1
|
Limpabandhu C, Hu Y, Ren H, Song W, Tse ZTH. Actuation technologies for magnetically guided catheters. MINIM INVASIV THER 2023; 32:137-152. [PMID: 37073683 DOI: 10.1080/13645706.2023.2198004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/22/2023] [Indexed: 04/20/2023]
Abstract
Due to their wide range of clinical application possibilities, magnetic actuation technologies have grabbed the attention of researchers worldwide. The design, execution, and analysis of magnetic catheter systems have advanced significantly during the last decade. The review focuses on magnetic actuation for catheter steering and control of the device, which will be explored in detail in the following sections. There is a discussion of future work and the challenges of the review systems, and the conclusions are finally addressed.
Collapse
Affiliation(s)
- Chayabhan Limpabandhu
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Yihua Hu
- Department of Electronic Engineering, University of York, York, United Kingdom
| | - Hongliang Ren
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Wenzhan Song
- School of Electrical and Computer Engineering, University of Georgia, GA, USA
| | - Zion Tsz Ho Tse
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
2
|
Sun H, Liu J, Wang Q. Magnetic Actuation Systems and Magnetic Robots for Gastrointestinal Examination and Treatment. CHINESE JOURNAL OF ELECTRICAL ENGINEERING 2023; 9:3-28. [DOI: 10.23919/cjee.2023.000009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Hongbo Sun
- Institute of Electrical Engineering, Chinese Academy of Sciences,Beijing,China,100190
| | - Jianhua Liu
- Institute of Electrical Engineering, Chinese Academy of Sciences,Beijing,China,100190
| | - Qiuliang Wang
- Institute of Electrical Engineering, Chinese Academy of Sciences,Beijing,China,100190
| |
Collapse
|
3
|
Ciuti G, Skonieczna-Żydecka K, Marlicz W, Iacovacci V, Liu H, Stoyanov D, Arezzo A, Chiurazzi M, Toth E, Thorlacius H, Dario P, Koulaouzidis A. Frontiers of Robotic Colonoscopy: A Comprehensive Review of Robotic Colonoscopes and Technologies. J Clin Med 2020; 9:1648. [PMID: 32486374 PMCID: PMC7356873 DOI: 10.3390/jcm9061648] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Flexible colonoscopy remains the prime mean of screening for colorectal cancer (CRC) and the gold standard of all population-based screening pathways around the world. Almost 60% of CRC deaths could be prevented with screening. However, colonoscopy attendance rates are affected by discomfort, fear of pain and embarrassment or loss of control during the procedure. Moreover, the emergence and global thread of new communicable diseases might seriously affect the functioning of contemporary centres performing gastrointestinal endoscopy. Innovative solutions are needed: artificial intelligence (AI) and physical robotics will drastically contribute for the future of the healthcare services. The translation of robotic technologies from traditional surgery to minimally invasive endoscopic interventions is an emerging field, mainly challenged by the tough requirements for miniaturization. Pioneering approaches for robotic colonoscopy have been reported in the nineties, with the appearance of inchworm-like devices. Since then, robotic colonoscopes with assistive functionalities have become commercially available. Research prototypes promise enhanced accessibility and flexibility for future therapeutic interventions, even via autonomous or robotic-assisted agents, such as robotic capsules. Furthermore, the pairing of such endoscopic systems with AI-enabled image analysis and recognition methods promises enhanced diagnostic yield. By assembling a multidisciplinary team of engineers and endoscopists, the paper aims to provide a contemporary and highly-pictorial critical review for robotic colonoscopes, hence providing clinicians and researchers with a glimpse of the major changes and challenges that lie ahead.
Collapse
Affiliation(s)
- Gastone Ciuti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (V.I.); (M.C.); (P.D.)
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Karolina Skonieczna-Żydecka
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland;
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland;
- Endoklinika sp. z o.o., 70-535 Szczecin, Poland
| | - Veronica Iacovacci
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (V.I.); (M.C.); (P.D.)
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Hongbin Liu
- School of Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 7EH, UK;
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London W1W 7TY, UK;
| | - Alberto Arezzo
- Department of Surgical Sciences, University of Torino, 10126 Torino, Italy;
| | - Marcello Chiurazzi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (V.I.); (M.C.); (P.D.)
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Ervin Toth
- Department of Gastroenterology, Skåne University Hospital, Lund University, 20502 Malmö, Sweden;
| | - Henrik Thorlacius
- Department of Clinical Sciences, Section of Surgery, Lund University, 20502 Malmö, Sweden;
| | - Paolo Dario
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pisa, Italy; (V.I.); (M.C.); (P.D.)
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | | |
Collapse
|