1
|
Sun Y, Sun B, Cui X, Li W, Zhang Y, He L, Nong S, Zhu Z, Wu J, Li D, Li X, Zhang S, Li X, Li M. Addressable and perceptible dynamic reprogram of ferromagnetic soft machines. Nat Commun 2025; 16:2267. [PMID: 40050263 PMCID: PMC11885537 DOI: 10.1038/s41467-025-57454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Soft machines actuated by external magnetic fields have gained significant attention for their potential to interact with living organisms and complex environments. However, their adaptability and functionality are often limited by rigid magnetization during operation. In this work, we introduce dynamically reprogrammable magnetic soft machines with in situ reconfigurable magnetization profiles during operations, achieved through the synergy of various magnetic fields. A flexible resonant circuit is integrated into the machine body, enabling addressable and perceptible heating of specific regions via high-frequency fields of varying frequencies. The machine body is composed of microbeads made from a low-melting-point alloy and NdFeB microparticles. When heated, the alloy liquefies, allowing the rotation of NdFeB microparticles under a 40 mT pulsed programming field. Upon cooling, the new configuration is locked in place. This reprogramming process is equally effective for single or multiple machines, enabling versatile multi-pattern deformation of individual machines and cooperation of multiple ones. Furthermore, by incorporating addressable thermal actuation, we demonstrate in situ assembly of multiple robots. This work may enable a broad spectrum of magnetic soft machines with enhanced functionalities.
Collapse
Affiliation(s)
- Yuxuan Sun
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Boxi Sun
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Xiang Cui
- School of Computer Science and Technology, University of Science and Technology of China, 230026, Hefei, China
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yue Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230000, Hefei, Anhui, China
| | - Li He
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230000, Hefei, Anhui, China
| | - Shutong Nong
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Zhengqing Zhu
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Jiyang Wu
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Dongxiao Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Xingxiang Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China
| | - Shiwu Zhang
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China.
| | - Xiangyang Li
- School of Computer Science and Technology, University of Science and Technology of China, 230026, Hefei, China.
| | - Mujun Li
- Institute of Humanoid Robots, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
2
|
Wang C, Wang T, Li M, Zhang R, Ugurlu H, Sitti M. Heterogeneous multiple soft millirobots in three-dimensional lumens. SCIENCE ADVANCES 2024; 10:eadq1951. [PMID: 39504364 PMCID: PMC11540014 DOI: 10.1126/sciadv.adq1951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Miniature soft robots offer opportunities for safe and physically adaptive medical interventions in hard-to-reach regions. Deploying multiple robots could further enhance the efficacy and multifunctionality of these operations. However, multirobot deployment in physiologically relevant three-dimensional (3D) tubular structures is limited by the lack of effective mechanisms for independent control of miniature magnetic soft robots. This work presents a framework leveraging the shape-adaptive robotic design and heterogeneous resistance from robot-lumen interactions to enable magnetic multirobot control. We first compute influence and actuation regions to quantify robot movement. Subsequently, a path planning algorithm generates the trajectory of a permanent magnet for multirobot navigation in 3D lumens. Last, robots are controlled individually in multilayer lumen networks under medical imaging. Demonstrations of multilocation cargo delivery and flow diversion manifest their potential to enhance biomedical functions. This framework offers a solution to multirobot actuation benefiting applications across different miniature robotic devices in complex environments.
Collapse
Affiliation(s)
- Chunxiang Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Tianlu Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Department of Mechanical Engineering, University of Hawaiʻi at Mānoa, Honolulu, HI 96822, USA
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Rongjing Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Halim Ugurlu
- Zentrum für Radiologie Heilbronn, 74177 Heilbronn, Germany
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
3
|
Toscano-Moreno M, Mandow A, Martínez MA, García-Cerezo AJ. SPIN-Based Linear Temporal Logic Path Planning for Ground Vehicle Missions with Motion Constraints on Digital Elevation Models. SENSORS (BASEL, SWITZERLAND) 2024; 24:5166. [PMID: 39204861 PMCID: PMC11359123 DOI: 10.3390/s24165166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Linear temporal logic (LTL) formalism can ensure the correctness of mobile robot planning through concise, readable, and verifiable mission specifications. For uneven terrain, planning must consider motion constraints related to asymmetric slope traversability and maneuverability. However, even though model checker tools like the open-source Simple Promela Interpreter (SPIN) include search optimization techniques to address the state explosion problem, defining a global LTL property that encompasses both mission specifications and motion constraints on digital elevation models (DEMs) can lead to complex models and high computation times. In this article, we propose a system model that incorporates a set of uncrewed ground vehicle (UGV) motion constraints, allowing these constraints to be omitted from LTL model checking. This model is used in the LTL synthesizer for path planning, where an LTL property describes only the mission specification. Furthermore, we present a specific parameterization for path planning synthesis using a SPIN. We also offer two SPIN-efficient general LTL formulas for representative UGV missions to reach a DEM partition set, with a specified or unspecified order, respectively. Validation experiments performed on synthetic and real-world DEMs demonstrate the feasibility of the framework for complex mission specifications on DEMs, achieving a significant reduction in computation cost compared to a baseline approach that includes a global LTL property, even when applying appropriate search optimization techniques on both path planners.
Collapse
Affiliation(s)
- Manuel Toscano-Moreno
- Institute for Mechatronics Engineering and Cyber-Physical Systems, Robotics and Mechatronics Group, Universidad de Málaga, 29071 Málaga, Spain; (M.A.M.); (A.J.G.-C.)
| | - Anthony Mandow
- Institute for Mechatronics Engineering and Cyber-Physical Systems, Robotics and Mechatronics Group, Universidad de Málaga, 29071 Málaga, Spain; (M.A.M.); (A.J.G.-C.)
| | | | | |
Collapse
|
4
|
Richter M, Sikorski J, Makushko P, Zabila Y, Venkiteswaran VK, Makarov D, Misra S. Locally Addressable Energy Efficient Actuation of Magnetic Soft Actuator Array Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302077. [PMID: 37330643 PMCID: PMC10460866 DOI: 10.1002/advs.202302077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/21/2023] [Indexed: 06/19/2023]
Abstract
Advances in magnetoresponsive composites and (electro-)magnetic actuators have led to development of magnetic soft machines (MSMs) as building blocks for small-scale robotic devices. Near-field MSMs offer energy efficiency and compactness by bringing the field source and effectors in close proximity. Current challenges of near-field MSM are limited programmability of effector motion, dimensionality, ability to perform collaborative tasks, and structural flexibility. Herein, a new class of near-field MSMs is demonstrated that combines microscale thickness flexible planar coils with magnetoresponsive polymer effectors. Ultrathin manufacturing and magnetic programming of effectors is used to tailor their response to the nonhomogeneous near-field distribution on the coil surface. The MSMs are demonstrated to lift, tilt, pull, or grasp in close proximity to each other. These ultrathin (80 µm) and lightweight (100 gm-2 ) MSMs can operate at high frequency (25 Hz) and low energy consumption (0.5 W), required for the use of MSMs in portable electronics.
Collapse
Affiliation(s)
- Michiel Richter
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
| | - Jakub Sikorski
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and UniversityMedical Centre Groningen, Hanzeplein 1Groningen9713 GZThe Netherlands
| | - Pavlo Makushko
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
| | - Yevhen Zabila
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
- The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of SciencesKrakow31‐342Poland
| | | | - Denys Makarov
- Institute of Ion Beam Physics and Materials Research, Helmholtz‐Zentrum Dresden‐Rossendorf e.V.Bautzner, Landstraße 40001328DresdenGermany
| | - Sarthak Misra
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteDrienerlolaan 5Enschede7500 AEThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and UniversityMedical Centre Groningen, Hanzeplein 1Groningen9713 GZThe Netherlands
| |
Collapse
|
5
|
Konara M, Mudugamuwa A, Dodampegama S, Roshan U, Amarasinghe R, Dao DV. Formation Techniques Used in Shape-Forming Microrobotic Systems with Multiple Microrobots: A Review. MICROMACHINES 2022; 13:1987. [PMID: 36422416 PMCID: PMC9699214 DOI: 10.3390/mi13111987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 05/19/2023]
Abstract
Multiple robots are used in robotic applications to achieve tasks that are impossible to perform as individual robotic modules. At the microscale/nanoscale, controlling multiple robots is difficult due to the limitations of fabrication technologies and the availability of on-board controllers. This highlights the requirement of different approaches compared to macro systems for a group of microrobotic systems. Current microrobotic systems have the capability to form different configurations, either as a collectively actuated swarm or a selectively actuated group of agents. Magnetic, acoustic, electric, optical, and hybrid methods are reviewed under collective formation methods, and surface anchoring, heterogeneous design, and non-uniform control input are significant in the selective formation of microrobotic systems. In addition, actuation principles play an important role in designing microrobotic systems with multiple microrobots, and the various control systems are also reviewed because they affect the development of such systems at the microscale. Reconfigurability, self-adaptable motion, and enhanced imaging due to the aggregation of modules have shown potential applications specifically in the biomedical sector. This review presents the current state of shape formation using microrobots with regard to forming techniques, actuation principles, and control systems. Finally, the future developments of these systems are presented.
Collapse
Affiliation(s)
- Menaka Konara
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Amith Mudugamuwa
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Shanuka Dodampegama
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Uditha Roshan
- Department of Mechanical Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Ranjith Amarasinghe
- Centre for Advanced Mechatronics Systems, University of Moratuwa, Katubedda 10400, Sri Lanka
- Department of Mechanical Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka
| | - Dzung Viet Dao
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
6
|
Chesnitskiy AV, Gayduk AE, Seleznev VA, Prinz VY. Bio-Inspired Micro- and Nanorobotics Driven by Magnetic Field. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7781. [PMID: 36363368 PMCID: PMC9653604 DOI: 10.3390/ma15217781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
In recent years, there has been explosive growth in the number of investigations devoted to the development and study of biomimetic micro- and nanorobots. The present review is dedicated to novel bioinspired magnetic micro- and nanodevices that can be remotely controlled by an external magnetic field. This approach to actuate micro- and nanorobots is non-invasive and absolutely harmless for living organisms in vivo and cell microsurgery, and is very promising for medicine in the near future. Particular attention has been paid to the latest advances in the rapidly developing field of designing polymer-based flexible and rigid magnetic composites and fabricating structures inspired by living micro-objects and organisms. The physical principles underlying the functioning of hybrid bio-inspired magnetic miniature robots, sensors, and actuators are considered in this review, and key practical applications and challenges are analyzed as well.
Collapse
Affiliation(s)
- Anton V. Chesnitskiy
- Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia
| | | | | | | |
Collapse
|
7
|
Luo X, Kantaros Y, Zavlanos MM. An Abstraction-Free Method for Multirobot Temporal Logic Optimal Control Synthesis. IEEE T ROBOT 2021. [DOI: 10.1109/tro.2021.3061983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
8
|
He Y, Wang L, Yang K, Wang X, Rong W, Sun L. Cooperative Self-Assembled Magnetic Micropaddles at Liquid Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46180-46191. [PMID: 34520667 DOI: 10.1021/acsami.1c13551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cooperative controls of magnetic microswimmers are desired for complex micromanipulation and microassembly tasks. Self-assembled magnetic micropaddles as microswimmers that can locomote freely and cooperate at liquid surfaces are proposed inspired by the paddling motion. The micropaddles are self-assembled with metallic disks under a rotating magnetic field, and they are endowed with controlled propulsion in the precessing field. The micropaddles can locomote freely with a maximum speed of approximately 3.3 mm/s and manipulate objects at the liquid surface. It is found that the micropaddles reverse moving directions at high frequencies and that those with different lengths can locomote in opposite directions under the same precessing magnetic field. Based on the distinctive motion properties, not only could several micropaddles combine into the longer ones but a single micropaddle could also be disassembled into two cooperative partners. Assemblies of different parts based on their cooperation are realized in this study, which is challenging for other types of magnetic microswimmers. Micropaddles with adjustable length, flexible locomotion, and cooperative capability present a promising avenue for various micromanipulation applications.
Collapse
Affiliation(s)
- Yuanzhe He
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Lefeng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Kai Yang
- Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China
| | - Xi Wang
- Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China
| | - Weibin Rong
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Lining Sun
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
9
|
|
10
|
Johnson BV, Esantsi N, Cappelleri DJ. Design of the $\mu$MAZE Platform and Microrobots for Independent Control and Micromanipulation Tasks. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.3010210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Salehizadeh M, Diller E. Three-dimensional independent control of multiple magnetic microrobots via inter-agent forces. Int J Rob Res 2020. [DOI: 10.1177/0278364920933655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This article presents a method to independently control the position of multiple microscale magnetic robots in three dimensions, operating in close proximity to each other. Having multiple magnetic microrobots work together in close proximity is difficult due to magnetic interactions between the robots, and here we aim to control those interactions for the creation of desired multi-agent formations in three dimensions. Based on the fact that all magnetic agents orient to the global input magnetic field, the local attraction–repulsion forces between nearby agents can be regulated. For the first time, 3D manipulation of two microgripping magnetic microrobots is demonstrated. We also mathematically and experimentally prove that the center-of-mass external magnetic pulling of the multi-agent system is possible in three dimensions with an underactuated magnetic field generator. Here we utilize the controlled interaction magnetic forces between two spherical agents to steer them along two prescribed paths. We apply our method to independently control the motion of a pair of magnetic microgrippers as functional microrobot candidates each equipped with a five-degree-of-freedom motion mechanism and a grasp–release mechanism for targeted cargo delivery. A proportional controller and an optimization-based controller are introduced and compared, with potential to control more than two magnetic agents in three dimensions. Average tracking errors of less than 141 and 165 micrometers are accomplished for the regulation of agents’ positions using optimization-based and proportional controllers, respectively, for spherical agents with approximate nominal radius of 500 micrometers operating within several body-lengths of each other.
Collapse
Affiliation(s)
- Mohammad Salehizadeh
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Eric Diller
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
|
13
|
Kantaros Y, Zavlanos MM. STyLuS*: A Temporal Logic Optimal Control Synthesis Algorithm for Large-Scale Multi-Robot Systems. Int J Rob Res 2020. [DOI: 10.1177/0278364920913922] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This article proposes a new highly scalable and asymptotically optimal control synthesis algorithm from linear temporal logic specifications, called [Formula: see text] for large-Scale optimal Temporal Logic Synthesis, that is designed to solve complex temporal planning problems in large-scale multi-robot systems. Existing planning approaches with temporal logic specifications rely on graph search techniques applied to a product automaton constructed among the robots. In our previous work, we have proposed a more tractable sampling-based algorithm that builds incrementally trees that approximate the state space and transitions of the synchronous product automaton and does not require sophisticated graph search techniques. Here, we extend our previous work by introducing bias in the sampling process that is guided by transitions in the Büchi automaton that belong to the shortest path to the accepting states. This allows us to synthesize optimal motion plans from product automata with hundreds of orders of magnitude more states than those that existing optimal control synthesis methods or off-the-shelf model checkers can manipulate. We show that [Formula: see text] is probabilistically complete and asymptotically optimal and has exponential convergence rate. This is the first time that convergence rate results are provided for sampling-based optimal control synthesis methods. We provide simulation results that show that [Formula: see text] can synthesize optimal motion plans for very large multi-robot systems, which is impossible using state-of-the-art methods.
Collapse
Affiliation(s)
- Yiannis Kantaros
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Michael M Zavlanos
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| |
Collapse
|
14
|
Hsu A, Zhao H, Gaudreault M, Foy AW, Pelrine R. Magnetic Milli-Robot Swarm Platform: A Safety Barrier Certificate Enabled, Low-Cost Test Bed. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.2974713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Yang L, Yu J, Zhang L. Statistics-Based Automated Control for a Swarm of Paramagnetic Nanoparticles in 2-D Space. IEEE T ROBOT 2020. [DOI: 10.1109/tro.2019.2946724] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Abstract
This paper presents our work over the last decade in developing functional microrobotic systems, which include wireless actuation of microrobots to traverse complex surfaces, addition of sensing capabilities, and independent actuation of swarms of microrobots. We will discuss our work on the design, fabrication, and testing of a number of different mobile microrobots that are able to achieve these goals. These microrobots include the microscale magnetorestrictive asymmetric bimorph microrobot (
μ
MAB), our first attempt at magnetic actuation in the microscale; the microscale tumbling microrobot (
μ
TUM), our microrobot capable of traversing complex surfaces in both wet and dry conditions; and the micro-force sensing magnetic microrobot (
μ
FSMM), which is capable of real-time micro-force sensing feedback to the user as well as intuitive wireless actuation. Additionally, we will present our latest results on using local magnetic field actuation for independent control of multiple microrobots in the same workspace for microassembly tasks.
Collapse
|
17
|
Shahrokhi S, Shi J, Isichei B, Becker AT. Exploiting Nonslip Wall Contacts to Position Two Particles Using the Same Control Input. IEEE T ROBOT 2019. [DOI: 10.1109/tro.2019.2891487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
|