1
|
Ji KH, Yun CH. Emerging Technologies to Track and Improve Sleep Health. Sleep Med Clin 2025; 20:47-55. [PMID: 39894598 DOI: 10.1016/j.jsmc.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
This review explores cutting-edge advancements, including wearable sleep trackers, brain age assessments, transcranial electrical stimulation (TES), acoustic stimulation, and glymphatic system modulation. Sleep trackers provide continuous monitoring of sleep patterns, while brain age estimation offers insights into brain health and early detection of accelerated aging. TES shows promise in improving mood, memory, and sleep. Acoustic stimulation during slow-wave sleep has been demonstrated to enhance memory consolidation. Additionally, optimizing the glymphatic system may facilitate brain waste clearance, crucial in preventing neurodegenerative diseases like Alzheimer's. However, significant challenges remain, including the need for rigorous longitudinal studies to validate these technologies' efficacy and safety.
Collapse
Affiliation(s)
- Ki-Hwan Ji
- Department of Neurology, Inje University Busan Paik Hospital, College of Medicine, Inje University, 75 Bokjiro, Busanjin-gu, Busan 47392, Republic of Korea
| | - Chang-Ho Yun
- Deparment of Neurology, Seoul National University Bundang Hospital and Seoul National University College of Medicine, 82 Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam, Gyeonggi 13620, Republic of Korea.
| |
Collapse
|
2
|
Shi Y, Tian X, Li T, Hu Y, Xie Y, Li H, Li Y, Jiang N, Tang X, Wang Y. The influence of transcranial alternating current stimulation on EEG spectral power during subsequent sleep: A randomized crossover study. Sleep Med 2025; 126:185-193. [PMID: 39689403 DOI: 10.1016/j.sleep.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/30/2024] [Accepted: 12/08/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVE To evaluate the instant impact of transcranial alternating current stimulation (tACS) on sleep brain oscillations. METHODS Thirty-six healthy subjects were randomly assigned to receive tACS and sham stimulation in a crossover design separated by a one-week washout period. After stimulation, a 2-h nap polysomnography (PSG) was performed to obtain Electroencephalogram (EEG) data and objective sleep variables, and self-reported subjective sleep parameters were collected at the end of the nap. EEG spectral analyses were conducted on the EEG data to obtain the absolute and relative power for each sleep stage during the nap. The associations between power values and objective and subjective measurements were analyzed using Spearman or Pearson correlation coefficients. RESULTS The tACS group presented higher power in slow wave activity (SWA) and delta frequency bands and lower alpha, sigma and beta power values compared to the sham group during the N2 and N3 sleep stages. SWA and delta power were positively associated with sleep duration and sleep efficiency relevant parameters; while alpha, sigma and beta power were positively associated with prolonged sleep latency and wakefulness related variables. PSG, self-reported and sleep diary measured objective and subjective sleep parameters were comparable between the tACS and the sham groups. CONCLUSION Our results support that tACS could promote sleep depth in microstructure of sleep EEG, manifesting as an increase in EEG spectral power in low frequency bands and a decrease in high frequency bands. The registration number of this study is ChiCTR2200063729.
Collapse
Affiliation(s)
- Yuan Shi
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Xin Tian
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Taomei Li
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Yuexia Hu
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Yuqing Xie
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Huixian Li
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Yun Li
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China; SDIC HEALTH INDUSTRY INVESTMENT CO., LTD, Beijing, PR China.
| | - Ning Jiang
- National Clinical Research Center for Geriatrics, West China Hospital, The Med-X Center for Manufacturing, Sichuan University, Chengdu, 610041, PR China.
| | - Xiangdong Tang
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| | - Yanyan Wang
- West China School of Nursing, Sleep Medicine Center, Mental Health Center, National Clinical Research Center for Geriatrics, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
3
|
Caswell K, Roe G, Odafe E, Arora S, Motoni C, Werner JK. Wearable Neurotechnology for the Treatment of Insomnia: The Study Protocol of a Prospective, Placebo-Controlled, Double-Blind, Crossover Clinical Trial of a Transcranial Electrical Stimulation Device. Clocks Sleep 2025; 7:3. [PMID: 39982310 PMCID: PMC11843949 DOI: 10.3390/clockssleep7010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 02/22/2025] Open
Abstract
Sleep disruption and deprivation are epidemic problems in the United States, even among those without a clinically diagnosed sleep disorder. Military service members demonstrate an increased risk of insomnia, which doubles after deployment. This study will investigate the ability of a translational device, Teledyne PeakSleep™ (Teledyne Scientific & Imaging, Durham, NC, USA), to reduce sleep onset latency and the time spent awake after sleep onset, with improvement in the subjective benefits of sleep for patients with insomnia by enhancing the brain rhythms within the frontal lobe implicated in slow wave generation. During this crossover trial, patients will use the wearable neurotechnology prototype headband, which delivers < 14 min of frontal short duration repetitive-transcranial electrical stimulation over a 30 min period immediately before trying to fall asleep. Using active stimulation versus a sham paradigm, we will compare actigraphy data, physiological data, and subjective sleep measures against a pre-treatment baseline in the same patient over the course of the 8-week study. If successful, PeakSleep™ could address the final common pathway in insomnia, namely the onset and maintenance of slow-wave sleep (SWS), and accordingly has the potential to enhance sleep onset in a wide range of individuals, most importantly warfighters in whom efficient sleep onset may be critical for operational success.
Collapse
Affiliation(s)
- Keenan Caswell
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA;
| | - Grace Roe
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Emamoke Odafe
- F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Subodh Arora
- Sleep Disorders Center, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Caddie Motoni
- Department of Neurology, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - John Kent Werner
- Department of Neurology, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Lee HAN, Lee WJ, Kim SU, Kim H, Ahn M, Kim J, Kim DW, Yun CH, Hwang HJ. Effect of dynamic binaural beats on sleep quality: a proof-of-concept study with questionnaire and biosignals. Sleep 2024; 47:zsae097. [PMID: 38629490 DOI: 10.1093/sleep/zsae097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/27/2024] [Indexed: 08/15/2024] Open
Abstract
Binaural beat (BB) has been investigated as a potential modality to enhance sleep quality. In this study, we introduce a new form of BB, referred to as dynamic BB (DBB), which incorporates dynamically changing carrier frequency differences between the left and right ears. Specifically, the carrier frequency of the right ear varied between 100 and 103 Hz over a period, while the left ear remained fixed at 100 Hz, yielding a frequency difference range of 0 to 3 Hz. The objective of this study was to examine the effect of DBB on sleep quality. Ten healthy participants were included in a cross-over design, where they experienced both DBB and a SHAM (absence of sound) condition across two consecutive nights, with polysomnography evaluation. DBB was administrated during pre-sleep initiation, sleep onset, and transition from rapid eye movement (REM) to non-REM stage. DBB significantly reduced sleep latency compared to the SHAM condition. Electrocardiogram analysis revealed that exposure to DBB led to diminished heart rate variability during the pre-sleep initiation and sleep onset periods, accompanied by a decrease in low-frequency power of heart rate during the sleep onset period. DBB might be effective in improving sleep quality, suggesting its possible application in insomnia treatments.
Collapse
Affiliation(s)
- Hwa-Ah-Ni Lee
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
| | - Woo-Jin Lee
- Department of Neurology, Seoul National University Bundang Hospital and College of Medicine Seoul National University, Seongnam, Republic of Korea
| | - Seong-Uk Kim
- SleepWave Company, LG Electronics Co. Ltd., Seoul, Republic of Korea
| | - Hyunji Kim
- Department of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
| | - Minkyu Ahn
- Department of Computer Science and Electrical Engineering, Handong Global University, Pohang, Republic of Korea
| | - Jeonghui Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Do-Won Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, Republic of Korea
| | - Chang-Ho Yun
- Department of Neurology, Seoul National University Bundang Hospital and College of Medicine Seoul National University, Seongnam, Republic of Korea
| | - Han-Jeong Hwang
- Department of Electronics and Information Engineering, Korea University, Sejong, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea
| |
Collapse
|
5
|
Shao Z, Guo Y, Yue L, Liu X, Liu J, Zhao X, Sheng X, Yu D, Zhu Y, Yuan K. Comparisons of transcranial alternating current stimulation and repetitive transcranial magnetic stimulation treatment therapy for insomnia: a pilot study. Gen Psychiatr 2024; 37:e101184. [PMID: 38390243 PMCID: PMC10882281 DOI: 10.1136/gpsych-2023-101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 02/24/2024] Open
Affiliation(s)
- Ziqiang Shao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yongjian Guo
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Lirong Yue
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Xiaoyang Liu
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jiayi Liu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xumeng Zhao
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaona Sheng
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Dahua Yu
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Yifei Zhu
- Department of Psychosomatic Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Alfonsi V, D'Atri A, Scarpelli S, Gorgoni M, Giacinti F, Annarumma L, Salfi F, Amicucci G, Corigliano D, De Gennaro L. The effects of bifrontal anodal transcranial direct current stimulation (tDCS) on sleepiness and vigilance in partially sleep-deprived subjects: A multidimensional study. J Sleep Res 2023; 32:e13869. [PMID: 36871580 DOI: 10.1111/jsr.13869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
In recent years, transcranial electrical stimulation techniques have demonstrated their ability to modulate our levels of sleepiness and vigilance. However, the outcomes differ among the specific aspects considered (physiological, behavioural or subjective). This study aimed to observe the effects of bifrontal anodal transcranial direct current stimulation. Specifically, we tested the ability of this stimulation protocol to reduce sleepiness and increase vigilance in partially sleep-deprived healthy participants. Twenty-three subjects underwent a within-subject sham-controlled stimulation protocol. We compared sleepiness and vigilance levels before and after the two stimulation conditions (active versus sham) by using behavioural (reaction-time task), subjective (self-report scales) and physiological (sleep-onset latency and electroencephalogram power [n = 20] during the Maintenance of Wakefulness Test) measures. We showed the efficacy of the active stimulation in reducing physiological sleepiness and preventing vigilance drop compared with the sham stimulation. Consistently, we observed a reduction of perceived sleepiness following the active stimulation for both self-report scales. However, the stimulation effect on subjective measures was not statistically significant probably due to the underpowered sample size for these measures, and to the possible influence of motivational and environmental factors. Our findings confirm the ability of this technique to influence vigilance and sleepiness, pointing out the potential for new treatment developments based on transcranial electrical stimulation.
Collapse
Affiliation(s)
| | - Aurora D'Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Serena Scarpelli
- Department of Psychology, University of Rome Sapienza, Rome, Italy
| | - Maurizio Gorgoni
- Department of Psychology, University of Rome Sapienza, Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | - Federico Salfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giulia Amicucci
- Department of Psychology, University of Rome Sapienza, Rome, Italy
| | | | - Luigi De Gennaro
- Department of Psychology, University of Rome Sapienza, Rome, Italy
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
7
|
Wang Y, Cao Q, Wei C, Xu F, Zhang P, Zeng H, Shao Y, Weng X, Meng R. The Effect of Transcranial Electrical Stimulation on the Recovery of Sleep Quality after Sleep Deprivation Based on an EEG Analysis. Brain Sci 2023; 13:933. [PMID: 37371411 DOI: 10.3390/brainsci13060933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Acute sleep deprivation can reduce the cognitive ability and change the emotional state in humans. However, little is known about how brain EEGs and facial expressions change during acute sleep deprivation (SD). Herein, we employed 34 healthy adult male subjects to undergo acute SD for 36 h, during which, their emotional states and brain EEG power were measured. The subjects were divided randomly into electronic stimulation and control groups. We performed TDCS on the left dorsolateral prefrontal cortex for 2 mA and 30 min in the TDCS group. These results indicated that the proportion of disgusted expressions in the electrical stimulation group was significantly less than the controls after 36 h post-acute SD, while the proportion of neutral expressions was increased post-restorative sleep. Furthermore, the electrical stimulation group presented a more significant impact on slow wave power (theta and delta) than the controls. These findings indicated that emotional changes occurred in the subjects after 36 h post-acute SD, while electrical stimulation could effectively regulate the cortical excitability and excitation inhibition balance after acute SD.
Collapse
Affiliation(s)
- Yuhan Wang
- Department of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiongfang Cao
- Department of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Changyou Wei
- Department of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Fan Xu
- Department of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Peng Zhang
- Department of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Hanrui Zeng
- Department of Clinic Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing 100084, China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Rong Meng
- Department of Public Health, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
8
|
Bikson M, Ganho-Ávila A, Datta A, Gillick B, Joensson MG, Kim S, Kim J, Kirton A, Lee K, Marjenin T, Onarheim B, Rehn EM, Sack AT, Unal G. Limited output transcranial electrical stimulation 2023 (LOTES-2023): Updates on engineering principles, regulatory statutes, and industry standards for wellness, over-the-counter, or prescription devices with low risk. Brain Stimul 2023; 16:840-853. [PMID: 37201865 PMCID: PMC10350287 DOI: 10.1016/j.brs.2023.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 05/20/2023] Open
Abstract
The objective and scope of this Limited Output Transcranial Electrical Stimulation 2023 (LOTES-2023) guidance is to update the previous LOTES-2017 guidance. These documents should therefore be considered together. The LOTES provides a clearly articulated and transparent framework for the design of devices providing limited output (specified low-intensity range) transcranial electrical stimulation for a variety of intended uses. These guidelines can inform trial design and regulatory decisions, but most directly inform manufacturer activities - and hence were presented in LOTES-2017 as "Voluntary industry standard for compliance controlled limited output tES devices". In LOTES-2023 we emphasize that these standards are largely aligned across international standards and national regulations (including those in USA, EU, and South Korea), and so might be better understood as "Industry standards for compliance controlled limited output tES devices". LOTES-2023 is therefore updated to reflect a consensus among emerging international standards, as well as best available scientific evidence. "Warnings" and "Precautions" are updated to align with current biomedical evidence and applications. LOTES standards applied to a constrained device dose range, but within this dose range and for different use-cases, manufacturers are responsible to conduct device-specific risk management.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States.
| | - Ana Ganho-Ávila
- Center for Research in Neuropsychology and Cognitive Behavioral Intervention-CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
| | - Abhishek Datta
- Research and Development, Soterix Medical Inc., Woodbridge, NJ, United States
| | - Bernadette Gillick
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Sungjin Kim
- Ybrain Research Institute, Seongnam-si, Gyeonggi-do, South Korea
| | - Jinuk Kim
- Ybrain Research Institute, Seongnam-si, Gyeonggi-do, South Korea
| | - Adam Kirton
- Departments of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kiwon Lee
- Ybrain Research Institute, Seongnam-si, Gyeonggi-do, South Korea
| | | | - Balder Onarheim
- Research and Development, PlatoScience ApS, Copenhagen, Denmark
| | - Erik M Rehn
- Research and Development, Flow Neuroscience, Malmo, Skane Lan, Sweden
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Gozde Unal
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States.
| |
Collapse
|
9
|
Herrero Babiloni A, Brazeau D, De Koninck BP, Lavigne GJ, De Beaumont L. The Utility of Non-invasive Brain Stimulation in Relieving Insomnia Symptoms and Sleep Disturbances Across Different Sleep Disorders: a Topical Review. CURRENT SLEEP MEDICINE REPORTS 2023; 9:124-132. [DOI: 10.1007/s40675-023-00254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 01/03/2025]
|
10
|
Ayanampudi V, Kumar V, Krishnan A, Walker MP, Ivry RB, Knight RT, Gurumoorthy R. Personalized transcranial alternating current stimulation improves sleep quality: Initial findings. Front Hum Neurosci 2023; 16:1066453. [PMID: 36704097 PMCID: PMC9872012 DOI: 10.3389/fnhum.2022.1066453] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Insufficient sleep is a major health issue. Inadequate sleep is associated with an array of poor health outcomes, including cardiovascular disease, diabetes, obesity, certain forms of cancer, Alzheimer's disease, depression, anxiety, and suicidality. Given concerns with typical sedative hypnotic drugs for treating sleep difficulties, there is a compelling need for alternative interventions. Here, we report results of a non-invasive electrical brain stimulation approach to optimizing sleep involving transcranial alternating current stimulation (tACS). A total of 25 participants (mean age: 46.3, S.D. ± 12.4, 15 females) were recruited for a null-stimulation controlled (Control condition), within subjects, randomized crossed design, that included two variants of an active condition involving 15 min pre-sleep tACS stimulation. To evaluate the impact on sleep quality, the two active tACS stimulation conditions were designed to modulate sleep-dependent neural activity in the theta/alpha frequency bands, with both stimulation types applied to all subjects in separate sessions. The first tACS condition used a fixed stimulation pattern across all participants, a pattern composed of stimulation at 5 and 10 Hz. The second tACS condition used a personalized stimulation approach with the stimulation frequencies determined by each individual's peak EEG frequencies in the 4-6 Hz and 9-11 Hz bands. Personalized tACS stimulation increased sleep quantity (duration) by 22 min compared to a Control condition (p = 0.04), and 19 min compared to Fixed tACS stimulation (p = 0.03). Fixed stimulation did not significantly increase sleep duration compared to Control (mean: 3 min; p = 0.75). For sleep onset, the Personalized tACS stimulation resulted in reducing the onset by 28% compared to the Fixed tACS stimulation (6 min faster, p = 0.02). For a Poor Sleep sub-group (n = 13) categorized with Clinical Insomnia and a high insomnia severity, Personalized tACS stimulation improved sleep duration by 33 min compared to Fixed stimulation (p = 0.02), and 30 min compared to Control condition (p < 0.1). Together, these results suggest that Personalized stimulation improves sleep quantity and time taken to fall asleep relative to Control and Fixed stimulation providing motivation for larger-scale trials for Personalized tACS as a sleep therapeutic, including for those with insomnia.
Collapse
Affiliation(s)
| | - V. Kumar
- StimScience Inc., Berkeley, CA, United States
| | - A. Krishnan
- StimScience Inc., Berkeley, CA, United States
| | - M. P. Walker
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - R. B. Ivry
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - R. T. Knight
- Department of Psychology, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - R. Gurumoorthy
- StimScience Inc., Berkeley, CA, United States,*Correspondence: R. Gurumoorthy,
| |
Collapse
|