1
|
Assare-Mokwah E, Arunkumar S. Application of human-centered design principles to wearable exoskeletons: a systematic review. Disabil Rehabil Assist Technol 2024:1-22. [PMID: 39444223 DOI: 10.1080/17483107.2024.2415433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/11/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Purpose of the article: As technologies continue to advance, designing wearable exoskeletons that are comfortable, safe, reliable, and engaging for users is an arduous task. The integration of HCD principles in exoskeleton development significantly contributes to ensuring that the product meets the needs and preferences of users. This study systematically reviews the application of human-centred design (HCD) principles in the development of wearable exoskeletons. Methodology: It synthesizes existing literature, identifies key HCD concepts and assesses their impact on exoskeleton usability, comfort, and safety. The findings of the study revealed a moderate application of HCD in many of the studies; however, the concepts were found to play a crucial role in enhancing the usability, safety, and comfort of wearable exoskeleton technology implementation. Challenges revealed in the study include limited stakeholder involvement, a lack of standardized evaluation metrics, non-consideration of ethical, legal, and social issues, and a lack of studies on the potential adverse effects of exoskeleton use. Besides identifying the challenges faced in integrating HCD principles into exoskeleton development, the study also proposed pragmatic approaches to overcome them. Results: The study underscores the significance of incorporating human-centred design principles in the design and development of wearable exoskeletons. This has implications for industry, rehabilitation, health, and agriculture to churn out positive outcomes. The research contributes to the expanding literature on wearable exoskeletons and HCD, offering valuable insights into the advancement of this technology in various domains and suggesting areas for future studies to address identified gaps.
Collapse
Affiliation(s)
| | - S Arunkumar
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
| |
Collapse
|
2
|
Sun P, Shan R, Wang S, Chang H. Finite-time compensation control with dead-zone estimation for a rehabilitative walker considering internal disturbance forces. ISA TRANSACTIONS 2024; 152:256-268. [PMID: 39013690 DOI: 10.1016/j.isatra.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
This study discusses a finite-time compensation tracking control method for a rehabilitative training walker. The dynamic model with input dead zone was constructed to describe the walker, and a finite-time disturbance forces observation method was proposed based on the impact mechanism on tracking performance. This approach is novel in that the disturbance forces were observed in reverse through their effects on tracking performance, thus successfully obtaining the disturbance forces of the walker. To ensure the practical finite-time stability of the system, the nonlinear finite-time compensation tracking controller with stochastic configuration networks (SCN) dead-zone estimation was built for the rehabilitative walker. Simulation results and comparative analyses confirmed that the proposed compensation control method effectively restrains dead zone and internal disturbance forces.
Collapse
Affiliation(s)
- Ping Sun
- School of Artificial Intelligence, Shenyang University of Technology, 110870, PR China.
| | - Rui Shan
- School of Artificial Intelligence, Shenyang University of Technology, 110870, PR China.
| | - Shuoyu Wang
- Department of Intelligent Mechanical Systems Engineering, Kochi University of Technology, 7828502, Japan.
| | - Hongbin Chang
- School of Artificial Intelligence, Shenyang University of Technology, 110870, PR China.
| |
Collapse
|
3
|
Fan Y, Zhu L, Wang H, Song A. Synthesize Personalized Training for Robot-Assisted Upper Limb Rehabilitation With Diversity Enhancement. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:5705-5718. [PMID: 37639418 DOI: 10.1109/tvcg.2023.3308940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
For upper limb rehabilitation, the robot-assisted technique in combination with serious games requires well-specified training plans. For the best quality of the rehabilitation process, customized game levels for each user are desired, while it is labor-intensive to design and adjust game levels for different individuals. We work on generating training content for a desktop end-effector rehabilitation robot and propose a method to automatically generate individualized training plans. By modeling the search of the training motions as finding optimal hand paths and trajectories, we introduce solving the design problem with a multi-objective optimization (MO) solver. We further improve the MO solver to enhance the diversity of the solutions. With the proposed approach, our system is capable of automatically generating various training plans considering the training intensity and dexterity of each joint in the upper limb. In addition, the enhanced diversity avoids repeated training plans, which helps motivate the user in the rehabilitation. We test our method with different requirements on the training plans and validate the solutions.
Collapse
|
4
|
Wang Q, Chen C, Mu X, Wang H, Wang Z, Xu S, Guo W, Wu X, Li W. A Wearable Upper Limb Exoskeleton System and Intelligent Control Strategy. Biomimetics (Basel) 2024; 9:129. [PMID: 38534814 DOI: 10.3390/biomimetics9030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Heavy lifting operations frequently lead to upper limb muscle fatigue and injury. In order to reduce muscle fatigue, auxiliary force for upper limbs can be provided. This paper presents the development and evaluation of a wearable upper limb exoskeleton (ULE) robot system. A flexible cable transmits auxiliary torque and is connected to the upper limb by bypassing the shoulder. Based on the K-nearest neighbors (KNN) algorithm and integrated fuzzy PID control strategy, the ULE identifies the handling posture and provides accurate active auxiliary force automatically. Overall, it has the quality of being light and easy to wear. In unassisted mode, the wearer's upper limbs minimally affect the range of movement. The KNN algorithm uses multi-dimensional motion information collected by the sensor, and the test accuracy is 94.59%. Brachioradialis muscle (BM), triceps brachii (TB), and biceps brachii (BB) electromyogram (EMG) signals were evaluated by 5 kg, 10 kg, and 15 kg weight conditions for five subjects, respectively, during lifting, holding, and squatting. Compared with the ULE without assistance and with assistance, the average peak values of EMG signals of BM, TB, and BB were reduced by 19-30% during the whole handling process, which verified that the developed ULE could provide practical assistance under different load conditions.
Collapse
Affiliation(s)
- Qiang Wang
- Shandong Zhongke Advanced Technology Co., Ltd., Jinan 250100, China
| | - Chunjie Chen
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinxing Mu
- Shandong Zhongke Advanced Technology Co., Ltd., Jinan 250100, China
| | - Haibin Wang
- Shandong Zhongke Advanced Technology Co., Ltd., Jinan 250100, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhuo Wang
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Sheng Xu
- Shandong Zhongke Advanced Technology Co., Ltd., Jinan 250100, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weilun Guo
- Shandong Zhongke Advanced Technology Co., Ltd., Jinan 250100, China
| | - Xinyu Wu
- Shandong Zhongke Advanced Technology Co., Ltd., Jinan 250100, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weimin Li
- Shandong Zhongke Advanced Technology Co., Ltd., Jinan 250100, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
5
|
Dai X, Zhou Z, Wang Z, Ruan L, Wang R, Rong X, Li Y, Wang Q. Reducing Knee Joint Loads During Stance Phase With a Rigid-Soft Hybrid Exoskeleton. IEEE Trans Neural Syst Rehabil Eng 2024; 32:4164-4173. [PMID: 40030323 DOI: 10.1109/tnsre.2024.3498044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
High mechanical loads generated during walking may accelerate the wear of the knee joint. General knee exoskeletons mainly reduce knee joint load by applying pure torque assistance to reduce the force required by knee extensor muscles. This study aims to further reduce the knee joint load during the early and middle stance phases through a gait intervention strategy that combines torque assistance and vertical force assistance. Comprehensive experiments were conducted to verify the gait intervention strategy in reducing the knee joint load. The results demonstrated that the strategy significantly reduced the maximum and mean knee joint force during the early and middle stance phases. Our studies indicated that the strategy may have the potential to reduce the knee joint load from multiple factors, including muscles, ligaments, and the ground reaction force.
Collapse
|
6
|
Mahdian ZS, Wang H, Refai MIM, Durandau G, Sartori M, MacLean MK. Tapping Into Skeletal Muscle Biomechanics for Design and Control of Lower Limb Exoskeletons: A Narrative Review. J Appl Biomech 2023; 39:318-333. [PMID: 37751903 DOI: 10.1123/jab.2023-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
Lower limb exoskeletons and exosuits ("exos") are traditionally designed with a strong focus on mechatronics and actuation, whereas the "human side" is often disregarded or minimally modeled. Muscle biomechanics principles and skeletal muscle response to robot-delivered loads should be incorporated in design/control of exos. In this narrative review, we summarize the advances in literature with respect to the fusion of muscle biomechanics and lower limb exoskeletons. We report methods to measure muscle biomechanics directly and indirectly and summarize the studies that have incorporated muscle measures for improved design and control of intuitive lower limb exos. Finally, we delve into articles that have studied how the human-exo interaction influences muscle biomechanics during locomotion. To support neurorehabilitation and facilitate everyday use of wearable assistive technologies, we believe that future studies should investigate and predict how exoskeleton assistance strategies would structurally remodel skeletal muscle over time. Real-time mapping of the neuromechanical origin and generation of muscle force resulting in joint torques should be combined with musculoskeletal models to address time-varying parameters such as adaptation to exos and fatigue. Development of smarter predictive controllers that steer rather than assist biological components could result in a synchronized human-machine system that optimizes the biological and electromechanical performance of the combined system.
Collapse
Affiliation(s)
- Zahra S Mahdian
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - Huawei Wang
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | | | - Guillaume Durandau
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| | - Massimo Sartori
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - Mhairi K MacLean
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| |
Collapse
|
7
|
Fang S, Vijayan V, Reissman ME, Kinney AL, Reissman T. Effects of Walking Speed and Added Mass on Hip Joint Quasi-Stiffness in Healthy Young and Middle-Aged Adults. SENSORS (BASEL, SWITZERLAND) 2023; 23:4517. [PMID: 37177721 PMCID: PMC10181717 DOI: 10.3390/s23094517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Joint quasi-stiffness has been often used to inform exoskeleton design. Further understanding of hip quasi-stiffness is needed to design hip exoskeletons. Of interest are wearer responses to walking speed changes with added mass of the exoskeleton. This study analyzed hip quasi-stiffness at 3 walking speed levels and 9 added mass distributions among 13 young and 16 middle-aged adults during mid-stance hip extension and late-stance hip flexion. Compared to young adults, middle-aged adults maintained a higher quasi-stiffness with a smaller range. For a faster walking speed, both age groups increased extension and flexion quasi-stiffness. With mass evenly distributed on the pelvis and thighs or biased to the pelvis, both groups maintained or increased extension quasi-stiffness. With mass biased to the thighs, middle-aged adults maintained or decreased extension quasi-stiffness while young adults increased it. Young adults decreased flexion quasi-stiffness with added mass but not in any generalizable pattern with mass amounts or distributions. Conversely, middle-aged adults maintained or decreased flexion quasi-stiffness with even distribution on the pelvis and thighs or biased to the pelvis, while no change occurred if biased to the thighs. In conclusion, these results can guide the design of a hip exoskeleton's size and mass distribution according to the intended user's age.
Collapse
Affiliation(s)
| | | | | | | | - Timothy Reissman
- Department of Mechanical and Aerospace Engineering, University of Dayton, Dayton, OH 45469, USA
| |
Collapse
|
8
|
Estimation of Knee Assistive Moment in a Gait Cycle Using Knee Angle and Knee Angular Velocity through Machine Learning and Artificial Stiffness Control Strategy (MLASCS). ROBOTICS 2023. [DOI: 10.3390/robotics12020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
Nowadays, many people around the world cannot walk perfectly because of their knee problems. A knee-assistive device is one option to support walking for those with low or not enough knee muscle forces. Many research studies have created knee devices with control systems implementing different techniques and sensors. This study proposes an alternative version of the knee device control system without using too many actuators and sensors. It applies the machine learning and artificial stiffness control strategy (MLASCS) that uses one actuator combined with an encoder for estimating the amount of assistive support in a walking gait from the recorded gait data. The study recorded several gait data and analyzed knee moments, and then trained a k-nearest neighbor model using the knee angle and the angular velocity to classify a state in a gait cycle. This control strategy also implements instantaneous artificial stiffness (IAS), a control system that requires only knee angle in each state to determine the amount of supporting moment. After validating the model via simulation, the accuracy of the machine learning model is around 99.9% with the speed of 165 observers/s, and the walking effort is reduced by up to 60% in a single gait cycle.
Collapse
|
9
|
Rodrigues-Carvalho C, Fernández-García M, Pinto-Fernández D, Sanz-Morere C, Barroso FO, Borromeo S, Rodríguez-Sánchez C, Moreno JC, del-Ama AJ. Benchmarking the Effects on Human-Exoskeleton Interaction of Trajectory, Admittance and EMG-Triggered Exoskeleton Movement Control. SENSORS (BASEL, SWITZERLAND) 2023; 23:791. [PMID: 36679587 PMCID: PMC9867281 DOI: 10.3390/s23020791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/12/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Nowadays, robotic technology for gait training is becoming a common tool in rehabilitation hospitals. However, its effectiveness is still controversial. Traditional control strategies do not adequately integrate human intention and interaction and little is known regarding the impact of exoskeleton control strategies on muscle coordination, physical effort, and user acceptance. In this article, we benchmarked three types of exoskeleton control strategies in a sample of seven healthy volunteers: trajectory assistance (TC), compliant assistance (AC), and compliant assistance with EMG-Onset stepping control (OC), which allows the user to decide when to take a step during the walking cycle. This exploratory study was conducted within the EUROBENCH project facility. Experimental procedures and data analysis were conducted following EUROBENCH's protocols. Specifically, exoskeleton kinematics, muscle activation, heart and breathing rates, skin conductance, as well as user-perceived effort were analyzed. Our results show that the OC controller showed robust performance in detecting stepping intention even using a corrupt EMG acquisition channel. The AC and OC controllers resulted in similar kinematic alterations compared to the TC controller. Muscle synergies remained similar to the synergies found in the literature, although some changes in muscle contribution were found, as well as an overall increase in agonist-antagonist co-contraction. The OC condition led to the decreased mean duration of activation of synergies. These differences were not reflected in the overall physiological impact of walking or subjective perception. We conclude that, although the AC and OC walking conditions allowed the users to modulate their walking pattern, the application of these two controllers did not translate into significant changes in the overall physiological cost of walking nor the perceived experience of use. Nonetheless, results suggest that both AC and OC controllers are potentially interesting approaches that can be explored as gait rehabilitation tools. Furthermore, the INTENTION project is, to our knowledge, the first study to benchmark the effects on human-exoskeleton interaction of three different exoskeleton controllers, including a new EMG-based controller designed by us and never tested in previous studies, which has made it possible to provide valuable third-party feedback on the use of the EUROBENCH facility and testbed, enriching the apprenticeship of the project consortium and contributing to the scientific community.
Collapse
Affiliation(s)
- Camila Rodrigues-Carvalho
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
- Systems Engineering and Automation Department, Carlos III University of Madrid, 28903 Madrid, Spain
| | | | - David Pinto-Fernández
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
- CAR-UPM Associated Unit, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Clara Sanz-Morere
- Center for Clinical Neuroscience, Hospital Los Madroños, 28690 Madrid, Spain
| | - Filipe Oliveira Barroso
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| | - Susana Borromeo
- Electronic Technology Department, Rey Juan Carlos University, 28933 Móstoles, Spain
| | | | - Juan C. Moreno
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), 28002 Madrid, Spain
| | - Antonio J. del-Ama
- Electronic Technology Department, Rey Juan Carlos University, 28933 Móstoles, Spain
| |
Collapse
|
10
|
Sánchez-Manchola M, Arciniegas-Mayag L, Múnera M, Bourgain M, Provot T, Cifuentes CA. Effects of stance control via hidden Markov model-based gait phase detection on healthy users of an active hip-knee exoskeleton. Front Bioeng Biotechnol 2023; 11:1021525. [PMID: 37101752 PMCID: PMC10123285 DOI: 10.3389/fbioe.2023.1021525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/14/2023] [Indexed: 04/28/2023] Open
Abstract
Introduction: In the past years, robotic lower-limb exoskeletons have become a powerful tool to help clinicians improve the rehabilitation process of patients who have suffered from neurological disorders, such as stroke, by applying intensive and repetitive training. However, active subject participation is considered to be an important feature to promote neuroplasticity during gait training. To this end, the present study presents the performance assessment of the AGoRA exoskeleton, a stance-controlled wearable device designed to assist overground walking by unilaterally actuating the knee and hip joints. Methods: The exoskeleton's control approach relies on an admittance controller, that varies the system impedance according to the gait phase detected through an adaptive method based on a hidden Markov model. This strategy seeks to comply with the assistance-as-needed rationale, i.e., an assistive device should only intervene when the patient is in need by applying Human-Robot interaction (HRI). As a proof of concept of such a control strategy, a pilot study comparing three experimental conditions (i.e., unassisted, transparent mode, and stance control mode) was carried out to evaluate the exoskeleton's short-term effects on the overground gait pattern of healthy subjects. Gait spatiotemporal parameters and lower-limb kinematics were captured using a 3D-motion analysis system Vicon during the walking trials. Results and Discussion: By having found only significant differences between the actuated conditions and the unassisted condition in terms of gait velocity (ρ = 0.048) and knee flexion (ρ ≤ 0.001), the performance of the AGoRA exoskeleton seems to be comparable to those identified in previous studies found in the literature. This outcome also suggests that future efforts should focus on the improvement of the fastening system in pursuit of kinematic compatibility and enhanced compliance.
Collapse
Affiliation(s)
- Miguel Sánchez-Manchola
- Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito, Bogotá, Colombia
| | - Luis Arciniegas-Mayag
- LabTel, Electrical Engineering Department at Federal University of Espírito Santo, Vitória, Brazil
| | - Marcela Múnera
- Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito, Bogotá, Colombia
- Bristol Robotics Laboratory, University of the West of England, Bristol, United Kingdom
| | - Maxime Bourgain
- EPF Graduate School of Engineering, Cachan, France
- Arts et Métiers Institute of Technology, Institut de Biomécanique Humaine Georges Charpak, Paris, France
| | - Thomas Provot
- EPF Graduate School of Engineering, Cachan, France
- Arts et Métiers Institute of Technology, Institut de Biomécanique Humaine Georges Charpak, Paris, France
| | - Carlos A. Cifuentes
- Bristol Robotics Laboratory, University of the West of England, Bristol, United Kingdom
- School of Engineering, Science and Technology, Universidad Del Rosario, Bogotá, Colombia
- *Correspondence: Carlos A. Cifuentes ,
| |
Collapse
|
11
|
Fang S, Vijayan V, Reissman ME, Kinney AL, Reissman T. How Do Joint Kinematics and Kinetics Change When Walking Overground with Added Mass on the Lower Body? SENSORS (BASEL, SWITZERLAND) 2022; 22:s22239177. [PMID: 36501878 PMCID: PMC9738556 DOI: 10.3390/s22239177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 05/27/2023]
Abstract
Lower-limb exoskeletons, regardless of their control strategies, have been shown to alter a user's gait just by the exoskeleton's own mass and inertia. The characterization of these differences in joint kinematics and kinetics under exoskeleton-like added mass is important for the design of such devices and their control strategies. In this study, 19 young, healthy participants walked overground at self-selected speeds with six added mass conditions and one zero-added-mass condition. The added mass conditions included +2/+4 lb on each shank or thigh or +8/+16 lb on the pelvis. OpenSim-derived lower-limb sagittal-plane kinematics and kinetics were evaluated statistically with both peak analysis and statistical parametric mapping (SPM). The results showed that adding smaller masses (+2/+8 lb) altered some kinematic and kinetic peaks but did not result in many changes across the regions of the gait cycle identified by SPM. In contrast, adding larger masses (+4/+16 lb) showed significant changes within both the peak and SPM analyses. In general, adding larger masses led to kinematic differences at the ankle and knee during early swing, and at the hip throughout the gait cycle, as well as kinetic differences at the ankle during stance. Future exoskeleton designs may implement these characterizations to inform exoskeleton hardware structure and cooperative control strategies.
Collapse
|
12
|
Energy-to-Mass Ratio—A Novel Selection Criterion of Pneumatic Motors Used for the Actuation of Wearable Assistive Devices. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The requirements to be met by a wearable assistive device are compactness, lightweight and energy efficiency. While the literature discusses the construction and performance of such devices, no information is provided as to the criteria to be applied in selecting such an actuator, capable of satisfying the mentioned conditions. Ensuring the high autonomy of a wearable assistive device requires actuators that can store a large quantity of energy in a small as possible volume, for example, actuators with a high energy density. This paper presents a comparative study of the performance of two types of pneumatic actuators: single-acting cylinders and pneumatic muscles, respectively, and offers information that will enable users to select an optimum solution. The quality indicators considered in conducting the comparative study are size, mass, the developed force and the energy-to-mass ratio. A method is proposed to determine the energy developed by the motors over the entire stroke; based on that, the energy-to-mass ratio is subsequently calculated. This indicator is a valuable tool made available to designers of wearable assistive devices. The conclusion yielded by the study asserts that while pneumatic muscles have larger radial and axial dimensions, they present benefits as to the developed forces and the energy-to-mass ratios.
Collapse
|
13
|
Hardware Development and Safety Control Strategy Design for a Mobile Rehabilitation Robot. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of bodyweight unloading force control on a treadmill with therapist manual assistance for gait training imposes constraints on natural walking. It influences the patient’s training effect for a full range of natural walks. This study presents a prototype and a safety controller for a mobile rehabilitation robot (MRR). The prototype integrates an autonomous mobile bodyweight support system (AMBSS) with a lower-limb exoskeleton system (LES) to simultaneously achieve natural over-ground gait training and motion relearning. Human-centered rehabilitation robots must guarantee the safety of patients in the presence of significant tracking errors. It is difficult for traditional stiff controllers to ensure safety and excellent tracking accuracy concurrently, because they cannot explicitly guarantee smooth, safe, and overdamped motions without overshoot. This paper integrated a linear extended state observer (LESO) into proxy-based sliding mode control (ILESO-PSMC) to overcome this problem. The LESO was used to observe the system’s unknown states and total disturbance simultaneously, ensuring that the “proxy” tracks the reference target accurately and avoids the unsafe control of the MRR. Based on the Lyapunov theorem to prove the closed-loop system stability, the proposed safety control strategy has three advantages: (1) it provides an accurate and safe control without worsening tracking performance during regular operation, (2) it guarantees safe recoveries and overdamped properties after abnormal events, and (3) it need not identify the system model and measure unknown system states as well as external disturbance, which is quite difficult for human–robot interaction (HRI) systems. The results demonstrate the feasibility of the proposed ILESO-PSMC for MRR. The experimental comparison also indicates better safety performance for the ILESO-PSMC than for the conventional proportional–integral–derivative (PID) control.
Collapse
|
14
|
Lora-Millan JS, Moreno JC, Rocon E. Coordination Between Partial Robotic Exoskeletons and Human Gait: A Comprehensive Review on Control Strategies. Front Bioeng Biotechnol 2022; 10:842294. [PMID: 35694226 PMCID: PMC9174608 DOI: 10.3389/fbioe.2022.842294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lower-limb robotic exoskeletons have become powerful tools to assist or rehabilitate the gait of subjects with impaired walking, even when they are designed to act only partially over the locomotor system, as in the case of unilateral or single-joint exoskeletons. These partial exoskeletons require a proper method to synchronize their assistive actions and ensure correct inter-joint coordination with the user’s gait. This review analyzes the state of the art of control strategies to coordinate the assistance provided by these partial devices with the actual gait of the wearers. We have analyzed and classified the different approaches independently of the hardware implementation, describing their basis and principles. We have also reviewed the experimental validations of these devices for impaired and unimpaired walking subjects to provide the reader with a clear view of their technology readiness level. Eventually, the current state of the art and necessary future steps in the field are summarized and discussed.
Collapse
Affiliation(s)
- Julio S. Lora-Millan
- Centre for Automation and Robotics, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Madrid, CSIC-UPM, Madrid, Spain
- Electronic Technology Department, Universidad Rey Juan Carlos, Madrid, Spain
| | - Juan C. Moreno
- Neural Rehabilitation Group, Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
| | - E. Rocon
- Centre for Automation and Robotics, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Madrid, CSIC-UPM, Madrid, Spain
- *Correspondence: E. Rocon,
| |
Collapse
|
15
|
Nishizawa K, Tsumugiwa T, Yokogawa R. Gait Rehabilitation and Locomotion Support System Using a Distributed Controlled Robot System. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we proposed a distributed controlled gait rehabilitation and locomotion support system through human-robot cooperative control, and combination of two cane-type walking support robots (left and right) and one wheelchair robot to support the walking and locomotion of a person in need of walking assistance. The proposed system can realize five types of motion support from gait training to daily motion support, using three types of motion support modes with a distributed robot control system comprising up to three robots to support the user’s independence for walking and moving. The cane-type walking support robot moved in response to the manipulation force applied to the robot by the user, and can realize walking/movement support in all directions through the omnidirectional traveling part. In addition, the height of the robot can be adjusted according to the user’s physique, and the motion characteristics can be set according to the user’s walking ability. The wheelchair robot has a seat that can be raised, lowered, and tilted to provide standing assistance for the user and mobility support as an electric wheelchair. In this study, we developed a prototype of the proposed system and demonstrated its feasibility for five types of assistive actions in experiments with healthy subjects.
Collapse
|
16
|
Otalora S, Ballen-Moreno F, Arciniegas-Mayag L, Munera M, A. Cifuentes C. The AGoRA V2 Unilateral Lower-limb Exoskeleton: Mechatronic Integration and Biomechanical Assessment. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3186066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sophia Otalora
- Graduate Program of Electrical Engineering, Federal University of Espirito Santo, Vitoria, Brazil
| | - Felipe Ballen-Moreno
- Robotics & Multibody Mechanics (R&MM) Reasearch Group, Department of Mechanical Engineering, Vrije Universiteit Brussel, Belgium
| | - Luis Arciniegas-Mayag
- Graduate Program of Electrical Engineering, Federal University of Espirito Santo, Vitoria, Brazil
| | - Marcela Munera
- Department of Biomedical Engineering, Colombian School of Engineering Julio Garavito, Bogota, Colombia
| | - Carlos A. Cifuentes
- Bristol Robotics Laboratory, University of the West of England, Bristol, U.K
| |
Collapse
|
17
|
Song S, Nordin AD. Mobile Electroencephalography for Studying Neural Control of Human Locomotion. Front Hum Neurosci 2021; 15:749017. [PMID: 34858154 PMCID: PMC8631362 DOI: 10.3389/fnhum.2021.749017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/05/2021] [Indexed: 01/09/2023] Open
Abstract
Walking or running in real-world environments requires dynamic multisensory processing within the brain. Studying supraspinal neural pathways during human locomotion provides opportunities to better understand complex neural circuity that may become compromised due to aging, neurological disorder, or disease. Knowledge gained from studies examining human electrical brain dynamics during gait can also lay foundations for developing locomotor neurotechnologies for rehabilitation or human performance. Technical barriers have largely prohibited neuroimaging during gait, but the portability and precise temporal resolution of non-invasive electroencephalography (EEG) have expanded human neuromotor research into increasingly dynamic tasks. In this narrative mini-review, we provide a (1) brief introduction and overview of modern neuroimaging technologies and then identify considerations for (2) mobile EEG hardware, (3) and data processing, (4) including technical challenges and possible solutions. Finally, we summarize (5) knowledge gained from human locomotor control studies that have used mobile EEG, and (6) discuss future directions for real-world neuroimaging research.
Collapse
Affiliation(s)
- Seongmi Song
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
| | - Andrew D Nordin
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Neuroscience, College Station, TX, United States
| |
Collapse
|
18
|
SHI PENGSHUAI, TANG LEWEI. DIMENSIONAL SYNTHESIS OF A GAIT REHABILITATION CABLE-SUSPENDED ROBOT ON MINIMUM 2-NORM TENSIONS. J MECH MED BIOL 2021. [DOI: 10.1142/s0219519421500469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new design of gait rehabilitation robot with cable-suspended configuration is proposed. Due to the under-constrained nature, it enables reducing the constraint feeling of patients. Cables are attached to cuffs mounted on the leg. A detailed mechanical design is presented and a kinematics model is developed. Dimensional synthesis is performed in two steps. First, the cable disposition should be determined within a range to maintain cable-suspended configuration using the minimum 2-norm solution of tensions. Second, the optimal cable disposition is achieved with the Root Mean Square of tension solutions. Gait rehabilitation robots with three or four cables are discussed and compared to determine dimensional parameters in terms of the locations of pulleys. A simulation model with ADAMS software is presented and the cable module is utilized to imitate the cable-driven system in real. Tension distribution is obtained from the simulation model, which is employed in comparison with the calculated values. The simulation results demonstrate the effectiveness of the presented method.
Collapse
Affiliation(s)
- PENGSHUAI SHI
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - LEWEI TANG
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
19
|
Stensgaard Stoltze J, Pallari J, Eskandari B, Oliveira AS, Pirscoveanu CI, Rasmussen J, Andersen MS. Development and Functional Testing of An Unloading Concept for Knee Osteoarthritis Patients: A Pilot Study. J Biomech Eng 2021; 144:1114806. [PMID: 34286821 DOI: 10.1115/1.4051847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Indexed: 11/08/2022]
Abstract
This paper presents a knee brace design that applies an extension moment to unload the muscles in stance phase during gait, and thereby the knee, as alternative to conventional valgus braces for knee osteoarthritis patients. The concept was tested on one healthy subject during normal gait with a prototype, which was designed to activate and deactivate in order to apply the extension moment in the stance phase only and hereby avoid any interference during the swing phase. Electromyography measurements and musculoskeletal models were used to evaluate the brace effects on muscle activation and knee compressive forces respectively. Simulations predicted an ideal reduction of up to 36%, whereas experimental tests revealed a reduction of up to 24% with the current prototype. The prototype brace also reduced the knee joint force impulse up to 9% and EMG peak signal of the vasti muscles with up to 19%. Due to these reductions on a healthy subject, this bracing approach seem promising for reducing knee loads during normal gait. However, further clinical experiments on knee osteoarthritis patients are required to evaluate the effect on both pain and disease progression.
Collapse
Affiliation(s)
| | - Jari Pallari
- Aalborg University, Department of Material and Production, Fibigerstraede 16, DK-9220 Aalborg East, Denmark
| | - Behrokh Eskandari
- Newcastle University, School of Engineering, Newcastle upon Tyne NE1 7RU, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Zhu F, Kern M, Fowkes E, Afzal T, Contreras-Vidal JL, Francisco GE, Chang SH. Effects of an exoskeleton-assisted gait training on post-stroke lower-limb muscle coordination. J Neural Eng 2021; 18. [PMID: 33752175 DOI: 10.1088/1741-2552/abf0d5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/22/2021] [Indexed: 11/11/2022]
Abstract
Objective.Powered exoskeletons have been used to help persons with gait impairment regain some walking ability. However, little is known about its impact on neuromuscular coordination in persons with stroke. The objective of this study is to investigate how a powered exoskeleton could affect the neuromuscular coordination of persons with post-stroke hemiparesis.Approach.Eleven able-bodied subjects and ten stroke subjects participated in a single-visit treadmill walking assessment, in which their motion and lower-limb muscle activities were captured. By comparing spatiotemporal parameters, kinematics, and muscle synergy pattern between two groups, we characterized the normal gait pattern and the post-stroke motor deficits. Five eligible stroke subjects received exoskeleton-assisted gait trainings and walking assessments were conducted pre-intervention (Pre) and post-intervention (Post), without (WO) and with (WT) the exoskeleton. We compared their gait performance between (a) Pre and Post to investigate the effect of exoskeleton-assisted gait training and, (b) WO and WT the exoskeleton to investigate the effect of exoskeleton wearing on stroke subjects.Main results.While four distinct motor modules were needed to describe lower-extremity activities during stead-speed walking among able-bodied subjects, three modules were sufficient for the paretic leg from the stroke subjects. Muscle coordination complexity, module composition and activation timing were preserved after the training, indicating the intervention did not significantly change the neuromuscular coordination. In contrast, walking WT the exoskeleton altered the stroke subjects' synergy pattern, especially on the paretic side. The changes were dominated by the activation profile modulation towards the normal pattern observed from the able-bodied group.Significance.This study gave us some critical insight into how a powered exoskeleton affects the stroke subjects' neuromuscular coordination during gait and demonstrated the potential to use muscle synergy as a method to evaluate the effect of the exoskeleton training.This study was registered at ClinicalTrials.gov (identifier: NCT03057652).
Collapse
Affiliation(s)
- Fangshi Zhu
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, TX, United States of America.,Center for Wearable Exoskeletons, NeuroRecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States of America
| | - Marcie Kern
- Center for Wearable Exoskeletons, NeuroRecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States of America
| | - Erin Fowkes
- Center for Wearable Exoskeletons, NeuroRecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States of America
| | - Taimoor Afzal
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, TX, United States of America.,Center for Wearable Exoskeletons, NeuroRecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States of America
| | - Jose-Luis Contreras-Vidal
- Department of Electrical and Computer Engineering, The University of Houston, Houston, TX, United States of America
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, TX, United States of America.,Center for Wearable Exoskeletons, NeuroRecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States of America
| | - Shuo-Hsiu Chang
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center at Houston, Houston, TX, United States of America.,Center for Wearable Exoskeletons, NeuroRecovery Research Center, TIRR Memorial Hermann, Houston, TX, United States of America
| |
Collapse
|
21
|
Lee D, McLain B, Kang I, Young A. Biomechanical Comparison of Assistance Strategies Using a Bilateral Robotic Knee Exoskeleton. IEEE Trans Biomed Eng 2021; 68:2870-2879. [PMID: 34033531 DOI: 10.1109/tbme.2021.3083580] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Despite there being studies that have investigated the effects of human augmentation using a knee exoskeleton, comparing different assistance schemes on a single knee exoskeleton has not been studied. Using a light-weight, low-profile bilateral knee exoskeleton system, this study examined and compared the biomechanical effects of three common assistance strategies (biological torque, impedance, and proportional myoelectric controllers) exhibiting different levels of flexibility for the user to control the assistance. Nine subjects walked on a 15% gradient incline surface at 1.1 m/s in the three powered conditions and with the exoskeleton unpowered. All the assistance strategies significantly reduced the metabolic cost of the users compared to the unpowered condition by 3.0% on average across strategies (p < 0.05), led by the significant reduction in the biological knee kinetic effort and knee extensor muscle activation (p < 0.05). Between assistance strategies, the metabolic cost and biomechanics displayed no statistically significant differences. The metabolic and biomechanical results indicate that powered extension assistance during early stance can improve performance compared to the unpowered condition. However, the user's ability to control the assistance may not be significant for human augmentation when walking on an inclined surface with a knee exoskeleton.
Collapse
|
22
|
Different Prevention and Treatment Strategies for Knee Osteoarthritis (KOA) with Various Lower Limb Exoskeletons – A Comprehensive Review. ROBOTICA 2021. [DOI: 10.1017/s0263574720001216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARY
It was reported that about 10% of people suffer from painful knee arthritis, and a quarter of them were severely disabled. The core activities of daily living were severely limited by knee osteoarthritis (KOA). In order to reduce knee pain and prolong the life of the knee joint, there has been an increasing demand on the development of exoskeletons, for prevention and treatment. The course of KOA was closely related to the biomechanics of knee joint, and the pathogenesis was summarized based on the biomechanics of knee joint. For the prevention and clinical treatment, exoskeletons are classified into three categories: prevention, treatment, and rehabilitation after the operation. Furthermore, the design concepts, actuators, sensors, control strategies, and evaluation criteria were presented. Finally, the shortcomings and limitations were summarized. It is useful for researchers to develop suitable exoskeletons in the future.
Collapse
|
23
|
A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals. Clin Biomech (Bristol, Avon) 2020; 80:105133. [PMID: 32777685 DOI: 10.1016/j.clinbiomech.2020.105133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Overground lower-limb robotic exoskeletons are assistive devices used to facilitate ambulation and gait rehabilitation. Our understanding of how closely they resemble comfortable and slow walking is limited. This information is important to maximise the effects of gait rehabilitation. The aim was to compare the 3D gait parameters of able-bodied individuals walking with and without an exoskeleton at two speeds (self-selected comfortable vs. slow, speed-matched to the exoskeleton) to understand how the user's body moved within the device. METHODS Eight healthy, able-bodied individuals walked along a 12-m walkway with and without the exoskeleton. Three-dimensional whole-body kinematics inside the device were captured. Temporal-spatial parameters and sagittal joint kinematics were determined for normal and exoskeleton walking. One-way repeated measures ANOVAs and statistical parametric mapping were used to compare the three walking conditions (P < .05). FINDINGS The walking speeds of the slow (0.44[0.03] m/s) and exoskeleton (0.41[0.03] m/s) conditions were significantly slower than the comfortable walking speed (1.54[0.07] m/s). However, time in swing was significantly greater (P < .001, d = -3.64) and double support was correspondingly lower (P < .001, d = 3.72) during exoskeleton gait than slow walking, more closely resembling comfortable speed walking. Ankle and knee angles were significantly reduced in the slow and exoskeleton conditions. Angles were also significantly different for the upper body. INTERPRETATION Although the slow condition was speed-matched to exoskeleton gait, the stance:swing ratio of exoskeleton stepping more closely resembled comfortable gait than slow gait. The altered upper body kinematics suggested that overground exoskeletons may provide a training environment that would also benefit balance training.
Collapse
|
24
|
Villa-Parra AC, Lima J, Delisle-Rodriguez D, Vargas-Valencia L, Frizera-Neto A, Bastos T. Assessment of an Assistive Control Approach Applied in an Active Knee Orthosis Plus Walker for Post-Stroke Gait Rehabilitation. SENSORS 2020; 20:s20092452. [PMID: 32357405 PMCID: PMC7249659 DOI: 10.3390/s20092452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 01/09/2023]
Abstract
The goal of this study is the assessment of an assistive control approach applied to an active knee orthosis plus a walker for gait rehabilitation. The study evaluates post-stroke patients and healthy subjects (control group) in terms of kinematics, kinetics, and muscle activity. Muscle and gait information of interest were acquired from their lower limbs and trunk, and a comparison was conducted between patients and control group. Signals from plantar pressure, gait phase, and knee angle and torque were acquired during gait, which allowed us to verify that the stance control strategy proposed here was efficient at improving the patients’ gaits (comparing their results to the control group), without the necessity of imposing a fixed knee trajectory. An innovative evaluation of trunk muscles related to the maintenance of dynamic postural equilibrium during gait assisted by our active knee orthosis plus walker was also conducted through inertial sensors. An increase in gait cycle (stance phase) was also observed when comparing the results of this study to our previous work. Regarding the kinematics, the maximum knee torque was lower for patients when compared to the control group, which implies that our orthosis did not demand from the patients a knee torque greater than that for healthy subjects. Through surface electromyography (sEMG) analysis, a significant reduction in trunk muscle activation and fatigability, before and during the use of our orthosis by patients, was also observed. This suggest that our orthosis, together with the assistive control approach proposed here, is promising and could be considered to complement post-stroke patient gait rehabilitation.
Collapse
Affiliation(s)
- Ana Cecilia Villa-Parra
- Biomedical Engineering Research Group—GIIB, Universidad Politécnica Salesiana, Cuenca 010105, Ecuador
- Correspondence: ; Tel.: +593-98-441-2586
| | - Jessica Lima
- Postgraduate Program in Biotechnology, Federal University of Espirito Santo (UFES), Vitoria 29047-105, Brazil
| | - Denis Delisle-Rodriguez
- Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo (UFES), Vitoria 29075-910, Brazil
| | - Laura Vargas-Valencia
- Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo (UFES), Vitoria 29075-910, Brazil
| | - Anselmo Frizera-Neto
- Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo (UFES), Vitoria 29075-910, Brazil
| | - Teodiano Bastos
- Postgraduate Program in Biotechnology, Federal University of Espirito Santo (UFES), Vitoria 29047-105, Brazil
- Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo (UFES), Vitoria 29075-910, Brazil
| |
Collapse
|
25
|
An Adaptive Sliding Mode Variable Admittance Control Method for Lower Limb Rehabilitation Exoskeleton Robot. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As passive rehabilitation training with fixed trajectory ignores the active participation of patients, in order to increase the active participation of patients and improve the effect of rehabilitation training, this paper proposes an innovative adaptive sliding mode variable admittance (ASMVA) controller for the Lower Limb Rehabilitation Exoskeleton Robot. The ASMVA controller consists of an outer loop with variable admittance controller and an inner loop with an adaptive sliding mode controller. It estimates the wearer’s active muscle strength and movement intention by judging the deviation between the actual and standard interaction force of the wearer’s leg and the exoskeleton, thereby adaptively changing admittance controller parameters to alter training intensity. Three healthy volunteers engaged in further experimental studies, including trajectory tracking experiments with no admittance, fixed admittance, and variable admittance adjustment. The experimental results show that the proposed ASMVA control scheme has high control accuracy. Besides, the ASMVA can not only increase training intensity according to the active muscle strength of the patient during positive movement intention (so as to increase active participation of the patient), but also increase the amount of trajectory adjustment during negative movement intention to ensure the safety of the patient.
Collapse
|
26
|
Zhang L, Liu G, Han B, Wang Z, Yan Y, Ma J, Wei P. Knee Joint Biomechanics in Physiological Conditions and How Pathologies Can Affect It: A Systematic Review. Appl Bionics Biomech 2020; 2020:7451683. [PMID: 32322301 PMCID: PMC7160724 DOI: 10.1155/2020/7451683] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/01/2020] [Indexed: 01/17/2023] Open
Abstract
The knee joint, as the main lower limb motor joint, is the most vulnerable and susceptible joint. The knee injuries considerably impact the normal living ability and mental health of patients. Understanding the biomechanics of a normal and diseased knee joint is in urgent need for designing knee assistive devices and optimizing a rehabilitation exercise program. In this paper, we systematically searched electronic databases (from 2000 to November 2019) including ScienceDirect, Web of Science, PubMed, Google Scholar, and IEEE/IET Electronic Library for potentially relevant articles. After duplicates were removed and inclusion criteria applied to the titles, abstracts, and full text, 138 articles remained for review. The selected articles were divided into two groups to be analyzed. Firstly, the real movement of a normal knee joint and the normal knee biomechanics of four kinds of daily motions in the sagittal and coronal planes, which include normal walking, running, stair climbing, and sit-to-stand, were discussed and analyzed. Secondly, an overview of the current knowledge on the movement biomechanical effects of common knee musculoskeletal disorders and knee neurological disorders were provided. Finally, a discussion of the existing problems in the current studies and some recommendation for future research were presented. In general, this review reveals that there is no clear assessment about the biomechanics of normal and diseased knee joints at the current state of the art. The biomechanics properties could be significantly affected by knee musculoskeletal or neurological disorders. Deeper understanding of the biomechanics of the normal and diseased knee joint will still be an urgent need in the future.
Collapse
Affiliation(s)
- Li Zhang
- Shaanxi Engineering Laboratory for Transmissions and Controls, Northwestern Polytechnical University, Xi'an 710072, China
| | - Geng Liu
- Shaanxi Engineering Laboratory for Transmissions and Controls, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bing Han
- Shaanxi Engineering Laboratory for Transmissions and Controls, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhe Wang
- Shaanxi Engineering Laboratory for Transmissions and Controls, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yuzhou Yan
- Shaanxi Engineering Laboratory for Transmissions and Controls, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jianbing Ma
- Hong-Hui hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, China
| | - Pingping Wei
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
27
|
Lee D, Kwak EC, McLain BJ, Kang I, Young AJ. Effects of Assistance During Early Stance Phase Using a Robotic Knee Orthosis on Energetics, Muscle Activity, and Joint Mechanics During Incline and Decline Walking. IEEE Trans Neural Syst Rehabil Eng 2020; 28:914-923. [PMID: 32054583 DOI: 10.1109/tnsre.2020.2972323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The knee joint performs a significant amount of positive or negative mechanical work during gradient walking, and targeted assistance during periods of high mechanical work could yield strong human augmentation benefits. This paper explores the biomechanical effects of providing knee extension assistance during the early stance phase of the gait cycle using a powered unilateral knee exoskeleton during gradient walking on able-bodied subjects. Twelve subjects walked on 15% gradient incline and decline surfaces with the exoskeleton providing knee extension assistance during the early stance phase of the gait cycle. For both incline and decline walking, the exoskeleton assistance reduced the muscle activation of the knee extensors on the assisted leg ( ). However, only approximately half the individuals responded to exoskeleton assistance positively by reducing their metabolic cost of walking for both incline and decline tasks. The results indicate that, unlike the individuals who did respond, the individuals who did not respond to the assistance may have penalized their metabolic cost by their biomechanical compensatory behaviors from the unassisted leg.
Collapse
|
28
|
Jamwal PK, Hussain S, Ghayesh MH. Robotic orthoses for gait rehabilitation: An overview of mechanical design and control strategies. Proc Inst Mech Eng H 2020; 234:444-457. [PMID: 31916511 DOI: 10.1177/0954411919898293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The application of robotic devices in providing physiotherapies to post-stroke patients and people suffering from incomplete spinal cord injuries is rapidly expanding. It is crucial to provide valid rehabilitation for people who are experiencing abnormality in their gait performance; therefore, design and development of newer robotic devices for the purpose of facilitating patients' recovery is being actively researched. In order to advance the traditional gait treatment among patients, exoskeletons and orthoses were introduced over the last two decades. This article presents a thorough review of existing robotic gait rehabilitation devices. The latest advancements in the mechanical design, types of control and actuation are also covered. The study comprehends discussions on robotic rehabilitation devices developed both for the training on treadmill and over-ground training. The assist-as-needed strategy for the gait training is particularly emphasized while reviewing various control strategies applied to these robotic devices. This study further reviews experimental investigations and clinical assessments of different control strategies and mechanism designs of robotic gait rehabilitation devices using experimental and clinical trials.
Collapse
Affiliation(s)
- Prashant K Jamwal
- Department of Electrical and Computer Engineering, Nazarbayev University, Astana, Kazakhstan
| | - Shahid Hussain
- Human-Centred Technology Research Centre, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Mergen H Ghayesh
- School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
29
|
Design and Experimental Evaluation of Wearable Lower Extremity Exoskeleton with Gait Self-adaptivity. ROBOTICA 2019. [DOI: 10.1017/s0263574719000663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryIn this paper, we present a passive lower extremity exoskeleton with a simple structure and a light weight. The exoskeleton does not require any external energy source and can achieve energy transfer only by human body’s own gravity. The exoskeleton is self-adaptive to human gait to achieve basic matching therewith. During walking, pulling forces are generated through Bowden cables by pressing plantar power output devices by feet, and the forces are transmitted to the exoskeleton through a crank-slider mechanism to enable the exoskeleton to provide torques for the ankle and knee joints as required by the human body during the stance phase and the swing phase. Our self-developed gait detection system is used to perform experiments on kinematics, dynamics and metabolic cost during walking of the human body wearing the exoskeleton in different states. The experimental results show that the exoskeleton has the greatest influence on motion of the ankle joint and has the least influence on hip joint. With the increase in elastic coefficient of the spring, the torques generated at the joints by the exoskeleton increase. When walking with wearing k3EF exoskeleton at a speed of 0.5 m/s, it can save the most metabolic cost, reaching 13.63%.
Collapse
|
30
|
Zeng Y, Yang J, Peng C, Yin Y. Evolving Gaussian Process Autoregression Based Learning of Human Motion Intent Using Improved Energy Kernel Method of EMG. IEEE Trans Biomed Eng 2019; 66:2556-2565. [PMID: 30629487 DOI: 10.1109/tbme.2019.2892084] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Continuous human motion intent learning may be modeled using a Gaussian process (GP) autoregression based evolving system to cope with the unspecified and time-varying motion patterns. Electromyography (EMG) signals are the primary input. GP is used as a mathematical foundation to model human kinematics by adopting the nonlinear autoregressive with exogenous inputs (NARX) framework, and an evolving system is applied to learn the irregular and unspecified dynamic features. The statistical nature of the GP offers superior flexibility for learning human kinematics and is capable of giving credibility to motion intent prediction, which also enables risk-based control. As an important neuromuscular signal, EMG is processed with a novel method, the energy kernel method, to extract the activation level of muscle and feature out muscular force and motion intent. Without losing robustness, the high signal-to-noise ratio or the linearity level with muscular force, huge improvement has been made in computational efficiency to meet the requirements of real-time applications. Experimental works concerning the validity and application of this method are also presented.
Collapse
|
31
|
The Effects on Muscle Activity and Discomfort of Varying Load Carriage With and Without an Augmentation Exoskeleton. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Load carriage is a key risk factor for Muscular Skeletal Disorders (MSDs). As one way to decrease such injuries, some exoskeletons have been developed for regular load carriage. We examined the ergonomic potential of an augmentation exoskeleton. Nine subjects completed eight trials of carrying tasks, using four loading levels (0, 15, 30, and 45 kg) and two carrying conditions (with and without the exoskeleton). Electromyography (EMG) and the extended NASA-TLX rating scales were investigated and analyzed by linear mixed modeling and two-way ANOVA methods. Noraxon MR3.8, SPSS19.0, and MATLAB R2014b software were adapted. The results show that most of the muscle mean activities increased significantly (p < 0.05) with exoskeleton assistance. However, the interactive effects illustrate a decreasing trend with increase of load level. The mean discomfort rating scale values were generally higher, but subjects generally preferred using the exoskeleton in heavier loading tasks. The exoskeleton can effectively augment the performance of humans in heavy load carriage. The main reasons for higher muscle activity are from inflexible structures and inharmonious human–robot interactions. In order to decrease the MSD risks and increase comfort, optimal human–robot control strategies and adaptable kinematic design should be improved.
Collapse
|
32
|
Li J, Thakor N, Bezerianos A. Unilateral Exoskeleton Imposes Significantly Different Hemispherical Effect in Parietooccipital Region, but Not in Other Regions. Sci Rep 2018; 8:13470. [PMID: 30194397 PMCID: PMC6128944 DOI: 10.1038/s41598-018-31828-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/28/2018] [Indexed: 11/10/2022] Open
Abstract
In modern society, increasing people suffering from locomotor disabilities need an assistive exoskeleton to help them improve or restore ambulation. When walking is assisted by an exoskeleton, brain activities are altered as the closed-loop between brain and lower limbs is affected by the exoskeleton. Intuitively, a unilateral exoskeleton imposes differential effect on brain hemispheres (i.e., hemispherical effect) according to contralateral control mechanism. However, it is unclear whether hemispherical effect appears in whole hemisphere or particular region. To this end, we explored hemispherical effect on different brain regions using EEG data collected from 30 healthy participants during overground walking. The results showed that hemispherical effect was significantly different between regions when a unilateral exoskeleton was employed for walking assistance and no significance was observed for walking without the exoskeleton. Post-hoc t-test analysis revealed that hemispherical effect in the parietooccipital region significantly differed from other regions. In the parietooccipital region, a greater hemispherical effect was observed in beta band for exoskeleton-assisted walking compared to walking without exoskeleton, which was also found in the source analysis. These findings deepen the understanding of hemispherical effect of unilateral exoskeleton on brain and could aid the development of more efficient and suitable exoskeleton for walking assistance.
Collapse
Affiliation(s)
- Junhua Li
- Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore.
- Laboratory for Brain-bionic Intelligence and Computational Neuroscience, Wuyi University, Jiangmen, 529020, China.
- Centre for Multidisciplinary Convergence Computing (CMCC), School of Computer Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Nitish Thakor
- Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Anastasios Bezerianos
- Singapore Institute for Neurotechnology (SINAPSE), Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| |
Collapse
|
33
|
Jin S, Guo S, Kazunobu H, Xiong X, Yamamoto M. Influence of a Soft Robotic Suit on Metabolic Cost in Long-Distance Level and Inclined Walking. Appl Bionics Biomech 2018; 2018:9573951. [PMID: 30073035 PMCID: PMC6057418 DOI: 10.1155/2018/9573951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/17/2018] [Accepted: 05/10/2018] [Indexed: 11/18/2022] Open
Abstract
Metabolic cost during walking is positively linked to exercise intensity. For a walking assistive device, one of the major aims should be the maximization of wearers' metabolic benefits for different walking situations. Toward this goal, this paper experimentally evaluates the influence of an authors' soft robotic suit, which has been developed to assist hip flexion for energy-efficient walking of elderly persons in daily life activities, on metabolic cost reduction in the long-distance level and inclined walking. Experiment results show that, for a 79-year-old healthy male subject, the robotic suit significantly reduced metabolic cost in the condition of the robotic suit worn and powered on compared with the condition of worn but powered off.
Collapse
Affiliation(s)
- Shanhai Jin
- School of Engineering, Yanbian University, Yanji 133002, China
| | - Shijie Guo
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Hashimoto Kazunobu
- Ningbo Institute of Intelligent Manufacturing Industry, Ningbo 315400, China
| | - Xiaogang Xiong
- School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China
| | - Motoji Yamamoto
- Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
34
|
Grazi L, Crea S, Parri A, Molino Lova R, Micera S, Vitiello N. Gastrocnemius Myoelectric Control of a Robotic Hip Exoskeleton Can Reduce the User's Lower-Limb Muscle Activities at Push Off. Front Neurosci 2018; 12:71. [PMID: 29491830 PMCID: PMC5817084 DOI: 10.3389/fnins.2018.00071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/29/2018] [Indexed: 11/27/2022] Open
Abstract
We present a novel assistive control strategy for a robotic hip exoskeleton for assisting hip flexion/extension, based on a proportional Electromyography (EMG) strategy. The novelty of the proposed controller relies on the use of the Gastrocnemius Medialis (GM) EMG signal instead of a hip flexor muscle, to control the hip flexion torque. This strategy has two main advantages: first, avoiding the placement of the EMG electrodes at the human-robot interface can reduce discomfort issues for the user and motion artifacts of the recorded signals; second, using a powerful signal for control, such as the GM, could improve the reliability of the control system. The control strategy has been tested on eight healthy subjects, walking with the robotic hip exoskeleton on the treadmill. We evaluated the controller performance and the effect of the assistance on muscle activities. The tuning of the assistance timing in the controller was subject dependent and varied across subjects. Two muscles could benefit more from the assistive strategy, namely the Rectus Femoris (directly assisted) and the Tibialis Anterior (indirectly assisted). A significant correlation was found between the timing of the delivered assistance (i.e., synchronism with the biological hip torque), and reduction of the hip flexors muscular activity during walking; instead, no significant correlations were found for peak torque and peak power. Results suggest that the timing of the assistance is the most significant parameter influencing the effectiveness of the control strategy. The findings of this work could be important for future studies aimed at developing assistive strategies for walking assistance exoskeletons.
Collapse
Affiliation(s)
- Lorenzo Grazi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Andrea Parri
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Silvestro Micera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translation Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Don Carlo Gnocchi, Firenze, Italy
| |
Collapse
|
35
|
Li Z, Ma W, Yin Z, Guo H. Tracking control of time-varying knee exoskeleton disturbed by interaction torque. ISA TRANSACTIONS 2017; 71:458-466. [PMID: 28823408 DOI: 10.1016/j.isatra.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/30/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Knee exoskeletons have been increasingly applied as assistive devices to help lower-extremity impaired people to make their knee joints move through providing external movement compensation. Tracking control of knee exoskeletons guided by human intentions often encounters time-varying (time-dependent) issues and the disturbance interaction torque, which may dramatically put an influence up on their dynamic behaviors. Inertial and viscous parameters of knee exoskeletons can be estimated to be time-varying due to unexpected mechanical vibrations and contact interactions. Moreover, the interaction torque produced from knee joint of wearers has an evident disturbance effect on regular motions of knee exoskeleton. All of these points can increase difficultly of accurate control of knee exoskeletons to follow desired joint angle trajectories. This paper proposes a novel control strategy for controlling knee exoskeleton with time-varying inertial and viscous coefficients disturbed by interaction torque. Such designed controller is able to make the tracking error of joint angle of knee exoskeletons exponentially converge to zero. Meanwhile, the proposed approach is robust to guarantee the tracking error bounded when the interaction torque exists. Illustrative simulation and experiment results are presented to show efficiency of the proposed controller. Additionally, comparisons with gradient dynamic (GD) approach and other methods are also presented to demonstrate efficiency and superiority of the proposed control strategy for tracking joint angle of knee exoskeleton.
Collapse
Affiliation(s)
- Zhan Li
- School of Automation Engineering, Center for Robotics, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China.
| | - Wenhao Ma
- School of Automation Engineering, Center for Robotics, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Ziguang Yin
- School of Automation Engineering, Center for Robotics, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| | - Hongliang Guo
- School of Automation Engineering, Center for Robotics, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China
| |
Collapse
|
36
|
Li J, Chen D, Fan Y. An Open-Structure Treadmill Gait Trainer: From Research to Application. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:9053630. [PMID: 29065662 PMCID: PMC5494776 DOI: 10.1155/2017/9053630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/26/2017] [Indexed: 11/17/2022]
Abstract
Lower limb rehabilitation robots are designed to enhance gait function in individuals with motor impairments. Although numerous rehabilitation robots have been developed, only few of these robots have been used in practical health care, particularly in China. The objective of this study is to construct a lower limb rehabilitation robot and bridge the gap between research and application. Open structure to facilitate practical application was created for the whole robot. Three typical movement patterns of a single leg were adopted in designing the exoskeletons, and force models for patient training were established and analyzed under three different conditions, respectively, and then a control system and security strategy were introduced. After establishing the robot, a preliminary experiment on the actual use of a prototype by patients was conducted to validate the functionality of the robot. The experiment showed that different patients and stages displayed different performances, and results on the trend variations across patients and across stages confirmed the validity of the robot and suggested that the design may lead to a system that could be successful in the treatment of patients with walking disorders in China. Furthermore, this study could provide a reference for a similar application design.
Collapse
Affiliation(s)
- Jian Li
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age and Disability and Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs and Engineering Research Center for Rehabilitation Aids of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
- Robotic Institute, Beihang University, Beijing 100191, China
| | - Diansheng Chen
- Robotic Institute, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Beijing Key Laboratory of Rehabilitation Technical Aids for Old-Age and Disability and Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs and Engineering Research Center for Rehabilitation Aids of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing 100176, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
37
|
Jin S, Iwamoto N, Hashimoto K, Yamamoto M. Experimental Evaluation of Energy Efficiency for a Soft Wearable Robotic Suit. IEEE Trans Neural Syst Rehabil Eng 2016; 25:1192-1201. [PMID: 28113402 DOI: 10.1109/tnsre.2016.2613886] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper presents a new soft wearable robotic suit for energy-efficient walking in daily activities for elderly persons. The presented robotic suit provides a small yet effective assistive force for hip flexion through winding belts that include elastic elements. In addition, it does not restrict the range of movement in the lower limbs. Moreover, its structure is simple and lightweight, and thus wearers can easily take the device on and off by themselves. Experimental results on nine elderly subjects (age = 74.23.7 years) show that the robotic suit worn and powered on (PON) significantly reduced energy expenditure by an average of 5.9 % compared with the condition of worn but powered off (POFF). Furthermore, compared with the POFF condition, there was a significant improvement in gait characteristics in the PON condition for all subjects.
Collapse
|
38
|
Lerner ZF, Damiano DL, Park HS, Gravunder AJ, Bulea TC. A Robotic Exoskeleton for Treatment of Crouch Gait in Children With Cerebral Palsy: Design and Initial Application. IEEE Trans Neural Syst Rehabil Eng 2016; 25:650-659. [PMID: 27479974 DOI: 10.1109/tnsre.2016.2595501] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Crouch gait, a pathological pattern of walking characterized by excessive knee flexion, is one of the most common gait disorders observed in children with cerebral palsy (CP). Effective treatment of crouch during childhood is critical to maintain mobility into adulthood, yet current interventions do not adequately alleviate crouch in most individuals. Powered exoskeletons provide an untapped opportunity for intervention. The multiple contributors to crouch, including spasticity, contracture, muscle weakness, and poor motor control make design and control of such devices challenging in this population. To our knowledge, no evidence exists regarding the feasibility or efficacy of utilizing motorized assistance to alleviate knee flexion in crouch gait. Here, we present the design of and first results from a powered exoskeleton for extension assistance as a treatment for crouch gait in children with CP. Our exoskeleton, based on the architecture of a knee-ankle-foot orthosis, is lightweight (3.2 kg) and modular. On board sensors enable knee extension assistance to be provided during distinct phases of the gait cycle. We tested our device on one six-year-old male participant with spastic diplegia from CP. Our results show that the powered exoskeleton improved knee extension during stance by 18.1° while total knee range of motion improved 21.0°. Importantly, we observed no significant decrease in knee extensor muscle activity, indicating the user did not rely solely on the exoskeleton to extend the limb. These results establish the initial feasibility of robotic exoskeletons for treatment of crouch and provide impetus for continued investigation of these devices with the aim of deployment for long term gait training in this population.
Collapse
|
39
|
Chen X, Zeng Y, Yin Y. Improving the Transparency of an Exoskeleton Knee Joint Based on the Understanding of Motor Intent Using Energy Kernel Method of EMG. IEEE Trans Neural Syst Rehabil Eng 2016; 25:577-588. [PMID: 27333607 DOI: 10.1109/tnsre.2016.2582321] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Transparent control is still highly challenging for robotic exoskeletons, especially when a simple strategy is expected for a large-impedance device. To improve the transparency for late-phase rehabilitation when "patient-in-charge" mode is necessary, this paper aims at adaptive identification of human motor intent, and proposed an iterative prediction-compensation motion control scheme for an exoskeleton knee joint. Based on the analysis of human-machine interactive mechanism (HMIM) and the semiphenomenological biomechanical model of muscle, an online adaptive predicting controller is designed using a focused time-delay neural network (FTDNN) with the inputs of electromyography (EMG), position and interactive force, where the activation level of muscle is estimated from EMG using a novel energy kernel method. The compensating controller is designed using the normative force-position control paradigm. Initial experiments on the human-machine integrated knee system validated the effectiveness and ease of use of the proposed control scheme.
Collapse
|
40
|
Ma Y, Xie S, Zhang Y. A patient-specific muscle force estimation model for the potential use of human-inspired swing-assist rehabilitation robots. Adv Robot 2016. [DOI: 10.1080/01691864.2016.1175382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Song WK. Trends in rehabilitation robots and their translational research in National Rehabilitation Center, Korea. Biomed Eng Lett 2016. [DOI: 10.1007/s13534-016-0211-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
|
43
|
Knaepen K, Mierau A, Swinnen E, Fernandez Tellez H, Michielsen M, Kerckhofs E, Lefeber D, Meeusen R. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking? PLoS One 2015; 10:e0140626. [PMID: 26485148 PMCID: PMC4617721 DOI: 10.1371/journal.pone.0140626] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.
Collapse
Affiliation(s)
- Kristel Knaepen
- Human Physiology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andreas Mierau
- Institute of Movement and Neurosciences, German Sport University, Cologne, Germany
| | - Eva Swinnen
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Rehabilitation Research, Vrije Universiteit Brussel, Brussels, Belgium
| | - Helio Fernandez Tellez
- Human Physiology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marc Michielsen
- Jessa Hospital, Rehabilitation Center Sint-Ursula, Herk-de-Stad, Belgium
| | - Eric Kerckhofs
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Rehabilitation Research, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dirk Lefeber
- Robotics and Multibody Mechanics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Romain Meeusen
- Human Physiology Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Queensland, Australia
| |
Collapse
|