1
|
Wang-Nöth L, Heiler P, Huang H, Lichtenstern D, Reichenbach A, Flacke L, Maisch L, Mayer H. How much data is enough? Optimization of data collection for artifact detection in EEG recordings. J Neural Eng 2025; 22:026026. [PMID: 40064096 DOI: 10.1088/1741-2552/adbebe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Objective.Electroencephalography (EEG) is a widely used neuroimaging technique known for its cost-effectiveness and user-friendliness. However, the presence of various artifacts leads to a poor signal-to-noise ratio, limiting the precision of analyses and applications. The proposed work focuses on the electromyography (EMG) artifacts, which are among the most challenging biological artifacts. The currently reported EMG artifact cleaning performance largely depends on the data used for validation, and in the case of machine learning approaches, also on the data used for training. The data are typically gathered either by recruiting subjects to perform specific EMG artifact tasks or by integrating existing datasets. Prevailing approaches, however, tend to rely on intuitive, concept-oriented data collection with minimal justification for the selection of artifacts and their quantities. Given the substantial costs associated with biological data collection and the pressing need for effective data utilization, we propose an optimization procedure for data-oriented data collection design using deep learning-based artifact detection.Approach.We apply a binary classification differentiating between artifact epochs (time intervals containing EMG artifacts) and non-artifact epochs (time intervals containing no EMG artifact) using three different neural architectures. Our aim is to minimize data collection efforts while preserving the cleaning efficiency.Main results.We were able to reduce the number of EMG artifact tasks from twelve to three and decrease repetitions of isometric contraction tasks from ten to three or sometimes even just one.Significance.Our work addresses the need for effective data utilization in biological data collection, offering a systematic and dynamic quantitative approach. By providing clear justifications for the choices of artifacts and their quantity, we aim to guide future studies toward more effective and economical data collection in EEG and EMG research.
Collapse
Affiliation(s)
- Lu Wang-Nöth
- brainboost GmbH, Augsburgerstraße 4, 80337 Munich, Germany
- Institute for Applied Computer Science, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany
| | - Philipp Heiler
- brainboost GmbH, Augsburgerstraße 4, 80337 Munich, Germany
| | - Hai Huang
- Institute for Applied Computer Science, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany
| | | | - Alexandra Reichenbach
- Center for Machine Learning, Heilbronn University, Max-Planck-Str. 39, 74081 Heilbronn, Germany
| | - Luis Flacke
- brainboost GmbH, Augsburgerstraße 4, 80337 Munich, Germany
| | - Linus Maisch
- brainboost GmbH, Augsburgerstraße 4, 80337 Munich, Germany
| | - Helmut Mayer
- Institute for Applied Computer Science, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, 85579 Neubiberg, Germany
| |
Collapse
|
2
|
Gao J, Qian M, Wang Z, Li Y, Luo N, Xie S, Shi W, Li P, Chen J, Chen Y, Wang H, Liu W, Li Z, Yang Y, Guo H, Wan P, Lv L, Lu L, Yan J, Song Y, Wang H, Zhang H, Wu H, Ning Y, Du Y, Cheng Y, Xu J, Xu X, Zhang D, Jiang T. Exploring Schizophrenia Classification Through Multimodal MRI and Deep Graph Neural Networks: Unveiling Brain Region-Specific Weight Discrepancies and Their Association With Cell-Type Specific Transcriptomic Features. Schizophr Bull 2024; 51:217-235. [PMID: 38754993 PMCID: PMC11661952 DOI: 10.1093/schbul/sbae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia (SZ) is a prevalent mental disorder that imposes significant health burdens. Diagnostic accuracy remains challenging due to clinical subjectivity. To address this issue, we explore magnetic resonance imaging (MRI) as a tool to enhance SZ diagnosis and provide objective references and biomarkers. Using deep learning with graph convolution, we represent MRI data as graphs, aligning with brain structure, and improving feature extraction, and classification. Integration of multiple modalities is expected to enhance classification. STUDY DESIGN Our study enrolled 683 SZ patients and 606 healthy controls from 7 hospitals, collecting structural MRI and functional MRI data. Both data types were represented as graphs, processed by 2 graph attention networks, and fused for classification. Grad-CAM with graph convolution ensured interpretability, and partial least squares analyzed gene expression in brain regions. STUDY RESULTS Our method excelled in the classification task, achieving 83.32% accuracy, 83.41% sensitivity, and 83.20% specificity in 10-fold cross-validation, surpassing traditional methods. And our multimodal approach outperformed unimodal methods. Grad-CAM identified potential brain biomarkers consistent with gene analysis and prior research. CONCLUSIONS Our study demonstrates the effectiveness of deep learning with graph attention networks, surpassing previous SZ diagnostic methods. Multimodal MRI's superiority over unimodal MRI confirms our initial hypothesis. Identifying potential brain biomarkers alongside gene biomarkers holds promise for advancing objective SZ diagnosis and research in SZ.
Collapse
Affiliation(s)
- Jingjing Gao
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Maomin Qian
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanling Li
- School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, China
| | - Na Luo
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Sangma Xie
- Institute of Biomedical Engineering and Instrumentation, School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Weiyang Shi
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Peng Li
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Wenming Liu
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhigang Li
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Hua Guo
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Ping Wan
- Zhumadian Psychiatric Hospital, Zhumadian, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Lin Lu
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jun Yan
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yuqing Song
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Huawang Wu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yuhui Du
- School of Computer and Information Technology, Shanxi University, Taiyuan, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dai Zhang
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health, and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Tianzai Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou, China
| |
Collapse
|
3
|
Zhu C, Tan Y, Yang S, Miao J, Zhu J, Huang H, Yao D, Luo C. Temporal Dynamic Synchronous Functional Brain Network for Schizophrenia Classification and Lateralization Analysis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:4307-4318. [PMID: 38917293 DOI: 10.1109/tmi.2024.3419041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Available evidence suggests that dynamic functional connectivity can capture time-varying abnormalities in brain activity in resting-state cerebral functional magnetic resonance imaging (rs-fMRI) data and has a natural advantage in uncovering mechanisms of abnormal brain activity in schizophrenia (SZ) patients. Hence, an advanced dynamic brain network analysis model called the temporal brain category graph convolutional network (Temporal-BCGCN) was employed. Firstly, a unique dynamic brain network analysis module, DSF-BrainNet, was designed to construct dynamic synchronization features. Subsequently, a revolutionary graph convolution method, TemporalConv, was proposed based on the synchronous temporal properties of features. Finally, the first modular test tool for abnormal hemispherical lateralization in deep learning based on rs-fMRI data, named CategoryPool, was proposed. This study was validated on COBRE and UCLA datasets and achieved 83.62% and 89.71% average accuracies, respectively, outperforming the baseline model and other state-of-the-art methods. The ablation results also demonstrate the advantages of TemporalConv over the traditional edge feature graph convolution approach and the improvement of CategoryPool over the classical graph pooling approach. Interestingly, this study showed that the lower-order perceptual system and higher-order network regions in the left hemisphere are more severely dysfunctional than in the right hemisphere in SZ, reaffirmings the importance of the left medial superior frontal gyrus in SZ. Our code was available at: https://github.com/swfen/Temporal-BCGCN.
Collapse
|
4
|
Saha A, Park S, Geem ZW, Singh PK. Schizophrenia Detection and Classification: A Systematic Review of the Last Decade. Diagnostics (Basel) 2024; 14:2698. [PMID: 39682605 DOI: 10.3390/diagnostics14232698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Artificial Intelligence (AI) in healthcare employs advanced algorithms to analyze complex and large-scale datasets, mimicking aspects of human cognition. By automating decision-making processes based on predefined thresholds, AI enhances the accuracy and reliability of healthcare data analysis, reducing the need for human intervention. Schizophrenia (SZ), a chronic mental health disorder affecting millions globally, is characterized by symptoms such as auditory hallucinations, paranoia, and disruptions in thought, behavior, and perception. The SZ symptoms can significantly impair daily functioning, underscoring the need for advanced diagnostic tools. METHODS This systematic review has been conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 guidelines and examines peer-reviewed studies from the last decade (2015-2024) on AI applications in SZ detection as well as classification. The review protocol has been registered in the International Prospective Register of Systematic Reviews (PROSPERO) under registration number: CRD42024612364. Research has been sourced from multiple databases and screened using predefined inclusion criteria. The review evaluates the use of both Machine Learning (ML) and Deep Learning (DL) methods across multiple modalities, including Electroencephalography (EEG), Structural Magnetic Resonance Imaging (sMRI), and Functional Magnetic Resonance Imaging (fMRI). The key aspects reviewed include datasets, preprocessing techniques, and AI models. RESULTS The review identifies significant advancements in AI methods for SZ diagnosis, particularly in the efficacy of ML and DL models for feature extraction, classification, and multi-modal data integration. It highlights state-of-the-art AI techniques and synthesizes insights into their potential to improve diagnostic outcomes. Additionally, the analysis underscores common challenges, including dataset limitations, variability in preprocessing approaches, and the need for more interpretable models. CONCLUSIONS This study provides a comprehensive evaluation of AI-based methods in SZ prognosis, emphasizing the strengths and limitations of current approaches. By identifying unresolved gaps, it offers valuable directions for future research in the application of AI for SZ detection and diagnosis.
Collapse
Affiliation(s)
- Arghyasree Saha
- Department of Information Technology, Jadavpur University, Jadavpur University Second Campus, Plot No. 8, Salt Lake Bypass, LB Block, Sector III, Salt Lake City, Kolkata-700106, West Bengal, India
| | - Seungmin Park
- Department of Software, Dongseo University, Busan 47011, Republic of Korea
| | - Zong Woo Geem
- College of IT Convergence, Gachon University, Seongnam 13120, Republic of Korea
| | - Pawan Kumar Singh
- Department of Information Technology, Jadavpur University, Jadavpur University Second Campus, Plot No. 8, Salt Lake Bypass, LB Block, Sector III, Salt Lake City, Kolkata-700106, West Bengal, India
| |
Collapse
|
5
|
Shang S, Shi Y, Zhang Y, Liu M, Zhang H, Wang P, Zhuang L. Artificial intelligence for brain disease diagnosis using electroencephalogram signals. J Zhejiang Univ Sci B 2024; 25:914-940. [PMID: 39420525 PMCID: PMC11494159 DOI: 10.1631/jzus.b2400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024]
Abstract
Brain signals refer to electrical signals or metabolic changes that occur as a consequence of brain cell activity. Among the various non-invasive measurement methods, electroencephalogram (EEG) stands out as a widely employed technique, providing valuable insights into brain patterns. The deviations observed in EEG reading serve as indicators of abnormal brain activity, which is associated with neurological diseases. Brain‒computer interface (BCI) systems enable the direct extraction and transmission of information from the human brain, facilitating interaction with external devices. Notably, the emergence of artificial intelligence (AI) has had a profound impact on the enhancement of precision and accuracy in BCI technology, thereby broadening the scope of research in this field. AI techniques, encompassing machine learning (ML) and deep learning (DL) models, have demonstrated remarkable success in classifying and predicting various brain diseases. This comprehensive review investigates the application of AI in EEG-based brain disease diagnosis, highlighting advancements in AI algorithms.
Collapse
Affiliation(s)
- Shunuo Shang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- The MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China
| | - Yingqian Shi
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yajie Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mengxue Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong Zhang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
- The MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310027, China.
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
6
|
Sharma CM, Chariar VM. Diagnosis of mental disorders using machine learning: Literature review and bibliometric mapping from 2012 to 2023. Heliyon 2024; 10:e32548. [PMID: 38975193 PMCID: PMC11225745 DOI: 10.1016/j.heliyon.2024.e32548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Background Mental disorders (MDs) are becoming a leading burden in non-communicable diseases (NCDs). As per the World Health Organization's 2022 assessment report, there was a steep increase of 25 % in MDs during the COVID-19 pandemic. Early diagnosis of MDs can significantly improve treatment outcome and save disability-adjusted life years (DALYs). In recent times, the application of machine learning (ML) and deep learning (DL)) has shown promising results in the diagnosis of MDs, and the field has witnessed a huge research output in the form of research publications. Therefore, a bibliometric mapping along with a review of recent advancements is required. Methods This study presents a bibliometric analysis and review of the research, published over the last 10 years. Literature searches were conducted in the Scopus database for the period from January 1, 2012, to June 9, 2023. The data was filtered and screened to include only relevant and reliable publications. A total of 2811 journal articles were found. The data was exported to a comma-separated value (CSV) format for further analysis. Furthermore, a review of 40 selected studies was performed. Results The popularity of ML techniques in diagnosing MDs has been growing, with an annual research growth rate of 17.05 %. The Journal of Affective Disorders published the most documents (n = 97), while Wang Y. (n = 64) has published the most articles. Lotka's law is observed, with a minority of authors contributing the majority of publications. The top affiliating institutes are the West China Hospital of Sichuan University followed by the University of California, with China and the US dominating the top 10 institutes. While China has more publications, papers affiliated with the US receive more citations. Depression and schizophrenia are the primary focuses of ML and deep learning (DL) in mental disease detection. Co-occurrence network analysis reveals that ML is associated with depression, schizophrenia, autism, anxiety, ADHD, obsessive-compulsive disorder, and PTSD. Popular algorithms include support vector machine (SVM) classifier, decision tree classifier, and random forest classifier. Furthermore, DL is linked to neuroimaging techniques such as MRI, fMRI, and EEG, as well as bipolar disorder. Current research trends encompass DL, LSTM, generalized anxiety disorder, feature fusion, and convolutional neural networks.
Collapse
Affiliation(s)
- Chandra Mani Sharma
- CRDT, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
- School of Computer Science, UPES, Dehradun, Uttarakhand, India
| | | |
Collapse
|
7
|
Lin P, Zhu G, Xu X, Wang Z, Li X, Li B. Brain network analysis of working memory in schizophrenia based on multi graph attention network. Brain Res 2024; 1831:148816. [PMID: 38387716 DOI: 10.1016/j.brainres.2024.148816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
The cognitive impairment in schizophrenia (SZ) is characterized by significant deficits in working memory task. In order to explore the brain changes of SZ during a working memory task, we performed time-domain and time-frequency analysis of event related potentials (ERP) of SZ during a 0-back task. The P3 wave amplitude was found to be significantly lower in SZ patients than in healthy controls (HC) (p < 0.05). The power in the θ and α bands was significantly enhanced in the SZ group 200 ms after stimulation, while the θ band was significantly enhanced and the β band was weakened in the HC group. Furthermore, phase lag index (PLI) based brain functional connectivity maps showed differences in the connections between parietal and frontotemporal lobes between SZ and HC (p < 0.05). Due to the natural similarity between brain networks and graph data, and the fact that graph attention network can aggregate the features of adjacent nodes, it has more advantages in learning the features of brain regions. We propose a multi graph attention network model combined with adaptive initial residual (AIR) for SZ classification, which achieves an accuracy of 90.90 % and 78.57 % on an open dataset (Zenodo) and our 0-back dataset, respectively. Overall, the proposed methodology offers promising potential for understanding the brain functional connections of schizophrenia.
Collapse
Affiliation(s)
- Ping Lin
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Geng Zhu
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Xinyi Xu
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhen Wang
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Xiaoou Li
- College of Medical Instruments, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China; College of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Yangpu Mental Health Center, Shanghai 200093, China.
| | - Bin Li
- Shanghai Yangpu Mental Health Center, Shanghai 200093, China.
| |
Collapse
|
8
|
Klepl D, Wu M, He F. Graph Neural Network-Based EEG Classification: A Survey. IEEE Trans Neural Syst Rehabil Eng 2024; 32:493-503. [PMID: 38236670 DOI: 10.1109/tnsre.2024.3355750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Graph neural networks (GNN) are increasingly used to classify EEG for tasks such as emotion recognition, motor imagery and neurological diseases and disorders. A wide range of methods have been proposed to design GNN-based classifiers. Therefore, there is a need for a systematic review and categorisation of these approaches. We exhaustively search the published literature on this topic and derive several categories for comparison. These categories highlight the similarities and differences among the methods. The results suggest a prevalence of spectral graph convolutional layers over spatial. Additionally, we identify standard forms of node features, with the most popular being the raw EEG signal and differential entropy. Our results summarise the emerging trends in GNN-based approaches for EEG classification. Finally, we discuss several promising research directions, such as exploring the potential of transfer learning methods and appropriate modelling of cross-frequency interactions.
Collapse
|
9
|
Li C, Liu Y, Li J, Miao Y, Liu J, Song L. Decoding Bilingual EEG Signals With Complex Semantics Using Adaptive Graph Attention Convolutional Network. IEEE Trans Neural Syst Rehabil Eng 2024; 32:249-258. [PMID: 38163312 DOI: 10.1109/tnsre.2023.3348981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Decoding neural signals of silent reading with Brain-Computer Interface (BCI) techniques presents a fast and intuitive communication method for severely aphasia patients. Electroencephalogram (EEG) acquisition is convenient and easily wearable with high temporal resolution. However, existing EEG-based decoding units primarily concentrate on individual words due to their low signal-to-noise ratio, rendering them insufficient for facilitating daily communication. Decoding at the word level is less efficient than decoding at the phrase or sentence level. Furthermore, with the popularity of multilingualism, decoding EEG signals with complex semantics under multiple languages is highly urgent and necessary. To the best of our knowledge, there is currently no research on decoding EEG signals during silent reading of complex semantics, let alone decoding silent reading EEG signals with complex semantics for bilingualism. Moreover, the feasibility of decoding such signals remains to be investigated. In this work, we collect silent reading EEG signals of 9 English Phrases (EP), 7 English Sentences (ES), 10 Chinese Phrases (CP), and 7 Chinese Sentences (CS) from the subject within 26 days. We propose a novel Adaptive Graph Attention Convolution Network (AGACN) for classification. Experimental results demonstrate that our proposed method outperforms state-of-the-art methods, achieving the highest classification accuracy of 54.70%, 62.26%, 44.55%, and 57.14% for silent reading EEG signals of EP, ES, CP, and CS, respectively. Moreover, our results prove the feasibility of complex semantics EEG signal decoding. This work will aid aphasic patients in achieving regular communication while providing novel ideas for neural signal decoding research.
Collapse
|
10
|
Udayakumar P, Subhashini R. Connectome-based schizophrenia prediction using structural connectivity - Deep Graph Neural Network(sc-DGNN). JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:1041-1059. [PMID: 38820060 DOI: 10.3233/xst-230426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
BACKGROUND Connectome is understanding the complex organization of the human brain's structural and functional connectivity is essential for gaining insights into cognitive processes and disorders. OBJECTIVE To improve the prediction accuracy of brain disorder issues, the current study investigates dysconnected subnetworks and graph structures associated with schizophrenia. METHOD By using the proposed structural connectivity-deep graph neural network (sc-DGNN) model and compared with machine learning (ML) and deep learning (DL) models.This work attempts to focus on eighty-eight subjects of diffusion magnetic resonance imaging (dMRI), three classical ML, and five DL models. RESULT The structural connectivity-deep graph neural network (sc-DGNN) model is proposed to effectively predict dysconnectedness associated with schizophrenia and exhibits superior performance compared to traditional ML and DL (GNNs) methods in terms of accuracy, sensitivity, specificity, precision, F1-score, and Area under receiver operating characteristic (AUC). CONCLUSION The classification task on schizophrenia using structural connectivity matrices and experimental results showed that linear discriminant analysis (LDA) performed 72% accuracy rate in ML models and sc-DGNN performed at a 93% accuracy rate in DL models to distinguish between schizophrenia and healthy patients.
Collapse
Affiliation(s)
- P Udayakumar
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India
| | - R Subhashini
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
11
|
Duan J, Li Y, Zhang X, Dong S, Zhao P, Liu J, Zheng J, Zhu R, Kong Y, Wang F. Predicting treatment response in adolescents and young adults with major depressive episodes from fMRI using graph isomorphism network. Neuroimage Clin 2023; 40:103534. [PMID: 37939442 PMCID: PMC10665904 DOI: 10.1016/j.nicl.2023.103534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Major depressive episode (MDE) is the main clinical feature of mood disorders (major depressive disorder and bipolar disorder) in adolescents and young adults and accounts for most of the disease course. However, 30%-40% of MDE patients not responding to clinical first-line interventions. It is crucial to predict treatment response in the early stages and identify biomarkers associated with treatment response. Graph Isomorphism Network (GIN), a deep learning method, is promising for predicting treatment response for individual MDE patients with more powerful representation ability to capture the features of brain functional connectivity. METHODS In this study, GIN was used to predict individual treatment response in 198 adolescents and young adults with MDE. The most discriminating regions were also identified for the treatment response prediction. RESULTS Using GIN approach, the baseline functional connectivity could predict 79.8% responders and 67.4% non-responders to treatment (accuracy 74.24%). Furthermore, the most discriminating brain regions were mainly involved in paralimbic and subcortical areas. CONCLUSIONS GIN has shown potential in predicting treatment response for individual patients, which may enable personalized treatment decisions. Furthermore, targeted interventions focused on modulating the activity and connectivity within paralimbic and subcortical regions could potentially improve treatment outcomes and enable personalized interventions for adolescents and young adults with MDE.
Collapse
Affiliation(s)
- Jia Duan
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yueying Li
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Xiaotong Zhang
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, Southeast University, Nanjing, China
| | - Shuai Dong
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Pengfei Zhao
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Liu
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Junjie Zheng
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rongxin Zhu
- Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Youyong Kong
- Jiangsu Provincial Joint International Research Laboratory of Medical Information Processing, School of Computer Science and Engineering, Southeast University, Nanjing, China; Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing, China.
| | - Fei Wang
- Department of Mental Health, School of Public Health, Nanjing Medical University, Nanjing, China; Early Intervention Unit, Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Klepl D, He F, Wu M, Blackburn DJ, Sarrigiannis P. Adaptive Gated Graph Convolutional Network for Explainable Diagnosis of Alzheimer's Disease Using EEG Data. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3978-3987. [PMID: 37792656 DOI: 10.1109/tnsre.2023.3321634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Graph neural network (GNN) models are increasingly being used for the classification of electroencephalography (EEG) data. However, GNN-based diagnosis of neurological disorders, such as Alzheimer's disease (AD), remains a relatively unexplored area of research. Previous studies have relied on functional connectivity methods to infer brain graph structures and used simple GNN architectures for the diagnosis of AD. In this work, we propose a novel adaptive gated graph convolutional network (AGGCN) that can provide explainable predictions. AGGCN adaptively learns graph structures by combining convolution-based node feature enhancement with a correlation-based measure of power spectral density similarity. Furthermore, the gated graph convolution can dynamically weigh the contribution of various spatial scales. The proposed model achieves high accuracy in both eyes-closed and eyes-open conditions, indicating the stability of learned representations. Finally, we demonstrate that the proposed AGGCN model generates consistent explanations of its predictions that might be relevant for further study of AD-related alterations of brain networks.
Collapse
|
13
|
Zhang S, Yang J, Zhang Y, Zhong J, Hu W, Li C, Jiang J. The Combination of a Graph Neural Network Technique and Brain Imaging to Diagnose Neurological Disorders: A Review and Outlook. Brain Sci 2023; 13:1462. [PMID: 37891830 PMCID: PMC10605282 DOI: 10.3390/brainsci13101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Neurological disorders (NDs), such as Alzheimer's disease, have been a threat to human health all over the world. It is of great importance to diagnose ND through combining artificial intelligence technology and brain imaging. A graph neural network (GNN) can model and analyze the brain, imaging from morphology, anatomical structure, function features, and other aspects, thus becoming one of the best deep learning models in the diagnosis of ND. Some researchers have investigated the application of GNN in the medical field, but the scope is broad, and its application to NDs is less frequent and not detailed enough. This review focuses on the research progress of GNNs in the diagnosis of ND. Firstly, we systematically investigated the GNN framework of ND, including graph construction, graph convolution, graph pooling, and graph prediction. Secondly, we investigated common NDs using the GNN diagnostic model in terms of data modality, number of subjects, and diagnostic accuracy. Thirdly, we discussed some research challenges and future research directions. The results of this review may be a valuable contribution to the ongoing intersection of artificial intelligence technology and brain imaging.
Collapse
Affiliation(s)
- Shuoyan Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Jiacheng Yang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ying Zhang
- School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
| | - Jiayi Zhong
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wenjing Hu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chenyang Li
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jiehui Jiang
- Shanghai Institute of Biomedical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
Usategui I, Barbado J, Torres AM, Cascón J, Mateo J. Machine learning, a new tool for the detection of immunodeficiency patterns in systemic lupus erythematosus. J Investig Med 2023; 71:742-752. [PMID: 37158077 DOI: 10.1177/10815589231171404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects several organs and causes variable clinical symptoms. Early diagnosis is currently the most effective way to save the lives of patients with SLE. But it is very difficult to detect in the early stages of the disease. Because of this, this study proposes a machine learning system to help diagnose patients with SLE. To carry out the research, the extreme gradient boosting method has been implemented due to its performance characteristics, as it allows high performance, scalability, accuracy, and low computational load. From this method we try to recognize patterns in the data obtained from patients, which allow the classification of SLE patients with high accuracy and differentiate these patients from controls. Several machine learning methods have been analyzed in this study. The proposed method achieves a higher prediction value of patients who may suffer from SLE than the rest of the compared systems. The proposed algorithm achieved an improvement in accuracy of 4.49% over k-Nearest Neighbors. As for the Support Vector Machine and Gaussian Naive Bayes (GNB) methods, they achieved a lower performance than the proposed one, reaching values of 83% and 81%, respectively. It should be noted that the proposed system showed a higher area under the curve (90%) and a balanced accuracy (90%) than the other machine learning methods. This study shows the usefulness of ML techniques for identifying and predicting SLE patients. These results demonstrate the possibility of developing automatic diagnostic support systems for SLE patients based on machine learning techniques.
Collapse
Affiliation(s)
- Iciar Usategui
- Internal Medicine Department, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Julia Barbado
- Autoimmune Diseases Unit, Río Hortega University Hospital, Valladolid, Spain
| | - Ana María Torres
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Joaquín Cascón
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
| | - Jorge Mateo
- Medical Analysis Expert Group, Institute of Technology, Universidad de Castilla-La Mancha, Cuenca, Spain
| |
Collapse
|
15
|
Yin G, Chang Y, Zhao Y, Liu C, Yin M, Fu Y, Shi D, Wang L, Jin L, Huang J, Li D, Niu Y, Wang B, Tan S. Automatic recognition of schizophrenia from brain-network features using graph convolutional neural network. Asian J Psychiatr 2023; 87:103687. [PMID: 37418809 DOI: 10.1016/j.ajp.2023.103687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Schizophrenia is a severe mental illness that imposes considerable economic burden on families and society. However, its clinical diagnosis primarily relies on scales and doctors' clinical experience and lacks an objective and accurate diagnostic approach. In recent years, graph convolutional neural networks (GCN) have been used to assist in psychiatric diagnosis owing to their ability to learn spatial-association information. Therefore, this study proposes a schizophrenia automatic recognition model based on graph convolutional neural network. Herein, the resting-state electroencephalography (EEG) data of 103 first-episode schizophrenia patients and 92 normal controls (NCs) were obtained. The automatic recognition model was trained with a nodal feature matrix that comprised the time and frequency-domain features of the EEG signals and local features of the brain network. The most significant regions that contributed to the model classification were identified, and the correlation between the node topological features of each significant region and clinical evaluation metrics was explored. Experiments were conducted to evaluate the performance of the model using 10-fold cross-validation. The best performance in the theta frequency band with a 6 s epoch length and phase-locked value. The recognition accuracy was 90.01%. The most significant region for identifying with first-episode schizophrenia patients and NCs was located in the parietal lobe. The results of this study verify the applicability of the proposed novel method for the identification and diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Guimei Yin
- College of Computer Science and Technology, Taiyuan Normal University, City Jinzhong 030619 Shanxi, China
| | - Ying Chang
- Departs of Ultrasonography, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Yanli Zhao
- Peking University Huilonguan Clinical Medical School, Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Chenxu Liu
- College of Computer Science and Technology, Taiyuan Normal University, City Jinzhong 030619 Shanxi, China
| | - Mengzhen Yin
- College of Computer Science and Technology, Taiyuan Normal University, City Jinzhong 030619 Shanxi, China
| | - Yongcan Fu
- College of Computer Science and Technology, Taiyuan Normal University, City Jinzhong 030619 Shanxi, China
| | - Dongli Shi
- College of Computer Science and Technology, Taiyuan Normal University, City Jinzhong 030619 Shanxi, China
| | - Lin Wang
- College of Computer Science and Technology, Taiyuan Normal University, City Jinzhong 030619 Shanxi, China
| | - Lizhong Jin
- Taiyuan University of Science and Technology, Taiyuan 030024 Shanxi, China
| | - Jie Huang
- Peking University Huilonguan Clinical Medical School, Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Dandan Li
- Taiyuan University of Technology, Jinzhong 030600 Shanxi, China
| | - Yan Niu
- Taiyuan University of Technology, Jinzhong 030600 Shanxi, China
| | - Bin Wang
- Taiyuan University of Technology, Jinzhong 030600 Shanxi, China.
| | - Shuping Tan
- Peking University Huilonguan Clinical Medical School, Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China.
| |
Collapse
|
16
|
Shen M, Wen P, Song B, Li Y. Automatic identification of schizophrenia based on EEG signals using dynamic functional connectivity analysis and 3D convolutional neural network. Comput Biol Med 2023; 160:107022. [PMID: 37187135 DOI: 10.1016/j.compbiomed.2023.107022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Schizophrenia (ScZ) is a devastating mental disorder of the human brain that causes a serious impact of emotional inclinations, quality of personal and social life and healthcare systems. In recent years, deep learning methods with connectivity analysis only very recently focused into fMRI data. To explore this kind of research into electroencephalogram (EEG) signal, this paper investigates the identification of ScZ EEG signals using dynamic functional connectivity analysis and deep learning methods. A time-frequency domain functional connectivity analysis through cross mutual information algorithm is proposed to extract the features in alpha band (8-12 Hz) of each subject. A 3D convolutional neural network technique was applied to classify the ScZ subjects and health control (HC) subjects. The LMSU public ScZ EEG dataset is employed to evaluate the proposed method, and a 97.74 ± 1.15% accuracy, 96.91 ± 2.76% sensitivity and 98.53 ± 1.97% specificity results were achieved in this study. In addition, we also found not only the default mode network region but also the connectivity between temporal lobe and posterior temporal lobe in both right and left side have significant difference between the ScZ and HC subjects.
Collapse
Affiliation(s)
- Mingkan Shen
- School of Engineering, University of Southern Queensland, Toowoomba, Australia.
| | - Peng Wen
- School of Engineering, University of Southern Queensland, Toowoomba, Australia
| | - Bo Song
- School of Engineering, University of Southern Queensland, Toowoomba, Australia
| | - Yan Li
- School of Mathematics, Physics and Computing, University of Southern Queensland, Toowoomba, Australia
| |
Collapse
|
17
|
Chen X, Ke P, Huang Y, Zhou J, Li H, Peng R, Huang J, Liang L, Ma G, Li X, Ning Y, Wu F, Wu K. Discriminative analysis of schizophrenia patients using graph convolutional networks: A combined multimodal MRI and connectomics analysis. Front Neurosci 2023; 17:1140801. [PMID: 37090813 PMCID: PMC10117439 DOI: 10.3389/fnins.2023.1140801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
INTRODUCTION Recent studies in human brain connectomics with multimodal magnetic resonance imaging (MRI) data have widely reported abnormalities in brain structure, function and connectivity associated with schizophrenia (SZ). However, most previous discriminative studies of SZ patients were based on MRI features of brain regions, ignoring the complex relationships within brain networks. METHODS We applied a graph convolutional network (GCN) to discriminating SZ patients using the features of brain region and connectivity derived from a combined multimodal MRI and connectomics analysis. Structural magnetic resonance imaging (sMRI) and resting-state functional magnetic resonance imaging (rs-fMRI) data were acquired from 140 SZ patients and 205 normal controls. Eighteen types of brain graphs were constructed for each subject using 3 types of node features, 3 types of edge features, and 2 brain atlases. We investigated the performance of 18 brain graphs and used the TopK pooling layers to highlight salient brain regions (nodes in the graph). RESULTS The GCN model, which used functional connectivity as edge features and multimodal features (sMRI + fMRI) of brain regions as node features, obtained the highest average accuracy of 95.8%, and outperformed other existing classification studies in SZ patients. In the explainability analysis, we reported that the top 10 salient brain regions, predominantly distributed in the prefrontal and occipital cortices, were mainly involved in the systems of emotion and visual processing. DISCUSSION Our findings demonstrated that GCN with a combined multimodal MRI and connectomics analysis can effectively improve the classification of SZ at an individual level, indicating a promising direction for the diagnosis of SZ patients. The code is available at https://github.com/CXY-scut/GCN-SZ.git.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Department of Biomedical Engineering, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Pengfei Ke
- Department of Biomedical Engineering, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Yuanyuan Huang
- Department of Emotional Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Jing Zhou
- School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
| | - Hehua Li
- Department of Emotional Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Runlin Peng
- Department of Biomedical Engineering, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Jiayuan Huang
- Department of Biomedical Engineering, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Liqin Liang
- Department of Biomedical Engineering, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Yuping Ning
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- Department of Psychosomatic, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Wu
- Department of Biomedical Engineering, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
18
|
Zhu W, Wang Z, Yu M, Zhang X, Zhang Z. Using support vector machine to explore the difference of function connection between deficit and non-deficit schizophrenia based on gray matter volume. Front Neurosci 2023; 17:1132607. [PMID: 37051145 PMCID: PMC10083255 DOI: 10.3389/fnins.2023.1132607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/06/2023] [Indexed: 03/28/2023] Open
Abstract
ObjectiveSchizophrenia can be divided into deficient schizophrenia (DS) and non-deficient schizophrenia (NDS) according to the presence of primary and persistent negative symptoms. So far, there are few studies that have explored the differences in functional connectivity (FC) between the different subtypes based on the region of interest (ROI) from GMV (Gray matter volume), especially since the characteristics of brain networks are still unknown. This study aimed to investigate the alterations of functional connectivity between DS and NDS based on the ROI obtained by machine learning algorithms and differential GMV. Then, the relationships between the alterations and the clinical symptoms were analyzed. In addition, the thalamic functional connection imbalance in the two groups was further explored.MethodsA total of 16 DS, 31 NDS, and 38 health controls (HC) underwent resting-state fMRI scans, patient group will further be evaluated by clinical scales including the Brief Psychiatric Rating Scale (BPRS), the Scale for the Assessment of Negative Symptoms (SANS), and the Scale for the Assessment of Positive Symptoms (SAPS). Based on GMV image data, a support vector machine (SVM) is used to classify DS and NDS. Brain regions with high weight in the classification were used as seed points in whole-brain FC analysis and thalamic FC imbalance analysis. Finally, partial correlation analysis explored the relationships between altered FC and clinical scale in the two subtypes.ResultsThe relatively high classification accuracy is obtained based on the SVM. Compared to HC, the FC increased between the right inferior parietal lobule (IPL.R) bilateral thalamus, and lingual gyrus, and between the right inferior temporal gyrus (ITG.R) and the Salience Network (SN) in NDS. The FC between the right thalamus (THA.R) and Visual network (VN), between ITG.R and right superior occipital gyrus in the DS group was higher than that in HC. Furthermore, compared with NDS, the FC between the ITG.R and the left superior and middle frontal gyrus decreased in the DS group. The thalamic FC imbalance, which is characterized by frontotemporal-THA.R hypoconnectivity and sensory motor network (SMN)-THA.R hyperconnectivity was found in both subtypes. The FC value of THA.R and SMN was negatively correlated with the SANS score in the DS group but positively correlated with the SAPS score in the NDS group.ConclusionUsing an SVM classification method and based on an ROI from GMV, we highlighted the difference in functional connectivity between DS and NDS from the local to the brain network, which provides new information for exploring the neural physiopathology of the two subtypes of schizophrenic.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Neurology, School of Medicine, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, Southeast University, Nanjing, China
- Affiliated Mental Health Center, Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zan Wang
- Department of Neurology, School of Medicine, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, Southeast University, Nanjing, China
| | - Miao Yu
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Xiangrong Zhang,
| | - Zhijun Zhang
- Department of Neurology, School of Medicine, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, Southeast University, Nanjing, China
- Affiliated Mental Health Center, Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhijun Zhang,
| |
Collapse
|
19
|
Analysis of Altered Brain Dynamics During Episodic Recall and Detection of Generalized Anxiety Disorder. Neuroscience 2023:S0306-4522(23)00032-5. [PMID: 36707018 DOI: 10.1016/j.neuroscience.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/12/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Numerous blood oxygenation level-dependent (BOLD) imaging studies have shown that generalized anxiety disorder (GAD) can lead to abnormal activation of specific brain regions in patients. However, these methods lack sufficient temporal resolution to explain the underlying brain dynamics of GAD. The electroencephalogram (EEG) microstate allows us to explore brain dynamics at the subsecond level. We performed microstate analysis and source localization on the EEG data of 15 GADs and 14 healthy controls (HCs). We found two kinds of noncanonical microstate topologies (MS-4 and MS-5) in the episodic recall tasks. Compared with HCs, the duration and coverage of MS-5 were significantly reduced in GADs and positively correlated with the GAD-7 scores. The results of source localization showed obvious activation in the prefrontal lobe, parietal lobe, temporal lobe, and fusiform gyri. Moreover, we propose an improved capsule network to capture EEG spatial features and combine them with temporal parameters of microstates for more reliable GAD detection. The sensor-level EEG data and the source-level EEG data obtained by source reconstruction are used as input to the model. The optimal configuration combined the spatial features of source-level data with microstate features and achieved the highest classification accuracy. Collectively, the statistical results indicated remarkable differences in dynamic brain parameters between the two groups, and patients with GAD may have abnormalities in their higher sensory cortex that affect the processing of anxiety signals. Furthermore, our proposed fusion framework provides a reliable method for GAD automatic detection.
Collapse
|
20
|
Lei D, Qin K, Pinaya WHL, Young J, Van Amelsvoort T, Marcelis M, Donohoe G, Mothersill DO, Corvin A, Vieira S, Lui S, Scarpazza C, Arango C, Bullmore E, Gong Q, McGuire P, Mechelli A. Graph Convolutional Networks Reveal Network-Level Functional Dysconnectivity in Schizophrenia. Schizophr Bull 2022; 48:881-892. [PMID: 35569019 PMCID: PMC9212102 DOI: 10.1093/schbul/sbac047] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND HYPOTHESIS Schizophrenia is increasingly understood as a disorder of brain dysconnectivity. Recently, graph-based approaches such as graph convolutional network (GCN) have been leveraged to explore complex pairwise similarities in imaging features among brain regions, which can reveal abstract and complex relationships within brain networks. STUDY DESIGN We used GCN to investigate topological abnormalities of functional brain networks in schizophrenia. Resting-state functional magnetic resonance imaging data were acquired from 505 individuals with schizophrenia and 907 controls across 6 sites. Whole-brain functional connectivity matrix was extracted for each individual. We examined the performance of GCN relative to support vector machine (SVM), extracted the most salient regions contributing to both classification models, investigated the topological profiles of identified salient regions, and explored correlation between nodal topological properties of each salient region and severity of symptom. STUDY RESULTS GCN enabled nominally higher classification accuracy (85.8%) compared with SVM (80.9%). Based on the saliency map, the most discriminative brain regions were located in a distributed network including striatal areas (ie, putamen, pallidum, and caudate) and the amygdala. Significant differences in the nodal efficiency of bilateral putamen and pallidum between patients and controls and its correlations with negative symptoms were detected in post hoc analysis. CONCLUSIONS The present study demonstrates that GCN allows classification of schizophrenia at the individual level with high accuracy, indicating a promising direction for detection of individual patients with schizophrenia. Functional topological deficits of striatal areas may represent a focal neural deficit of negative symptomatology in schizophrenia.
Collapse
Affiliation(s)
| | | | - Walter H L Pinaya
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Jonathan Young
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Therese Van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Machteld Marcelis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health Care Institute Eindhoven (GGzE), Eindhoven, The Netherlands
| | - Gary Donohoe
- School of Psychology & Center for Neuroimaging and Cognitive Genomics, NUI Galway University, Galway, Ireland
| | - David O Mothersill
- Psychology Department, School of Business, National College of Ireland, Dublin, Ireland
| | - Aiden Corvin
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sandra Vieira
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Cristina Scarpazza
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Department of General Psychology, University of Padova, Padova, Italy
- Padova Neuroscience Centre, University of Padova, Padova, Italy
| | - Celso Arango
- Institute of Psychiatry and Mental Health, Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañon, School of Medicine, Universidad Complutense Madrid, IiSGM, CIBERSAM, Madrid, Spain
| | - Ed Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Qiyong Gong
- To whom correspondence should be addressed; Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No 37 Guo Xue Xiang, Chengdu, 610041, China; tel: 86-18980601593, fax: 028-85423503,
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| |
Collapse
|
21
|
Abstract
As a long-standing research topic in the field of brain–computer interface, emotion recognition still suffers from low recognition accuracy. In this research, we present a novel model named DE-CNN-BiLSTM deeply integrating the complexity of EEG signals, the spatial structure of brain and temporal contexts of emotion formation. Firstly, we extract the complexity properties of the EEG signal by calculating Differential Entropy in different time slices of different frequency bands to obtain 4D feature tensors according to brain location. Subsequently, the 4D tensors are input into the Convolutional Neural Network to learn brain structure and output time sequences; after that Bidirectional Long-Short Term Memory is used to learn past and future information of the time sequences. Compared with the existing emotion recognition models, the new model can decode the EEG signal deeply and extract key emotional features to improve accuracy. The simulation results show the algorithm achieves an average accuracy of 94% for DEAP dataset and 94.82% for SEED dataset, confirming its high accuracy and strong robustness.
Collapse
|
22
|
Chang Q, Li C, Zhang J, Wang C. Dynamic brain functional network based on EEG microstate during sensory gating in schizophrenia. J Neural Eng 2022; 19. [PMID: 35130537 DOI: 10.1088/1741-2552/ac5266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/07/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Cognitive impairment is one of the core symptoms of schizophrenia, with an emphasis on dysfunctional information processing. Sensory gating deficits have consistently been reported in schizophrenia, but the underlying physiological mechanism is not well-understood. We report the discovery and characterization of P50 dynamic brain connections based on microstate analysis. APPROACH We identify five main microstates associated with the P50 response and the difference between the first and second click presentation (S1-S2-P50) in first-episode schizophrenia patients (FESZ), ultra-high-risk individuals (UHR) and healthy controls (HC). The we used the signal segments composed of consecutive time points with the same microstate label to construct brain functional networks. MAIN RESULTS The microstate with a prefrontal extreme location during the response to the S1 of P50 are statistically different in duration, occurrence and coverage among the FESZ, UHR and HC groups. In addition, a microstate with anterior-posterior orientation was found to be associated with S1-S2-P50 and its coverage was found to differ among the FESZ, UHR and HC groups. Source location of microstates showed that activated brain regions were mainly concentrated in the right temporal lobe. Furthermore, the connectivities between brain regions involved in P50 processing of HC were widely different from those of FESZ and UHR. SIGNIFICANCE Our results indicate that P50 suppression deficits in schizophrenia may be due to both aberrant baseline sensory perception and adaptation to repeated stimulus. Our findings provide new insight into the mechanisms of P50 suppression in the early stage of schizophrenia.
Collapse
Affiliation(s)
- Qi Chang
- BeiHang University School of Biological Science and Medical Engineering, Xueyuan Road 37#, Haidian district, Beijing, 100191, P.R. China, Beijing, 100191, CHINA
| | - Cancheng Li
- School of Biological and Medical Engineering , Beihang University, Xueyuan Road 37#, Haidian district, Beijing, Beijing, 100083, CHINA
| | - Jicong Zhang
- School of Biological Science and Medical Engineering, Beihang University, Xueyuan Road 37#, Haidian district, Beijing, Beijing, 100083, CHINA
| | - Chuanyue Wang
- Beijing An Ding Hospital, 5 Ankang Hutong, Dewai Avenue, Xicheng District, Beijing, Beijing, 100088, CHINA
| |
Collapse
|