplored. METHODS Herein we propose a deep dynamic causal learning model specifically designed to capture dEC. It includes a dynamic causal learner to detect time-varying causal relationships from spatio-temporal data, and a dynamic causal discriminator to validate these findings by comparing original and reconstructed data. RESULTS Our model outperforms established baselines in the accuracy of identifying dynamic causalities when tested on the simulated data. When applied to the Philadelphia Neurodevelopmental Cohort, the model uncovers distinct patterns in dEC networks across different age groups. Specifically, the evolution process of brain dEC networks in young adults is more stable than in children, and significant differences in information transfer patterns exist between them. CONCLUSION This study highlights the brain's developmental trajectory, where networks transition from undifferentiated to specialized structures with age, in accordance with the improvement of an individual's cognitive and information processing capability. SIGNIFICANCE The proposed model consists of the identification and verification of dynamic causality, utilizing the spatio-temporal fusing information from fMRI. As a result, it can accurately detect dEC and characterize its evolution over age.
Collapse
|
6
|
Chen L, Qiao C, Ren K, Qu G, Calhoun VD, Stephen JM, Wilson TW, Wang YP. Explainable spatio-temporal graph evolution learning with applications to dynamic brain network analysis during development. Neuroimage 2024; 298:120771. [PMID: 39111376 PMCID: PMC11533345 DOI: 10.1016/j.neuroimage.2024.120771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
Modeling dynamic interactions among network components is crucial to uncovering the evolution mechanisms of complex networks. Recently, spatio-temporal graph learning methods have achieved noteworthy results in characterizing the dynamic changes of inter-node relations (INRs). However, challenges remain: The spatial neighborhood of an INR is underexploited, and the spatio-temporal dependencies in INRs' dynamic changes are overlooked, ignoring the influence of historical states and local information. In addition, the model's explainability has been understudied. To address these issues, we propose an explainable spatio-temporal graph evolution learning (ESTGEL) model to model the dynamic evolution of INRs. Specifically, an edge attention module is proposed to utilize the spatial neighborhood of an INR at multi-level, i.e., a hierarchy of nested subgraphs derived from decomposing the initial node-relation graph. Subsequently, a dynamic relation learning module is proposed to capture the spatio-temporal dependencies of INRs. The INRs are then used as adjacent information to improve the node representation, resulting in comprehensive delineation of dynamic evolution of the network. Finally, the approach is validated with real data on brain development study. Experimental results on dynamic brain networks analysis reveal that brain functional networks transition from dispersed to more convergent and modular structures throughout development. Significant changes are observed in the dynamic functional connectivity (dFC) associated with functions including emotional control, decision-making, and language processing.
Collapse
Affiliation(s)
- Longyun Chen
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Chen Qiao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Kai Ren
- Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Gang Qu
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA.
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30303, USA.
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA.
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
7
|
Ulusoy I, Geduk S. Improved brain effective connectivity modelling by dynamic Bayesian networks. J Neurosci Methods 2024; 409:110211. [PMID: 38968975 DOI: 10.1016/j.jneumeth.2024.110211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND If brain effective connectivity network modelling (ECN) could be accurately achieved, early diagnosis of neurodegenerative diseases would be possible. It has been observed in the literature that Dynamic Bayesian Network (DBN) based methods are more successful than others. However, DBNs have not been applied easily and tested much due to computational complexity problems in structure learning. NEW METHOD This study introduces an advanced method for modelling brain ECNs using improved discrete DBN (Improved- dDBN) which addresses the computational challenges previously limiting DBN application, offering solutions that enable accurate and fast structure modelling. RESULTS The practical data and prior sizes needed for the convergence to the globally correct network structure are proved to be much smaller than the theoretical ones using simulated dDBN data. Besides, Hill Climbing is shown to converge to the true structure at a reasonable iteration step size when the appropriate data and prior sizes are used. Finally, importance of data quantization methods are analysed. COMPARISON WITH EXISTING METHODS The Improved-dDBN method performs better and robust, when compared to the existing methods for realistic scenarios such as varying graph complexity, various input conditions, noise cases and non-stationary connections. The data used in these tests is the simulated fMRI BOLD time series proposed in the literature. CONCLUSIONS Improved-dDBN is a good candidate to be used on real datasets to accelerate developments in brain ECN modelling and neuroscience. Appropriate data and prior sizes can be identified based on the approach proposed in this study for global and fast convergence.
Collapse
Affiliation(s)
- Ilkay Ulusoy
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey.
| | - Salih Geduk
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
8
|
Wang Y, Liu M, Zheng W, Wang T, Liu Y, Peng H, Chen W, Hu B. Causal Brain Network Predicts Surgical Outcomes in Patients With Drug-Resistant Epilepsy: A Retrospective Comparative Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:2719-2726. [PMID: 39074024 DOI: 10.1109/tnsre.2024.3433533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Network neuroscience, especially causal brain network, has facilitated drug-resistant epilepsy (DRE) studies, while surgical success rate in patients with DRE is still limited, varying from 30% ∼ 70 %. Predicting surgical outcomes can provide additional guidance to adjust treatment plans in time for poorly predicted curative effects. In this retrospective study, we aim to systematically explore biomarkers for surgical outcomes by causal brain network methods and multicenter datasets. Electrocorticogram (ECoG) recordings from 17 DRE patients with 58 seizures were included. Ictal ECoG within clinically annotated epileptogenic zone (EZ) and non-epileptogenic zone (NEZ) were separately computed using six different algorithms to construct causal brain networks. All the brain network results were divided into two groups, successful and failed surgeries. Statistical results based on the Mann-Whitney-U-test show that: causal connectivity of α -frequency band ( 8 ∼ 13 Hz) in EZ calculated by convergent cross mapping (CCM) gains the most significant differences between the surgical success and failure groups, with a P value of 7.85e-08 and Cohen's d effect size of 0.77. CCM-defined EZ brain network can also distinguish the successful and failed surgeries considering clinical covariates (clinical centers, DRE types) with [Formula: see text]. Based on the brain network features, machine learning models were developed to predict the surgical outcomes. Among them, the SVM classifier with Gaussian kernel function and Bayesian optimization demonstrates the highest average accuracy of 84.48% by 5-fold cross-validation, further indicating that the CCM-defined EZ brain network is a reliable biomarker for predicting DRE surgical outcomes.
Collapse
|
9
|
Zou A, Ji J, Lei M, Liu J, Song Y. Exploring Brain Effective Connectivity Networks Through Spatiotemporal Graph Convolutional Models. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7871-7883. [PMID: 36399590 DOI: 10.1109/tnnls.2022.3221617] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Learning brain effective connectivity networks (ECN) from functional magnetic resonance imaging (fMRI) data has gained much attention in recent years. With the successful applications of deep learning in numerous fields, several brain ECN learning methods based on deep learning have been reported in the literature. However, current methods ignore the deep temporal features of fMRI data and fail to fully employ the spatial topological relationship between brain regions. In this article, we propose a novel method for learning brain ECN based on spatiotemporal graph convolutional models (STGCM), named STGCMEC, in which we first adopt the temporal convolutional network to extract the deep temporal features of fMRI data and utilize the graph convolutional network to update the spatial features of each brain region by aggregating information from neighborhoods, which makes the features of brain regions more discriminative. Then, based on such features of brain regions, we design a joint loss function to guide STGCMEC to learn the brain ECN, which includes a task prediction loss and a graph regularization loss. The experimental results on a simulated dataset and a real Alzheimer's disease neuroimaging initiative (ADNI) dataset show that the proposed STGCMEC is able to better learn brain ECN compared with some state-of-the-art methods.
Collapse
|
10
|
Liu R, Huang ZA, Hu Y, Zhu Z, Wong KC, Tan KC. Attention-Like Multimodality Fusion With Data Augmentation for Diagnosis of Mental Disorders Using MRI. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7627-7641. [PMID: 36374900 DOI: 10.1109/tnnls.2022.3219551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The globally rising prevalence of mental disorders leads to shortfalls in timely diagnosis and therapy to reduce patients' suffering. Facing such an urgent public health problem, professional efforts based on symptom criteria are seriously overstretched. Recently, the successful applications of computer-aided diagnosis approaches have provided timely opportunities to relieve the tension in healthcare services. Particularly, multimodal representation learning gains increasing attention thanks to the high temporal and spatial resolution information extracted from neuroimaging fusion. In this work, we propose an efficient multimodality fusion framework to identify multiple mental disorders based on the combination of functional and structural magnetic resonance imaging. A multioutput conditional generative adversarial network (GAN) is developed to address the scarcity of multimodal data for augmentation. Based on the augmented training data, the multiheaded gating fusion model is proposed for classification by extracting the complementary features across different modalities. The experiments demonstrate that the proposed model can achieve robust accuracies of 75.1 ± 1.5 %, 72.9 ± 1.1 %, and 87.2 ± 1.5 % for autism spectrum disorder (ASD), attention deficit/hyperactivity disorder, and schizophrenia, respectively. In addition, the interpretability of our model is expected to enable the identification of remarkable neuropathology diagnostic biomarkers, leading to well-informed therapeutic decisions.
Collapse
|
11
|
Yang D, Kang MK, Huang G, Eggebrecht AT, Hong KS. Repetitive Transcranial Alternating Current Stimulation to Improve Working Memory: An EEG-fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1257-1266. [PMID: 38498739 DOI: 10.1109/tnsre.2024.3377138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Transcranial electrical stimulation has demonstrated the potential to enhance cognitive functions such as working memory, learning capacity, and attentional allocation. Recently, it was shown that periodic stimulation within a specific duration could augment the human brain's neuroplasticity. This study investigates the effects of repetitive transcranial alternating current stimulation (tACS; 1 mA, 5 Hz, 2 min duration) on cognitive function, functional connectivity, and topographic changes using both electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Fifteen healthy subjects were recruited to measure brain activity in the pre-, during-, and post-stimulation sessions under tACS and sham stimulation conditions. Fourteen trials of working memory tasks and eight repetitions of tACS/sham stimulation with a 1-minute intersession interval were applied to the frontal cortex of the participants. The working memory score, EEG band-wise powers, EEG topography, concentration changes of oxygenated hemoglobin, and functional connectivity (FC) were individually analyzed to quantify the behavioral and neurophysiological effects of tACS. Our results indicate that tACS increases: i) behavioral scores (i.e., 15.08, ) and EEG band-wise powers (i.e., theta and beta bands) compared to the sham stimulation condition, ii) FC of both EEG-fNIRS signals, especially in the large-scale brain network communication and interhemispheric connections, and iii) the hemodynamic response in comparison to the pre-stimulation session and the sham condition. Conclusively, the repetitive theta-band tACS stimulation improves the working memory capacity regarding behavioral and neuroplasticity perspectives. Additionally, the proposed fNIRS biomarkers (mean, slope), EEG band-wise powers, and FC can be used as neuro-feedback indices for closed-loop brain stimulation.
Collapse
|
12
|
Lv H, Liu J, Chen Q, Ji J, Zhai J, Zhang Z, Wang Z, Gong S, Wang Z. Brain Network Evaluation by Functional-Guided Effective Connectivity Reinforcement Learning Method Indicates Therapeutic Effect for Tinnitus. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1132-1141. [PMID: 38437147 DOI: 10.1109/tnsre.2024.3373335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Using functional connectivity (FC) or effective connectivity (EC) alone cannot effectively delineate brain networks based on functional magnetic resonance imaging (fMRI) data, limiting the understanding of the mechanism of tinnitus and its treatment. Investigating brain FC is a foundational step in exploring EC. This study proposed a functionally guided EC (FGEC) method based on reinforcement learning (FGECRL) to enhance the precision of identifying EC between distinct brain regions. An actor-critic framework with an encoder-decoder model was adopted as the actor network. The encoder utilizes a transformer model; the decoder employs a bidirectional long short-term memory network with attention. An FGEC network was constructed for the enrolled participants per fMRI scan, including 65 patients with tinnitus and 28 control participants healthy at the enrollment time. After 6 months of sound therapy for tinnitus and prospective follow-up, fMRI data were acquired again and retrospectively categorized into an effective group (EG) and an ineffective group (IG) according to the treatment effect. Compared with FC and EC, the FGECRL method demonstrated better accuracy in discriminating between different groups, highlighting the advantage of FGECRL in identifying brain network features. For the FGEC network of the EG and IG per state (before and after treatment) and healthy controls, effective therapy is characterized by a similar pattern of FGEC network between patients with tinnitus after treatment and healthy controls. Deactivated information output in the motor network, somatosensory network, and medioventral occipital cortex may biologically indicate effective treatment. The maintenance of decreased EC in the primary auditory cortex may represent a failure of sound therapy, further supporting the Bayesian inference theory for tinnitus perception. The FGEC network can provide direct evidence for the mechanism of sound therapy in patients with tinnitus with distinct outcomes.
Collapse
|
13
|
Ji J, Zhang Z, Han L, Liu J. MetaCAE: Causal autoencoder with meta-knowledge transfer for brain effective connectivity estimation. Comput Biol Med 2024; 170:107940. [PMID: 38232454 DOI: 10.1016/j.compbiomed.2024.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/18/2023] [Accepted: 01/01/2024] [Indexed: 01/19/2024]
Abstract
Using machine learning methods to estimate brain effective connectivity networks from functional magnetic resonance imaging (fMRI) data has gradually become one of the hot subjects in the fields of neuroscience. In particular, the encoder-decoder based methods can effectively extract the connections in fMRI time series, which have achieved promising performance. However, these methods generally use Granger causality model, which may identify false directions due to the non-stationary characteristic of fMRI data. Additionally, fMRI datasets have limited sample sizes, which significantly constrains the development of these methods. In this paper, we propose a novel brain effective connectivity estimation method based on causal autoencoder with meta-knowledge transfer, called MetaCAE. The proposed approach employs a causal autoencoder (CAE) to extract causal dependencies from non-stationary fMRI time series, and leverages meta-knowledge transfer to improve the estimation accuracy on small-sample data. More specifically, MetaCAE first employs a temporal convolutional encoder to extract non-stationary temporal information from fMRI time series. Then it uses a structural equation model-based decoder to decode causal relationships between brain regions. Finally, it utilizes a model-agnostic meta-learning method to learn the meta-knowledge of the shared brain effective connectivity among different subjects, and transfers the meta-knowledge to the CAE to enhance its estimation ability on small-sample fMRI data. Comprehensive experiments on both simulated and real-world data demonstrate the efficacy of MetaCAE in estimating brain effective connectivity.
Collapse
Affiliation(s)
- Junzhong Ji
- Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing Institute of Artificial Intelligence, Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Zuozhen Zhang
- Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing Institute of Artificial Intelligence, Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Lu Han
- Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing Institute of Artificial Intelligence, Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Jinduo Liu
- Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing Institute of Artificial Intelligence, Faculty of Information Technology, Beijing University of Technology, Beijing, China.
| |
Collapse
|
14
|
Tang H, Ma G, Zhang Y, Ye K, Guo L, Liu G, Huang Q, Wang Y, Ajilore O, Leow AD, Thompson PM, Huang H, Zhan L. A comprehensive survey of complex brain network representation. META-RADIOLOGY 2023; 1:100046. [PMID: 39830588 PMCID: PMC11741665 DOI: 10.1016/j.metrad.2023.100046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Recent years have shown great merits in utilizing neuroimaging data to understand brain structural and functional changes, as well as its relationship to different neurodegenerative diseases and other clinical phenotypes. Brain networks, derived from different neuroimaging modalities, have attracted increasing attention due to their potential to gain system-level insights to characterize brain dynamics and abnormalities in neurological conditions. Traditional methods aim to pre-define multiple topological features of brain networks and relate these features to different clinical measures or demographical variables. With the enormous successes in deep learning techniques, graph learning methods have played significant roles in brain network analysis. In this survey, we first provide a brief overview of neuroimaging-derived brain networks. Then, we focus on presenting a comprehensive overview of both traditional methods and state-of-the-art deep-learning methods for brain network mining. Major models, and objectives of these methods are reviewed within this paper. Finally, we discuss several promising research directions in this field.
Collapse
Affiliation(s)
- Haoteng Tang
- Department of Computer Science, College of Engineering and Computer Science, University of Texas Rio Grande Valley, 1201 W University Dr, Edinburg, 78539, TX, USA
| | - Guixiang Ma
- Intel Labs, 2111 NE 25th Ave, Hillsboro, 97124, OR, USA
| | - Yanfu Zhang
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Kai Ye
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Lei Guo
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Guodong Liu
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Qi Huang
- Department of Radiology, Utah Center of Advanced Imaging, University of Utah, 729 Arapeen Drive, Salt Lake City, 84108, UT, USA
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, 699 S Mill Ave., Tempe, 85281, AZ, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois Chicago, 1601 W. Taylor St., Chicago, 60612, IL, USA
| | - Alex D. Leow
- Department of Psychiatry, University of Illinois Chicago, 1601 W. Taylor St., Chicago, 60612, IL, USA
| | - Paul M. Thompson
- Department of Neurology, University of Southern California, 2001 N. Soto St., Los Angeles, 90032, CA, USA
| | - Heng Huang
- Department of Computer Science, University of Maryland, 8125 Paint Branch Dr, College Park, 20742, MD, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| |
Collapse
|
15
|
Dai P, Zhou X, Xiong T, Ou Y, Chen Z, Zou B, Li W, Huang Z. Altered Effective Connectivity Among the Cerebellum and Cerebrum in Patients with Major Depressive Disorder Using Multisite Resting-State fMRI. CEREBELLUM (LONDON, ENGLAND) 2023; 22:781-789. [PMID: 35933493 DOI: 10.1007/s12311-022-01454-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Major depressive disorder (MDD) is a serious and widespread psychiatric disorder. Previous studies mainly focused on cerebrum functional connectivity, and the sample size was relatively small. However, functional connectivity is undirected. And, there is increasing evidence that the cerebellum is also involved in emotion and cognitive processing and makes outstanding contributions to the symptomology and pathology of depression. Therefore, we used a large sample size of resting-state functional magnetic resonance imaging (rs-fMRI) data to investigate the altered effective connectivity (EC) among the cerebellum and other cerebral cortex in patients with MDD. Here, from the perspective of data-driven analysis, we used two different atlases to divide the whole brain into different regions and analyzed the alterations of EC and EC networks in the MDD group compared with healthy controls group (HCs). The results showed that compared with HCs, there were significantly altered EC in the cerebellum-neocortex and cerebellum-basal ganglia circuits in MDD patients, which implied that the cerebellum may be a potential biomarker of depressive disorders. And, the alterations of EC brain networks in MDD patients may provide new insights into the pathophysiological mechanisms of depression.
Collapse
Affiliation(s)
- Peishan Dai
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China.
| | - Xiaoyan Zhou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Tong Xiong
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Yilin Ou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Zailiang Chen
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Beiji Zou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Weihui Li
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhongchao Huang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Chen Y, Zhao W, Yi S, Liu J. The diagnostic performance of machine learning based on resting-state functional magnetic resonance imaging data for major depressive disorders: a systematic review and meta-analysis. Front Neurosci 2023; 17:1174080. [PMID: 37811326 PMCID: PMC10559726 DOI: 10.3389/fnins.2023.1174080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/11/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Machine learning (ML) has been widely used to detect and evaluate major depressive disorder (MDD) using neuroimaging data, i.e., resting-state functional magnetic resonance imaging (rs-fMRI). However, the diagnostic efficiency is unknown. The aim of the study is to conduct an updated meta-analysis to evaluate the diagnostic performance of ML based on rs-fMRI data for MDD. Methods English databases were searched for relevant studies. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) was used to assess the methodological quality of the included studies. A random-effects meta-analytic model was implemented to investigate the diagnostic efficiency, including sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC). Regression meta-analysis and subgroup analysis were performed to investigate the cause of heterogeneity. Results Thirty-one studies were included in this meta-analysis. The pooled sensitivity, specificity, DOR, and AUC with 95% confidence intervals were 0.80 (0.75, 0.83), 0.83 (0.74, 0.82), 14.00 (9, 22.00), and 0.86 (0.83, 0.89), respectively. Substantial heterogeneity was observed among the studies included. The meta-regression showed that the leave-one-out cross-validation (loocv) (sensitivity: p < 0.01, specificity: p < 0.001), graph theory (sensitivity: p < 0.05, specificity: p < 0.01), n > 100 (sensitivity: p < 0.001, specificity: p < 0.001), simens equipment (sensitivity: p < 0.01, specificity: p < 0.001), 3.0T field strength (Sensitivity: p < 0.001, specificity: p = 0.04), and Beck Depression Inventory (BDI) (sensitivity: p = 0.04, specificity: p = 0.06) might be the sources of heterogeneity. Furthermore, the subgroup analysis showed that the sample size (n > 100: sensitivity: 0.71, specificity: 0.72, n < 100: sensitivity: 0.81, specificity: 0.79), the different levels of disease evaluated by the Hamilton Depression Rating Scale (HDRS/HAMD) (mild vs. moderate vs. severe: sensitivity: 0.52 vs. 0.86 vs. 0.89, specificity: 0.62 vs. 0.78 vs. 0.82, respectively), the depression scales in patients with comparable levels of severity. (BDI vs. HDRS/HAMD: sensitivity: 0.86 vs. 0.87, specificity: 0.78 vs. 0.80, respectively), and the features (graph vs. functional connectivity: sensitivity: 0.84 vs. 0.86, specificity: 0.76 vs. 0.78, respectively) selected might be the causes of heterogeneity. Conclusion ML showed high accuracy for the automatic diagnosis of MDD. Future studies are warranted to promote the potential use of these classification algorithms in clinical settings.
Collapse
Affiliation(s)
- Yanjing Chen
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, China
| | - Sijie Yi
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan, China
| |
Collapse
|
17
|
Zhai J, Ji J, Liu J. Learning Causal Biological Networks with Parallel Ant Colony Optimization Algorithm. Bioengineering (Basel) 2023; 10:909. [PMID: 37627794 PMCID: PMC10451563 DOI: 10.3390/bioengineering10080909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
A wealth of causal relationships exists in biological systems, both causal brain networks and causal protein signaling networks are very classical causal biological networks (CBNs). Learning CBNs from biological signal data reliably is a critical problem today. However, most of the existing methods are not excellent enough in terms of accuracy and time performance, and tend to fall into local optima because they do not take full advantage of global information. In this paper, we propose a parallel ant colony optimization algorithm to learn causal biological networks from biological signal data, called PACO. Specifically, PACO first maps the construction of CBNs to ants, then searches for CBNs in parallel by simulating multiple groups of ants foraging, and finally obtains the optimal CBN through pheromone fusion and CBNs fusion between different ant colonies. Extensive experimental results on simulation data sets as well as two real-world data sets, the fMRI signal data set and the Single-cell data set, show that PACO can accurately and efficiently learn CBNs from biological signal data.
Collapse
Affiliation(s)
| | | | - Jinduo Liu
- Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing Institute of Artificial Intelligence, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China (J.J.)
| |
Collapse
|
18
|
Zhang Z, Zhang Z, Ji J, Liu J. Amortization Transformer for Brain Effective Connectivity Estimation from fMRI Data. Brain Sci 2023; 13:995. [PMID: 37508927 PMCID: PMC10376969 DOI: 10.3390/brainsci13070995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Using machine learning methods to estimate brain effective connectivity networks from functional magnetic resonance imaging (fMRI) data has garnered significant attention in the fields of neuroinformatics and bioinformatics. However, existing methods usually require retraining the model for each subject, which ignores the knowledge shared across subjects. In this paper, we propose a novel framework for estimating effective connectivity based on an amortization transformer, named AT-EC. In detail, AT-EC first employs an amortization transformer to model the dynamics of fMRI time series and infer brain effective connectivity across different subjects, which can train an amortized model that leverages the shared knowledge from different subjects. Then, an assisted learning mechanism based on functional connectivity is designed to assist the estimation of the brain effective connectivity network. Experimental results on both simulated and real-world data demonstrate the efficacy of our method.
Collapse
Affiliation(s)
- Zuozhen Zhang
- The Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing Institute of Artificial Intelligence, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Ziqi Zhang
- The Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing Institute of Artificial Intelligence, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Junzhong Ji
- The Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing Institute of Artificial Intelligence, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| | - Jinduo Liu
- The Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, Beijing Institute of Artificial Intelligence, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|