1
|
Ahanonu B, Crowther A, Kania A, Rosa-Casillas M, Basbaum AI. Long-term optical imaging of the spinal cord in awake behaving mice. Nat Methods 2024; 21:2363-2375. [PMID: 39533007 DOI: 10.1038/s41592-024-02476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Advances in optical imaging and fluorescent biosensors enable study of the spatiotemporal and long-term neural dynamics in the brain of awake animals. However, methodological difficulties and fibrosis limit similar advances in the spinal cord. Here, to overcome these obstacles, we combined in vivo application of fluoropolymer membranes that inhibit fibrosis, a redesigned implantable spinal imaging chamber and improved motion correction methods that together permit imaging of the spinal cord in awake behaving mice, for months to over a year. We demonstrated a robust ability to monitor axons, identified a spinal cord somatotopic map, performed months-long imaging in freely moving mice, conducted Ca2+ imaging of neural dynamics in behaving mice responding to pain-provoking stimuli and observed persistent microglial changes after nerve injury. The ability to couple in vivo imaging and behavior at the spinal cord level will drive insights not previously possible at a key location for somatosensory transmission to the brain.
Collapse
Affiliation(s)
- Biafra Ahanonu
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Andrew Crowther
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal, Montreal, Quebec, Canada
- Department of Cell Biology and Anatomy, and Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Wu Y, Wang Z, Chu Y, Peng R, Peng H, Yang H, Guo K, Zhang J. Current Research Status of Respiratory Motion for Thorax and Abdominal Treatment: A Systematic Review. Biomimetics (Basel) 2024; 9:170. [PMID: 38534855 DOI: 10.3390/biomimetics9030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Malignant tumors have become one of the serious public health problems in human safety and health, among which the chest and abdomen diseases account for the largest proportion. Early diagnosis and treatment can effectively improve the survival rate of patients. However, respiratory motion in the chest and abdomen can lead to uncertainty in the shape, volume, and location of the tumor, making treatment of the chest and abdomen difficult. Therefore, compensation for respiratory motion is very important in clinical treatment. The purpose of this review was to discuss the research and development of respiratory movement monitoring and prediction in thoracic and abdominal surgery, as well as introduce the current research status. The integration of modern respiratory motion compensation technology with advanced sensor detection technology, medical-image-guided therapy, and artificial intelligence technology is discussed and analyzed. The future research direction of intraoperative thoracic and abdominal respiratory motion compensation should be non-invasive, non-contact, use a low dose, and involve intelligent development. The complexity of the surgical environment, the constraints on the accuracy of existing image guidance devices, and the latency of data transmission are all present technical challenges.
Collapse
Affiliation(s)
- Yuwen Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhisen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yuyi Chu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Renyuan Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Haoran Peng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Hongbo Yang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Kai Guo
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Juzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Ahanonu B, Crowther A, Kania A, Casillas MR, Basbaum A. Long-term optical imaging of the spinal cord in awake, behaving animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541477. [PMID: 37292913 PMCID: PMC10245895 DOI: 10.1101/2023.05.22.541477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advances in optical imaging approaches and fluorescent biosensors have enabled an understanding of the spatiotemporal and long-term neural dynamics in the brain of awake animals. However, methodological difficulties and the persistence of post-laminectomy fibrosis have greatly limited similar advances in the spinal cord. To overcome these technical obstacles, we combined in vivo application of fluoropolymer membranes that inhibit fibrosis; a redesigned, cost-effective implantable spinal imaging chamber; and improved motion correction methods that together permit imaging of the spinal cord in awake, behaving mice, for months to over a year. We also demonstrate a robust ability to monitor axons, identify a spinal cord somatotopic map, conduct Ca2+ imaging of neural dynamics in behaving animals responding to pain-provoking stimuli, and observe persistent microglial changes after nerve injury. The ability to couple neural activity and behavior at the spinal cord level will drive insights not previously possible at a key location for somatosensory transmission to the brain.
Collapse
Affiliation(s)
- Biafra Ahanonu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Andrew Crowther
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Artur Kania
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC, H2W 1R7, Canada
- Department of Cell Biology and Anatomy, and Division of Experimental Medicine, McGill University, Montréal, QC, H3A 2B2, Canada
| | - Mariela Rosa Casillas
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Allan Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
- Lead Contact
| |
Collapse
|
4
|
Lamare F, Bousse A, Thielemans K, Liu C, Merlin T, Fayad H, Visvikis D. PET respiratory motion correction: quo vadis? Phys Med Biol 2021; 67. [PMID: 34915465 DOI: 10.1088/1361-6560/ac43fc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/16/2021] [Indexed: 11/12/2022]
Abstract
Positron emission tomography (PET) respiratory motion correction has been a subject of great interest for the last twenty years, prompted mainly by the development of multimodality imaging devices such as PET/computed tomography (CT) and PET/magnetic resonance imaging (MRI). PET respiratory motion correction involves a number of steps including acquisition synchronization, motion estimation and finally motion correction. The synchronization steps include the use of different external device systems or data driven approaches which have been gaining ground over the last few years. Patient specific or generic motion models using the respiratory synchronized datasets can be subsequently derived and used for correction either in the image space or within the image reconstruction process. Similar overall approaches can be considered and have been proposed for both PET/CT and PET/MRI devices. Certain variations in the case of PET/MRI include the use of MRI specific sequences for the registration of respiratory motion information. The proposed review includes a comprehensive coverage of all these areas of development in field of PET respiratory motion for different multimodality imaging devices and approaches in terms of synchronization, estimation and subsequent motion correction. Finally, a section on perspectives including the potential clinical usage of these approaches is included.
Collapse
Affiliation(s)
- Frederic Lamare
- Nuclear Medicine Department, University Hospital Centre Bordeaux Hospital Group South, ., Bordeaux, Nouvelle-Aquitaine, 33604, FRANCE
| | - Alexandre Bousse
- LaTIM, INSERM UMR1101, Université de Bretagne Occidentale, ., Brest, Bretagne, 29285, FRANCE
| | - Kris Thielemans
- University College London Institute of Nuclear Medicine, UCL Hospital, Tower 5, 235 Euston Road, London, NW1 2BU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Chi Liu
- Department of Diagnostic Radiology, Yale University School of Medicine Department of Radiology and Biomedical Imaging, PO Box 208048, 801 Howard Avenue, New Haven, Connecticut, 06520-8042, UNITED STATES
| | - Thibaut Merlin
- LaTIM, INSERM UMR1101, Universite de Bretagne Occidentale, ., Brest, Bretagne, 29285, FRANCE
| | - Hadi Fayad
- Weill Cornell Medicine - Qatar, ., Doha, ., QATAR
| | - Dimitris Visvikis
- LaTIM, UMR1101, Universite de Bretagne Occidentale, INSERM, Brest, Bretagne, 29285, FRANCE
| |
Collapse
|